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Introduction

This is a book about running the IPv6 protocol in heterogeneous environments. It will tell
you how to enable the protocol on Windows, MacOS, FreeBSD, Linux, and Cisco routers, and,
up to a point, on Juniper routers. The intent behind the book is to present a clear view of the
aspects to IPv6 that are of interest to those who’ll be running and administrating the protocol,
not to bombard the reader with unnecessary details. This means that the book covers the IPv6
specifications to the degree necessary to successfully operate an IPv6 network; for a detailed
discussion of the IPv6 protocol itself, see IPv6 Essentials by Silvia Hagen (O’Reilly & Associates,
2002) or IPv6: The New Internet Protocol (Second Edition) by Christian Huitema (Prentice Hall,
1998). Alternatively, you can get this information straight from the horse’s mouth by reading the
relevant Request For Comment documents that specify the IPv6 standards. See Appendix A for
a list of IPv6-related RFCs and how to obtain RFCs.

This book is a little different from most technical books. Rather than explain IPv6 as a
more or less self-contained technology, most chapters deal with the impact that IPv6 has on
a particular aspect of IP networking, such as configuring hosts (Chapter 2), routing (Chapter 4),
the DNS (Chapter 5), applications (Chapter 6), security (Chapter 9), and providing transit
services if you’re an ISP (Chapter 11). All these chapters address two audiences: people who
already know the chapter’s subject and just need to know what’s different in IPv6, and people
who have some TCP/IP background but aren’t all that familiar with the subject discussed in
the chapter, let alone with how it relates to IPv6. So all these chapters have some background
information that experts already know, but the chapters quickly proceed into more complex
territory, so non-experts may find it hard to follow the entire chapter.

Many chapters build on information from earlier chapters, so reading the book from the
beginning to the end is not a bad idea. However, there are frequent pointers to other chapters,
so don’t be afraid to start in the middle of the book if that’s your thing.

Throughout the book, you’ll find configuration examples for FreeBSD versions 4.9 and
5.4, Red Hat 9 Linux and Red Hat Enterprise ES4 Linux, Windows XP (mostly Service Pack 2),
Apple MacOS X Panther (10.3) and Tiger (10.4), and Cisco IOS. The Windows XP examples
should also work on Windows 2003 Server, but this wasn’t tested. The IPv6 features vary greatly
between IOS releases, versions, trains, images, and so on. Use a fairly recent IOS version and
consult the Cisco documentation if a feature you want to use isn’t available. Chapter 4 (routing)
also has some examples for Juniper routers. You need basic system or router administration
skills on the system in question to be able to use the examples.

Sometimes, sentences end in URLs, addresses, or commands. In these cases, a period
denotes proper grammar and isn’t part of the URL, address, or command. This can happen
with a comma, too. URLs and commands appear in this font. Sometimes listings contain
examples with lines that are longer than will fit on a single line in the book. In that case, the
character ➥ indicates that the next line is a continuation of the current one. Numbers preceded
by 0x, such as 0x800, are in hexadecimal.

Throughout the book, a “system” or “node” is any device that connects to the network and
implements IP (IPv4 and/or IPv6). A “router” is a system that forwards packets that it didn’t gen-
erate itself from one system to the next. All IP-capable devices that aren’t routers are “hosts.”
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IPv6

The Internet Protocol (IP) is the most successful network protocol in the history of network
protocols. Not only is all the information that flows over the Internet contained in packets that
conform to the Internet Protocol, IP has also driven out of the marketplace the other protocols
that were used in private networks during the last two decades of the previous century. Today,
a non-IP computer network is almost unthinkable. So what kind of new protocol could possi-
bly challenge IP’s supremacy?

A new version of IP, of course.
And that’s exactly what IPv6 (Internet Protocol version 6) is: the next step in the natural

evolution of the Internet Protocol. In case a new version of IP was ever needed, the designers
of the original IP included a field that contains a version number in the packet layout. This
way, there would never be a risk that the contents of a data packet would be misinterpreted,
because the receiver assumes a different version of the Internet Protocol than the one used by
the sender. Today’s IP sets the version number in each packet to 4, making it IPv4. Version
numbers 1, 2, and 3 were left unused. The lowest and highest possible values (0 and 15 for the
IP version number) are traditionally reserved. IP version number 5 was allocated to a non-IP
protocol that had to coexist with IP under some circumstances, so 6 was the logical choice for
the next-generation IP.1

IPv6—Why?
In the mid-1980s, the Internet Engineering Task Force (IETF) was created to provide a setting
where the people who built and ran Internet-related networks or network equipment could
interact. Over the years, the IETF has evolved into a standards organization, but it’s still very
different from other standards organizations such as the ANSI, IEEE, ITU-T, or ETSI. The most
fundamental difference is that other standards organizations charge for membership and for
the standards documents themselves. Within the IETF, on the other hand, anyone can partici-
pate through email and obtain RFC documents for free. Most of the work is done through
email, so even those who can’t afford traveling to the IETF meetings that are held three times
a year can participate. This directly leads to another peculiar aspect of the IETF: because
membership is open, it makes little sense to arrive at decisions through voting, so the IETF
works by “rough consensus.” Nobody really knows for sure what “rough consensus” means,
but the rough consensus is that it’s somewhere between a majority and unanimity. As the IETF

1
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1. See http://www.iana.org/assignments/version-numbers for details on IP version numbers.



motto, coined by Dave Clark, puts it: “We reject presidents, kings, and voting; we believe in
rough consensus and running code.”

Work inside the IETF is done in working groups (wgs). The working groups are organized
into areas such as Routing, Security and Operations, and Management. Each area has two area
directors, and the area directors, together with the IETF chair, make up the Internet Engineer-
ing Steering Group (IESG). The IESG is the IETF’s governing body. There is also the Internet
Architecture Board (IAB), which has close ties to the IETF and overlooks the Internet architec-
ture. The Internet Assigned Numbers Authority (IANA) keeps track of protocol numbers, and
the RFC Editor publishes IETF standards and other documents as “RFCs” (see Appendix A for
more information). The IESG and IAB members don’t receive compensation for their work,
but the IETF has a small secretariat that provides administrative support to the IESG.

In the early 1990s, the IETF realized that the IPv4 address space was running out at a dan-
gerous rate. Around 1990, about one-eighth of the 3.7 billion usable IPv4 addresses was given
out, a number that doubled every five years. At this rate, the last IP address would be used up
in 2005. This apparently impending doom prompted the IETF to start work on “IP next gener-
ation” (IPng), which eventually led to the creating of the IPv6 standard. The first IPv6 RFC was
published in 1995 (with many more to come). The main difference between IPv4 and IPv6 is
that IPv6 uses addresses that are 128 bits, rather than the 32 bits in IPv4, allowing no less than
3.4 × 1038 individual addresses.

See Appendix A for an overview of the IETF standards process and a list of IPv6-related RFCs.

IPv6 Benefits
When the IETF set out to create “IPng,” the Internet Protocol next generation, it took advantage
of this opportunity to improve on IPv4 wherever possible.

More Address Space
Still, the most obvious and most important advantage of IPv6 is that the addresses are longer,
which makes for a much, much larger address space. The actual number of individual addresses
that is possible with 128 bits goes beyond numbers anyone except astronomers and particle
physicists is familiar with:

340,282,366,920,938,463,463,374,607,431,768,211,456

The number of possible IPv4 addresses seems mundane by comparison:

4,294,967,296

The 128-bit address space is large enough to have 155 billion IPv4 Internets on every
square millimeter of the Earth’s surface, including the oceans. In U.S. measurements, the
figure is even bigger: it’s enough to supply every square inch of the Earth’s surface with the
equivalent of a hundred trillion IPv4 Internets. Or what if the amount of address space used
would really have doubled every five years for years to come, rather than level off around the
turn of the millennium? Even at this incredible exponential rate, the IPv6 address space would
last until the year 2485.

The original goal of providing more address space to avoid running out of addresses
altogether isn’t as urgent as it once was, because IPv4 addresses are no longer used up at an
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exponential rate. There may even be enough IPv4 addresses for decades to come, although that’s
certainly a dangerous assumption to make. On the other hand, there aren’t even enough IPv4
addresses for each person on Earth to have just one, and North America and Europe already use
many more than a single address per person. So while the exact moment when the IPv4 address
space will run out remains a topic for heated debate, it’s obvious that at some point it will.

Innovation
One reason why IPv4 addresses aren’t running out as fast as predicted 10 years ago is that
many, if not most, IP-capable systems today use private address space and connect to the
Internet using Network Address Translation (NAT). However, NAT is a double-edged sword.
On the one hand, it allows for simple extension of IP connectivity to large numbers of hosts
and IP-enabled devices everywhere where a single address is available, but the downside is
that NAT gets in the way of many applications, especially those that don’t adhere to a simple
client/server model. Because with NAT in effect, several hosts share the translated IP address,
and having hosts elsewhere on the Net connect to one of the NAT’ed hosts becomes a prob-
lem. This is similar to the situation where several phones are connected to a single line: for
outgoing calls, there isn’t much of a problem, but there is no easy way to get incoming calls
delivered to the right phone.

For services such as the Web and email, there isn’t much of a problem: the Web browser or
email client always contacts the server. For these services, only a limited number of servers
need to receive incoming connections. However, with other types of applications, everyone is
a server. This is the case with Voice over IP (VoIP), where IP-enabled phones connect directly
to each other, to similar applications such as video conferencing, and to any type of peer-to-
peer application. NAT is a real stumbling block when it comes to adopting these new
technologies. IPv6 can solve this by giving each IP-enabled system its own address, allowing
for renewed innovation.

Stateless Autoconfiguration
IPv4 hosts typically use the Dynamic Host Configuration Protocol (DHCP) to obtain an
address from a server or router. This generally works well, but it has two downsides: a server
of some kind is required, and there is no guarantee that a host will receive the same address
when repeating the request at some later time. IPv6 adds “stateless autoconfiguration” as a
means for hosts to be configured with an address. With stateless autoconfiguration in effect
(and it usually is), a host listens for routers to tell it which 64 bits to use for the top half of the
IPv6 address. All hosts connected to the same network share these 64 bits. Hosts then derive
the bottom 64 bits from their Ethernet MAC address to arrive at a full 128-bit IPv6 address. If
there are several routers that advertise different 64-bit prefixes, hosts simply create multiple
addresses by combining each of those prefixes with the MAC-derived 64-bit values. This means
that unless there are special circumstances, a host will always have the same address(es) with-
out any per-host configuration of any kind. In IPv4, client hosts that can stand to have their IP
address changed mostly use DHCP, but servers still almost always receive their IP address
through manual configuration to avoid nasty surprises when the DHCP server gets confused.
With IPv6, manually configuring server addresses is no longer necessary, as there is no longer
any “state” (configuration information) that can get lost or corrupted.

Of course, the router advertisements also tell hosts which routers they can use to reach
the rest of the Internet.
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Renumbering
Changing IP addresses for a group of hosts becomes a lot easier now, as all that’s required
is for routers to stop advertising the old prefix and to start advertising a new one. Hosts will
automatically create new addresses for themselves and notice that the old addresses are no
longer “refreshed.” To avoid interruptions in ongoing sessions when the old addresses are
suddenly removed, the old addresses are only “deprecated” at first, meaning they may still
be used in existing communication sessions but for new sessions are set up using non-
deprecated addresses.

Efficiency
IPv6 processing is more efficient than IPv4 processing in many ways. This boost in efficiency
is illustrated by the fact that while the address fields are now four times as big as in IPv4, the
total size of the IPv6 header that precedes all packets is only 40 bytes, twice as big as the typi-
cal 20-byte IPv4 header. Efficiency improvements in IPv6 include the following:

• The IPv6 header has a fixed length.

• The IPv6 header is optimized for processing up to 64 bits at a time (32 in IPv4).

• The IPv4 header checksum that is calculated every time a packet passes a router was
removed from IPv6.

• Routers are no longer required to fragment oversized packets; they can simply signal
the source to send smaller packets.

• All broadcasts for discovery functions were replaced by multicasts. Only hosts that are
actively listening for multicasts are interrupted, rather than all hosts, as with broadcasts.

See Chapter 7 for additional details on IPv6 advantages and transition issues and Chapter 8
for more information on how IPv6 works internally.

Myths
A number of myths surround IPv6. Some are simple misinformation, but others are more per-
sistent because they have small kernel of truth to them, which is then blown out of proportion.

Security
Probably the most persistent myth surrounding IPv6 is that it would be more secure than IPv4.
This myth is probably fed by the fact that IPv6 has “mandatory” support for IPsec. IPsec pro-
vides authentication and encryption at the IP level, making it possible for any application that
runs over IP to be protected against having its data intercepted or modified en route. However,
IPsec is also available in many IPv4 implementations today, while the fact that it’s supposed to
be included in IPv6 doesn’t mean that it’s available to applications by default: IPsec requires
extensive configuration efforts.

In practice, however, running IPsec over IPv4 is a challenge because NAT often gets in the
way. The IPsec option that is designed to protect the entire packet will detect the modifica-
tions to packets introduced by NAT and throw those packets away. Other IPsec options aren’t
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fundamentally incompatible with NAT but are hampered by the fact that the negotiation
mechanism that sets up IPsec security associations gets confused when the two ends don’t
agree on each other’s IP address (because it was translated in the middle). Although these
issues are addressed in IPv4, it’s still easier to run IPsec in IPv6.

IPv6 does have one security advantage over IPv4, though: in IPv6, an Ethernet usually gets
64 bits to number hosts. With IPv4, this is never more than 16 bits and is often much less. This
means that an attacker or a worm looking for something to hack or infect has a much harder
time scanning even a single Ethernet subnet in IPv6 than scanning the entire IPv4 Internet.
See Chapter 9 for a detailed discussion of IPv6 security, including IPsec.

Mobility
Like IPsec, support for mobility is required for IPv6. In this context, mobility means that a host
may connect to the network at different places at different times, receiving different IP addresses
each time but retaining communications sessions to its “home address” all the while. However,
fully functioning, if not terribly efficient, mobility support is also available for some IPv4 imple-
mentations, while it’s often still lacking in IPv6 implementations because the Mobile IPv6
standard hasn’t quite settled yet.

Quality of Service
It is often said that IPv6 has better support to provide for additional “quality of service” (QoS),
or in other words, mechanisms to prioritize certain traffic over other traffic. This is not the
case. IPv4 and IPv6 both support traffic prioritization by using a small field in the header that
used to hold “type of service” and priority information. This field has since been redefined for
use with “differentiated services” (diffserv). However, IPv6 also has a field that IPv4 doesn’t
have: the flow label. The flow label isn’t really used today, and its only use is to recognize dif-
ferent communications sessions, something that is also easily done by looking at the TCP or
UDP port numbers. IPv6 may gain QoS advantages over IPv4 when the flow label is put to
good use in the future.

Routing
It has been said that routing would be improved in IPv6. Unfortunately, it’s exactly the same as
in IPv4, except that the addresses are bigger and we get to avoid some of the mistakes that were
made with assigning IPv4 address space.

The Transition Will Be Too Expensive
In the cases where existing hardware can’t be upgraded to support IPv6, the transition to IPv6
will indeed be expensive. However, having to replace hardware is a problem mostly with very big
routers used by Internet Service Providers and large enterprises. If these routers have special
hardware support for routing IPv4 that isn’t compatible with IPv6, the router is either completely
useless for IPv6 or performance is dramatically lower because IPv6 must be processed in soft-
ware without any hardware acceleration. However, cutting-edge routing hardware has a fairly
short economic lifespan, so this problem should go away by itself in a few years. (Unless people
continue to keep buying IPv4-only hardware, of course.)
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For small devices that can’t be upgraded, either the price is so low that replacing them isn’t an
issue, or they can continue to run IPv4 without much trouble with transition mechanisms (see
Chapter 7) picking up the slack. Regular computers don’t pose a problem in this area because all
the major operating systems already support IPv6. The only costs that remain are those for oper-
ating dual-stack networks and training personnel. But these costs should be measured against
continued use of IPv4 and having to comply with address allocation policies that continue to get
stricter.

IPv6—When?
IPv6 has been under development for the better part of 10 years, so the question when it is
going to claim its place under the sun isn’t easily answered. Some people say that if the proto-
col was going to succeed, it would have done so by now. That doesn’t explain the incredible
amount of activity surrounding IPv6 that has only increased in the past years, though. Vendors
that had adopted a wait-and-see attitude before are now implementing the protocol into their
products. The adoption of IPv6 in the Internet community at large seems to be on the rise as
well, but not yet to the degree that IPv6 is becoming even close to mainstream, except maybe
in Japan and Korea.

The way things are going now, it looks like IPv6 isn’t going to run out of steam on its own
any time soon. Given enough time, it should fairly naturally ease into wider deployment. How
wide? Hard to say. IPv6 could quite possibly end up in a similar situation to that of the metric
system in the U.S.: it’s not something the general population knows or cares about, but certain
groups, such as scientists, doctors, and engineers, would be lost without it. On the other hand,
all the non-IP network protocols that are mentioned later in this chapter were very much in
use 10 to 15 years ago, but IPv4 has replaced them all. So we can’t rule out that IPv4 in turn will
be replaced by IPv6 over the course of the next 10 to 15 years.

Differences Between IPv4, IPv6,
and Other Protocols
It has been said2 that the IP protocol family looks like an hourglass. The hourglass is wide at
the top, where there are many application protocols, and narrows down to a much smaller set
of transport protocols that are used between the two systems that take part in any particular
communication session, such as TCP and UDP. A single Internet Protocol layer that is respon-
sible for getting the packets across the underlying infrastructure forms the narrow middle of
the hourglass. Below IP, the glass gets wider again to accommodate the different link layer pro-
tocols that know how to get packets from one IP router to the next, such as Ethernet, ATM, and
PPP. Each datalink protocol can typically run over a variety of physical protocols that are
responsible for getting the individual bits across a wire.
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The hourglass model puts IP squarely in the middle of the protocol family, sitting between
the low-level protocols that are different at each hop along the way on the one hand, and the
high-layer protocols that function end-to-end on the other hand. This model makes IP the only
part of the protocol family that must be supported on all hosts and all routers. This isn’t true for
any other layer. For instance, when two hosts want to use the new SCTP protocol on top of IP
rather than TCP, they can just go ahead and do so: the routers along the way don’t have to under-
stand SCTP. Conversely, a connection between two routers may be upgraded, for instance from
Ethernet to Packet over SONET (POS), without any impact to the hosts that communicate over
this link through the routers in question, as the lower layer protocols are removed and reapplied
every time a packet passes a router.

The job of the Internet Protocol and alternative network layer protocols (that occupy the
same place in different hourglasses) is to make the packets flow from the source to their destina-
tion and to accommodate the requirements of the different lower-layer protocols encountered
along the way. IP implements an “unreliable datagram service,” which means that packets
(“datagrams”) can be sent from one host connected to the network to another host that is also
connected to the network without first having to set up a connection. In most cases, the data-
gram will be delivered to the destination, but there are no guarantees. For the network to deliver
these datagrams to their destination, the packet must be completely self-contained and include
at the very least source and destination addresses and the higher-layer protocol to which the
packet is addressed. Routers along the way look at the address to decide which way the packet
should go. Routers make these decisions with the aid of the routing table, which is nothing more
than a long list of destination address ranges along with pointers to neighboring routers that are
willing to forward packets for these addresses into the right direction. When the destination
address can’t be found in the routing table, or there is another problem, routers send back Inter-
net Control Message Protocol (ICMP) messages to inform the source of the offending packet of
the problem.

At first glance, there is significant overlap between what happens at the network layer in
IP and the datalink layer in protocols such as Ethernet. Ethernet switches also use address
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information in the packet to forward it to the right destination. But there is a crucial differ-
ence: Ethernet addresses are burned into the Ethernet chip, so there is no rhyme or reason to
where on the planet a particular Ethernet address is used. This way of assigning addresses
makes it impossible to build really big networks with just Ethernet: the routing tables would
get too large. Network layer protocols, on the other hand, divide the address in two parts: the
network part and the host part. Whenever hosts are connected together by using a datalink
layer network, all those hosts share the same network address. The host part is different for
each host (or router), of course. The network and host parts together make up the full address,
which makes it possible for routers to keep track of huge numbers of hosts just by having a
limited number of network addresses in their routing tables.

Having both a network layer address and a datalink layer Media Access Control (MAC)
address means that there must be some kind of mechanism to map from one to the other.
Different network layer protocols have implemented this in different ways and have used
wildly different address lengths.

IPX
Internetwork Packet Exchange (IPX) is a network layer protocol developed by Novell based on
work by Xerox. It uses 80-bit addresses, with 32 bits for the network part of the address and
48 bits for the host part. The host part of the address simply contains the 48-bit Ethernet MAC
address, so mapping from an IPX address to an Ethernet address is extremely simple. A host
creates an IPX address for itself by taking the network address that routers periodically broad-
cast and filling in its Ethernet MAC address in the host part of the address. Figure 1-2 shows
how an IPX address is created and how the Ethernet MAC address is found in the IPX when
required.

When an IPX host wants to communicate with another host, it first checks if the intended
correspondent is on the local Ethernet by checking whether the network parts of the local host’s
and the remote host’s addresses are the same. If they are, the packet can be transmitted directly
to the remote host because it’s connected to the same Ethernet as the local host. If it is not, the
packet is sent to a router.

DECnet Phase IV
Digital Equipment’s DECnet Phase IV uses addresses that are only 16 bits long: 6 bits for the
network part and 10 for the host part. DECnet solves the mapping problem the other way
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around: the Ethernet chip is reprogrammed to ignore its burned-in address and instead uses
a special MAC address that includes the full DECnet address. DECnet Phase IV addresses must
be manually configured. Figure 1-3 shows how the DECnet address fits inside the Ethernet
MAC address.

AppleTalk
AppleTalk by Apple uses addresses that aren’t much longer than DECnet addresses: 24 bits,
with 16 bits for the network and 8 bits for hosts. As with IPX, the network address is learned
from routers, but unlike IPX and DECnet Phase IV, AppleTalk doesn’t use fixed information
such as the Ethernet MAC address or a manually configured value to arrive at a host address.
Instead, a host simply picks an address and checks if it’s already in use by sending a message
to this address. If there is no answer, the address is free, and the host may start using it. If there
is an answer, the address is already in use, so the new host picks another address and retries.
AppleTalk uses an address resolution protocol similar to that of IP (discussed later this chap-
ter) to find Ethernet MAC addresses for other AppleTalk hosts it only knows the AppleTalk
address for. Figure 1-4 shows how the AppleTalk address is created and how it’s resolved into
an Ethernet MAC address.

OSI CLNP
In the 1980s, the Open Systems Interconnection (OSI) protocol family was created by the
International Organization for Standardization (ISO) and the International Telecommunica-
tion Union (ITU). The Connectionless Network Protocol (CLNP) provides a datagram service.
In true OSI spirit, where even the most mundane details are carefully specified, there is a dif-
ferent name for the Connectionless Network Service (CLNS) and the actual CLNP protocol that
is used to provide this service. However, this nuance is only appreciated by connoisseurs, so
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CLNP and CLNS are often used interchangeably. Some people even simply say “OSI,” disregard-
ing the connection-oriented part of the protocol family (the X.25 protocol). CLNP addresses
may vary in length, with a maximum of 160 bits, and include a system identifier that must be
the same length for all systems inside a CLNP network. This means that in practice, the Ether-
net MAC address is often used here, as shown in Figure 1-5.

Unlike IPX, AppleTalk, IP, and IPv6, CLNP hosts don’t try to figure out which addresses are
reachable locally without involving a router. A CLNP host simply sends the packet to a router.
The router then may or may not send a redirect message to inform the host on which MAC
address it can use to communicate with the other host.

OSI JARGON

For people who are used to IP and the terminology that comes with it, OSI jargon can be quite baffling. For
instance, a host is called an End System (ES) and a router is an Intermediate System (IS). A MAC address is a
Subnetwork Point of Attachment (SNPA), and even the word “address” is deemed no good, so Network Ser-
vice Access Point (NSAP) is used instead. To confuse matters even more, routers are generally addressed
with a Network Entity Title (NET) rather than an NSAP.

TCP/IP
Then there is the Transport Control Protocol/Internet Protocol (TCP/IP) family of protocols.
TCP/IP, or simply “IP” for short, was developed by researchers connected to the U.S. Department
of Defense Advanced Research Projects Agency (DoD ARPA). Originally, the ARPANET used a sin-
gle Network Control Protocol (NCP), but around 1980, NCP functionality was split up between
the IP and TCP protocols. As the name suggests, the Internet Protocol was intended to be a proto-
col that could connect or internetwork different types of networks. As such, the IP address was
fairly short at only 32 bits, so to accommodate both a large number of individual networks and
large numbers of hosts per network, the designers of IP came up with a trick: rather than use a
fixed boundary between the network and host parts of the address, they created three “classes.”
Class A networks have 7 bits for numbering networks and 24 bits for numbering hosts, class B
networks have 14 network bits and 16 host bits, and class C networks have 21 bits to number net-
works and 8 for numbering hosts. (One to three bits are used to keep the classes apart.) This
system with three different address classes allows IP to interconnect a small number of very large
networks and also a very large number of small networks, along with a not very large number of
medium-sized networks.
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Unfortunately, the class B networks turned out to be the most popular choice, as very few
organizations need to connect more than 65,536 hosts (which requires a class A net), while
most organizations could see themselves using more than 256 hosts, the maximum for a class
C network. This meant the class B networks started to run out rather quickly in the early 1990s.
For a while, this impending shortage was fixed by giving out ranges of class C networks rather
than a single class B network. However, this solution had the unfortunate side effect of using
much more memory and processing capacity in routers: instead of keeping track of a single
class B network, routers now had to know about, for instance, 16 individual class C networks.
This problem was in turn fixed in 1993 by adopting classless interdomain routing (CIDR). With
CIDR, the original class distinction was no longer relevant, and a value that indicated the divi-
sion between the network and host bits was explicitly carried in routing protocols. This
characteristic makes it possible to use the lowest possible number of bits to number hosts,
using both the IPv4 address space and router resources as efficiently as possible.

Because there is no relation between the IP address and the factory-assigned Ethernet
MAC address, IP uses the Address Resolution Protocol (ARP) to find out the MAC addresses for
neighboring systems. A host that has an IP packet that it wants to transmit to another host or a
router connected to the same Ethernet simply broadcasts a message asking for the owner of
the IP address in question to respond. The target system sees its address in the broadcast and
answers, and the original host learns the MAC address it was looking for from the reply. After
that, the host knows which Ethernet MAC address to use for packets destined for this IP
address. This process is shown in Figure 1-6.

CIDR—AN EXAMPLE

In 1988, an organization that needed 3,000 addresses would have received a class B net, wasting some
62,500 addresses but only using a single entry in the “global routing table” that is present in the large
routers at Internet Service Providers. Three years later, in 1991, an organization that needed the same num-
ber of addresses would have received 12 class C nets, not wasting any IP addresses to speak of, but using
12 entries in routing tables worldwide. Another three years later, in 1994, a request for 3,000 IP addresses
would have resulted in a /20 address assignment, which equals 16 class C nets or 1/16th of a class B net
(4,096 addresses). However, these addresses could easily have come from class A space, as the old class
distinction is no longer relevant and former class A space holds the most unused addresses. Using 12 bits to
number hosts makes for a block of 4,096 addresses, which is more than 1,000 in excess of the 3,000 that
are required. This situation is still much better than that with a full class B net, and only a single entry in the
routing table is required.
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IP Version 6
Last but not least, there is IPv6. There are many differences between IPv4 and IPv6, but it’s
important to recognize that IPv6 is still IP. Any and all protocols that run over IPv4 can also run
over IPv6, assuming the necessary changes are made to accommodate the larger addresses.
IPv6 addresses are 128 bits (16 bytes) long and fully classless. Well, in theory at least. In prac-
tice, in almost all cases, 64 bits are used to number networks and the remaining 64 bits are
host bits. The 64 host bits are by default filled in with an Extended Unique Identifier (EUI-64),
which is simply a 64-bit MAC address. Regular 48-bit Ethernet MAC addresses can easily be
turned into EUI-64s by filling up the missing bits in the middle with 15 ones and a zero. The
network part of the address is filled in with a network address that is periodically broadcast by
routers. So it would seem that IPv6 adopts the IPX/CLNP approach by including the MAC
address in the network layer address. However, this isn’t the whole story. IPv6 also borrows
from AppleTalk by performing a Duplicate Address Detection (DAD) procedure over the
address, which means the actual address used may not contain a valid EUI-64. Just to be sure,
IPv6 also supports the traditional IPv4 ways to assign addresses: through manual configura-
tion and using an IPv6 version of the Dynamic Host Configuration Protocol (DHCP).

Because the host bits in the IPv6 address don’t necessarily contain a MAC address, IPv6
includes an ARP-like mechanism to discover MAC addresses. But ARP is a fairly Ethernet-specific
protocol, and it uses broadcasts, which IPv6 doesn’t support. Instead, IPv6 uses multicasts exten-
sively. Multicasts are like targeted broadcasts: packets are delivered to all hosts that are subscribed
to a certain multicast group address. There are different group addresses for different purposes.
Neighbor Discovery (ND), which is IPv6’s replacement for ARP, is entirely multicast-based and is
also more generic than ARP, removing the Ethernet-centrism and supporting additional capabili-
ties such as dead neighbor detection. Figure 1-7 shows the relationship between the Ethernet
MAC address, the EUI-64, and the IPv6 address.

This short overview may give you the impression that IPv6 is unnecessarily complex, but
in my opinion, that’s not the case. Yes, of the six network layer protocols, IPv6 is the most com-
plex (or maybe it’s a tie with CLNS), but as you read the rest of the book, you’ll find out that
IPv6 takes the best features from its direct and less direct predecessors, adds a few new ones of
its own, and melds them into something elegant and powerful.
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Getting Started

Later in this chapter, we’ll be enabling IPv6, but before that, it’s important to understand
IPv6 addressing. This subject is somewhat more complex than IPv4 addressing. First of all, IPv6
addresses are written differently: as eight 16-bit hexadecimal values separated by colons rather
than as four 8-bit decimal values separated by periods. A typical IPv6 address looks like this:

2001:db8:31:1:20a:95ff:fef5:246e

Note that leading zeros are usually left out. To cut down on unnecessary zeros even more,
one (and only one) sequence of zero values separated by colons may be removed. So the address
2001:db8:31:0:0:0:0:1 may also be written as 2001:db8:31::1. The fact that the address is now
composed of only four values indicates that four zero values were removed at the place of the
double colon, so they can easily be reinstated when the address must be converted to the inter-
nal 128-bit representation. This “zero compression” makes the following shorthand perfectly
legal:

:: (0:0:0:0:0:0:0:0), which is the unspecified address.

::1 (0:0:0:0:0:0:0:1), which is the IPv6 loopback address.

2001:db8:31:: (2001:db8:31:0:0:0:0:0), which is (almost) a regular address.

However, something like 2001:db8:31::5900::1 isn’t allowed, as there is no way to see
that it is supposed to mean 2001:db8:31:0:5900:0:0:1 and not 2001:db8:31:0:0:5900:0:1.
In this case, you should use either 2001:db8:31::5900:0:0:1 or 2001:db8:31:0:5900::1.

To accommodate the cases where the bottom 32 bits of an IPv6 address represent an
IPv4 address (see Chapter 6), an IPv6 address may be expressed as six hexadecimal values
separated by colons followed by the last 32 bits in the shape of an IPv4 address, for instance:
2001:db8:31:0:5900:0:172.31.45.60.

IPv6 doesn’t use netmasks (a few exceptions prove the rule), but instead it uses the prefix
notation that’s common in IPv4 routing as well. So when an Ethernet has the IPv6 address
range 2001:db8:31:1:: to 2001:db8:31:1:ffff:ffff:ffff:ffff assigned to it, this is written as
2001:db8:31:1::/64. The “/64” means that the first (upper or left) 64 bits of the address are
assigned by an authority of some sort, and the contents of the remaining bits (also 64 in this
case) are assigned locally. The address part in a prefix must be a valid IPv6 address with all the
bits that aren’t part of the prefix set to zero. So 2001:db8:31:1::/64 and 2001:db8:31:1::/127
are valid prefixes, but 2001:db8:31:1/64 or 2001:db8:31:1::/48 aren’t. In the first case, the
address part isn’t a valid 128-bit IPv6 address; in the second case the “:1::” part falls outside
the 48 prefix bits, so it should have been zero: 2001:db8:31::/48. However, even though it isn’t
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1. A “subnet” or “link” is a part of the network where the connected systems share an address range and
can communicate with each other without involvement from a router. The most common example is
an Ethernet network with one or more switches or hubs.

a valid prefix, 2001:db8:31:1:20a:95ff:fef5:246e/64 is shorthand for “address
2001:db8:31:1:20a:95ff:fef5:246e in subnet 2001:db8:31:1::/64.”1 An address without
a slash and a prefix value is always just an address, never a prefix or an address range. So
2001:db8:31::/48 is a prefix, but 2001:db8:31:: is an address that just happens to end in 
a lot of zero bits.

See RFC 3513 for more information. Appendix A has more information on RFCs and how
to obtain them.

■Tip Because the colon character is already used to separate the port number from the hostname or
address in URLs, IPv6 addresses can’t be used in URLs (and many other places such as configuration files)
as-is. Enclosing IPv6 addresses in brackets solves this problem. For example, a URL that points to the literal
IPv6 address 2001:db8:31:2::1 would be http://[2001:db8:31:2::1]/ (RFC 2732). You may also
encounter IPv4 addresses in this form, such as http://[192.0.2.1]/.

HEXADECIMAL AND BINARY REPRESENTATION

Numbers are stored in binary representation in computer memory; in other words, as strings of zeros and
ones. These binary values can easily be converted back and forth to our regular decimal representation when
necessary. But when such numbers become sufficiently large, the conversion between binary and decimal
becomes inconvenient because the decimal numbers get too large. In IPv4, this inconvenience is avoided by
converting the 32-bit address to decimal as four groups of 8 bits. This solution has the additional benefit that
it allows us to easily determine that 192.168.0.69 and 192.168.0.95 fall within the same address
range. Doing the same for 3221291245 and 3221291271 (the same 32-bit addresses converted to decimal
numbers) would be much harder. IPv6, on the other hand, takes advantage of the fact that hexadecimal digits
represent an even number of bits, as shown in the following table.

Binary Hexadecimal Decimal Binary Hexadecimal Decimal

0000 0 0 1000 8 8

0001 1 1 1001 9 9

0010 2 2 1010 A 10

0011 3 3 1011 B 11

0100 4 4 1100 C 12

0101 5 5 1101 D 13

0110 6 6 1110 E 14

0111 7 7 1111 F 15

In hexadecimal, it’s also easier to see that the two IP addresses share a common first part or prefix:
C0A80045 and C0A8005F. Whether they are really part of the same subnet, of course, depends on the
subnet size.
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IPv6 Addressing
IPv6 has three types of addresses: unicast, multicast, and anycast. Unicast addresses are regu-
lar addresses used for one-to-one communication. Multicast addresses are “group addresses”;
packets sent to such an address are delivered to all the systems that are interested and have
joined the group. All functions that were performed by broadcasts in IPv4 are performed by
using multicasts in IPv6. This type has the advantage that systems that aren’t interested in
certain information aren’t forced to spend CPU cycles receiving it anyway, like they are with
broadcasts. With multicasts, the network interface ignores packets addressed to groups that
weren’t joined at the hardware level. Anycasts are similar to multicasts, the difference being
that packets sent to an anycast address are only delivered to one system in the anycast group
rather than all of them.

At the highest level, the 128-bit IPv6 address space is divided into six parts, as shown in
Table 2-1.

Table 2-1. Overview of the IPv6 Address Space

Start bits IPv6 prefix notation Use

000 ::/3 Special addresses types

001 2000::/3 Allocated global unicast addresses

01 - 1111 1110 0 4000::/2 - FE00::/9 Reserved global unicast addresses

1111 1110 10 FE80::/10 Link-local unicast addresses

1111 1110 11 FEC0::/10 Site-local unicast addresses

1111 1111 FF00::/8 Multicast addresses

The special address types in the ::/3 include two special addresses (discussed later this
chapter), IPv6-mapped IPv4 addresses (discussed in Chapter 6), and IPv6-encoded NSAP/
CLNP addresses and IPX addresses.

Link-local addresses are for use on a single subnet; they are discussed later this chapter.
In a similar vein, site-local addresses are meant for use within a single site. The site-local
address range is somewhat similar to the RFC 1918 address ranges in IPv4 (10.0.0.0/8,
172.16.0.0/12, and 192.168.0.0/16). However, the IETF has identified a number of concerns
regarding the use of site-local addresses. See Chapter 4 for a more detailed discussion.

Missing from Table 2-1 are anycast addresses, because anycast addresses are “syntacti-
cally indistinguishable” from unicast addresses. In other words, anycast addresses look the
same as unicast addresses and share the same address space, and a host has no way of know-
ing whether it’s sending a packet to a regular unicast address or to an anycast group address.
A system that is set up to receive anycast packets must be explicitly configured so it knows it’s
dealing with an anycast address in order to enable the required special link layer behavior.
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■Caution Multicast and anycast addresses may be used as destination addresses in packets, but only
unicast addresses may be used as source addresses. Also, only routers may be configured with an IPv6 any-
cast address.

This means strictly speaking, anycasting services such as the DNS isn’t compatible with RFC 3513. After
all, for anycast DNS to work, the anycast address must be present on more than one DNS server (which pre-
sumably are hosts and not routers), and the responses to DNS queries are sent back with the destination
address of the query (the anycast address) as the source address. The host that sent the query wouldn’t
recognize the response if it came from a different address. However, anycasting services is rarely done
using the actual IPv6 anycast link-level mechanism, where several systems configured with the same any-
cast address are connected to the same subnet.

Interface Identifiers
All unicast addresses, except those starting with three zero bits (prefix ::/3), are supposed to use
a 64-bit interface identifier in the lower 64 bits of the IPv6 address. As mentioned in Chapter 1,
an interface identifier is usually derived from a hardware MAC address. In turn, MAC addresses
and EUI-64 Extended Unique Identifiers are made up of a 24-bit Organizationally Unique Iden-
tifier (OUI), or “company_id,” as administered by the Institute of Electrical and Electronics
Engineers (IEEE), along with 24 or 40 bits that the owner of the OUI assigns. Although the IEEE
habitually refers to the OUI as being 24 bits long, in reality, it’s only 22 bits long, as two bits are
used to indicate whether a MAC address or EUI-64 is globally unique (the universal/local bit)2

and whether the MAC address is a group (multicast) address or a regular unicast address (the
group bit).

Even in the cases where no hardware address is available or the address is set manually, the
step from interface identifier to IPv6 address is still conceptually present. In this case, the univer-
sal/local bit in the EUI-64 is set to one, indicating that the address isn’t globally unique and thus
not universally usable. However, to avoid complexity when manually configuring addresses, the
universal/local bit (u/l bit) is flipped when creating an IPv6 address from a routing prefix and an
interface identifier. An EUI-64 with the universal/local bit flipped is referred to as the “modified
EUI-64.” Figure 2-1 shows the relationship between the OUI, the MAC address, the EUI-64, and
the modified EUI-64.
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For example, the MAC address 00:0A:95:F5:E9:6E contains OUI 000A95, which is regis-
tered to Apple. This 48-bit MAC address is turned into an EUI-64 by inserting the hexadecimal
value FFFE between the OUI and the organization-assigned bits, which makes for the 64-bit
value 00:0A:95:FF:FE:F5:E9:6E. By flipping bit 6 and adding a 64-bit prefix, for example,
2001:db8:31:1::/64, this makes for a full address: 2001:db8:31:1:20a:95ff:fef5:e96e in
this case.

Another example: manually configuring the address 2001:db8:31:1::1. Because the inter-
face identifier is mandatory for addresses in this range, this means there is a hidden EUI-64 with
the value 02:00:00:00:00:00:00:01. Note that this doesn’t mean that the Ethernet hardware will
respond to this address (nor could it, as this 64-bit value doesn’t translate into a 48-bit MAC
address).

Multicast Scoping
More often than not, it’s necessary to limit the propagation of multicast packets. For instance,
it wouldn’t be good if all routers connected to the Internet were to receive all the hello packets
that OSPF routers use to find their neighbors. These packets are for use on the local subnet
only. And the speech by the CEO should probably only be multicast throughout the company,
rather than Internet-wide. Restrictions on the propagation of multicast packets are encoded
in the multicast address in the form of a 4-bit scope value, as listed in Table 2-2.
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Table 2-2. IPv6 Multicast Scope Values

Value (binary) Value (hexadecimal) Scope

0000 0 Reserved

0001 1 Interface-local (for the transmission of loopback
multicast packets)

0010 2 Link-local

0011 3 Reserved

0100 4 Admin-local

0101 5 Site-local

1000 8 Organization-local

1110 E Global

1111 F Reserved

The remaining scope values (6, 7, and 9 - C) may be used by network administrators to
define additional scopes where necessary.

The four scope bits in the address are preceded by four “flag” bits. RFC 3513 only defines
the use of the last of these to indicate whether the 112 bits that make up the rest of the multi-
cast address are a permanent, well-known value assigned by the Internet Assigned Numbers
Authority (IANA), or some locally determined value. If the bit is set to zero, the 112-bit value
is IANA-assigned. If the bit is set to one, the multicast address is “transient.” So ff12::/16 is
the prefix for transient link-local multicast use, while ff0e::/16 is the prefix for a permanent
global multicast addresses.

Special Addresses
IPv6 has a significant number of special addresses. Some of these addresses are fixed and easily
identifiable, while others depend on the interface identifier and are therefore harder to pin down:

:: is the unspecified address. This address is used in places where an address isn’t yet known.
For instance, as the source in DHCPv6 requests when the host requests an address from the
DHCP server. Routers don’t forward packets with unspecified addresses for a source or desti-
nation. (Relaying of DHCP packets doesn’t count as regular forwarding.)

::1 is the local host or loopback address, which can be used by hosts to send packets to
themselves, like the 127.0.0.1 address in IPv4. As with the unspecified address, routers
ignore packets with the local host address in them.

fe80::/10 contains link-local addresses. All systems must create a link-local address for
each of their IPv6-enabled network interfaces by combining their link (MAC) address with
the prefix fe80::/64. Because the link-local prefix isn’t tied to just one interface at a time,
it is usually necessary to specify the intended interface when using link-local addresses.
For instance, fe80::201:2ff:fe29:2640%xl0 refers to a link-local address that is reachable
over the xl0 interface, while fe80::201:2ff:fe29:2640%fxp1 refers to the same address but
now over the fxp1 interface. The %interface convention isn’t universal. It’s mostly seen on
KAME-derived IPv6 stacks and utilities (see the section “FreeBSD” later this chapter), but
it’s also seen on some Linux systems. Even when the system supports specifying an inter-
face in this way, applications may not recognize such an IPv6 address. Some utilities such
as ping6 allow setting the output interface with a command line option.
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fec0::/10 is the prefix for site-local addresses. These addresses are intended for use
within a single site, similar to RFC 1918 addresses in IPv4 (10.0.0.0/8, 172.16.0.0/12,
and 192.168.0.0/16). See Chapter 4 for more information on site-local addresses.

ff02::1 is the most common form of the all-hosts multicast address. This address, the
closest thing that IPv6 has to a broadcast address, is usually found with link-local scope
(ff02::1) but many hosts also implement it with interface-local scope (ff01::1), where
it functions very similarly to the loopback address. Routers address the periodic router
advertisement messages they send out for the benefit of all hosts on a link to ff02::1.

ff02::2 is the all-routers multicast address. It’s similar to the all-hosts address, except that
(of course) only routers join this multicast address. Apart from the usual link-local scope
(ff02::2), this address may also be encountered with interface-local and site-local scope,
ff01::2 and ff05::2, respectively.

ff02:0:0:0:0:1:ff00::/104 is the prefix for solicited node addresses. The solicited node
address is a multicast address used for neighbor discovery (ND), the mechanism that
replaced ARP. This address is created by replacing the top 104 bits in an IPv6 unicast or
anycast address with the solicited node prefix. IPv6 systems are required to join the
solicited node multicast groups that correspond to all the unicast and anycast addresses
that are active on an interface (including the link-local address). This allows other IPv6
systems to inquire about the MAC address associated with a certain IPv6 address by
multicasting a neighbor discovery query to the solicited node address that goes with
the IPv6 address they’re interested in.

The all-zeros multicast address for any scope (for instance, ff02:: for link-local scope)
is reserved and may not be used.

The all-zeros address in any subnet (for instance, 2001:db8:31:1::) is the subnet all-routers
anycast address. However, there is no real use for this anycast address, and some router ven-
dors (such as Cisco) don’t implement it. However, use this address at your peril, as it won’t
work reliably if there is a router on the subnet that does implement the all-routers anycast
address correctly.

The highest 128 interface identifiers with the universal/local bit set to one or the highest
128 addresses for subnet addresses that don’t use interface identifiers (i.e., they fall within
::/3) are reserved for well-known anycast addresses (RFC 2526).

Multicast addresses, especially those with interface-local or link-local scope, can be pres-
ent on more than one interface; so when sending multicast packets, it’s often also necessary to
specify an interface by using the %interface syntax or through other means. However, some
systems assume a default interface if one wasn’t specified.

■Note Technically, using the %interface syntax to indicate a “scope zone” doesn’t specify an interface, but
a link, as two or more interfaces can be connected to the same link.
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Address Allocation and Assignment
Formally, the IP address space falls under the responsibility of the Internet Corporation for
Assigned Names and Numbers (ICANN). However, the ICANN’s focus is on domain names,
so management of the IP address space is left to the IANA, which in turn delegates the day-
to-day allocation of IPv4 and IPv6 addresses to five Regional Internet Registries (RIRs):

• The African Network Information Centre (AfriNIC, http://www.afrinic.net/), serving
Africa and the Indian Ocean.

• The Asia Pacific Network Information Centre (APNIC, http://www.apnic.net/), serving
Australia, Oceania, and most of Asia.

• The American Registry for Internet Numbers (ARIN, http://www.arin.net/), serving
North America.

• The Latin American and Caribbean Internet Addresses Registry (LACNIC, http://
www.lacnic.net/), serving Latin America and the Caribbean.

• The Résaux IP Européens Network Coordination Centre (RIPE NCC, often just called
“RIPE,” which isn’t entirely correct, http://www.ripe.net/), serving Europe, the former
Soviet Union, and the Middle East.

The RIRs then allocate blocks of IP address space to Local Internet Registries (LIRs),
sometimes through an intermediate National Internet Registry (NIR) step. In nearly all cases,
a LIR is an Internet Service Provider. Until not too long ago, the requirements for obtaining a
block of IPv6 address space for ISPs boiled down to actually being an ISP and not an end-user
organization, being a LIR (i.e., paying a membership fee to the RIR), and meeting the require-
ment to further assign IPv6 address space to at least 200 customers within two years. However,
these policies have started to diverge recently and may change even further in the future. See
Chapter 11 for a more detailed discussion.

An ISP that requests an IPv6 address block and meets these requirements is given a /32
allocation, from which assignments to end-users can be made. (ISPs that expect to connect
really large numbers of IPv6 users may receive an allocation that’s bigger than a /32.) The dif-
ference between an allocation and assignment is that the holder of an allocation can’t start using
the addresses at will; they’re just holding them to be further assigned to the organization that
will be using them. The RIRs allocate /32 prefixes to ISPs to limit the number of individual
entries in the global IPv6 routing table that determines the flow of packets between ISPs.

Because there is an ample supply of IPv6 addresses, the policies for assigning address space
to end users are much more relaxed in IPv6 than in IPv4: everyone gets a /48, unless they are
absolutely, positively, never going to need more than a single subnet, in which case they get a /64,
or are never going to need more than a single address, in which case they get—a single address.
A /48 prefix allows for 65,536 /64 subnets, which should be enough for everyone except the largest
corporations in the world. However, /48 prefixes are available to everyone, even just for home use.
There is one important point to be aware of: when IP addresses are allocated or assigned, they do
not become the property of the receiver. If there is no good faith effort to use the addresses as
indicated at the time of request, the RIRs reserve the right to reclaim the address space. In theory,
the RIRs could even reclaim allocations and assignments that meet the policies that were in effect
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at the time of the request but don’t meet updated policies. In practice, RIRs are quite reluctant to
reclaim address space even in IPv4, and the only issue that nonfraudulent end-user organizations
need to be concerned about is that they can’t take their address space with them when changing
ISPs. A document outlining the IPv6 allocation and assignment policies is available at (among
others) the RIPE Web site: http://www.ripe.net/ripe/docs/ipv6-policies.html.

In older IPv6 documentation, the terms Top-Level Aggregator (TLA), Next-Level Aggrega-
tor (NLA), Site-Level Aggregator (SLA), and sub-TLA often come up. These terms refer to the
notion that the IPv6 address space should be distributed in a fixed, hierarchical manner. As of
the publication of RFC 3587, this terminology is obsolete; IPv6 address space is distributed as
outlined above, which is very similar to IPv4 except for the fixed minimum ISP allocation size
of 32 bits and the also as good as fixed assignment size for end users of 48 bits.

The 6bone was established by the IETF as a global IPv6 testbed in 1996. Because the RIRs
now provide “production” IPv6 address space, the 6bone and its 3ffe::/16 prefix will be phased
out. However, in the meantime, 6bone address space may show up in various places alongside
RIR address space as 6bone and production networks interconnect or even overlap in many
places. The suggested date for putting the 6bone to rest is June 6, 2006.

■Note The 6bone equivalent for a RIR /32 allocation is a /24 or /28 “pseudo TLA” (pTLA).

6to4 address space is a bit unusual: every /48 in this block corresponds to an IPv4 address.
The mapping is very simple: the 48-bit prefix consists of 2002::/16 followed by the 32-bit IPv4
address as two 16-bit hexadecimal values, properly colon-separated as usual. A /48 in 6to4
space may be used by the host that is holding the corresponding IPv4 address at that particular
time. 6to4 is not just a convenient way to distribute IPv6 addresses; its main function is to pro-
vide easy IPv6 connectivity to hosts and networks that otherwise only have IPv4 connectivity.
This connectivity is accomplished by using tunneling mechanisms, as explained in Chapter 3.

Enabling IPv6
Because IPv6 contains extensive features for autoconfiguration, just enabling the protocol
makes a host reachable over IPv6. If no IPv6 routers are available on the local subnet, the host
will still create a link-local address for itself (on every interface), which is enough to allow
other hosts that live on the same subnet to connect to it over IPv6. This means that it is impor-
tant to use an IPv6 firewall where appropriate when IPv6 is enabled.

■Caution As a rule, regular (IPv4) firewalls don’t block IPv6 traffic, so a separate IPv6 firewall must be
used to firewall IPv6-enabled applications that need protection. See Chapter 9 for more information on filter-
ing and firewalling IPv6.
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Windows
Real IPv6 support in Windows started with Windows XP.3 In the initial release, IPv6 wasn’t avail-
able through the graphical user interface but only by using a somewhat hidden command that
must be entered using the command line:

ipv6 install

Removing IPv6 is done with ipv6 uninstall. The ipv6.exe command is now deprecated,
and Microsoft encourages you to use netsh interface ipv6 install or ...uninstall instead.
Because ipv6.exe’s syntax is completely unfathomable, it’s best to use netsh interface ipv6
for all other purposes, but it’s hard to beat the succinct elegance of “ipv6 install.”

As of Service Pack 1, IPv6 can also be installed and removed as an additional protocol called
“Microsoft IPv6 Developer Edition” in the network setup. In April 2003, Microsoft released the
Advanced Networking Pack for Windows XP, which includes additional IPv6 features. The update
is distributed through Windows Update, but if you’re not sure you have it installed, you can go to
http://support.microsoft.com/ and select “Knowledge Base Article ID Number Search” (the
URL is too hideous to repeat in print) and enter article number 817778. The Knowledge Base arti-
cle discusses the update at length and includes instructions on downloading and installing it (but
these pretty much boil down to “Use Windows Update”). After installing the update, IPv6 is avail-
able as an additional protocol under the name “Microsoft TCP/IP version 6.” You can install it by
selecting Start ➤ Control Panel ➤ Network and Internet Connections ➤ Network Connections
and then right-clicking any network interface and selecting Properties, which will open the win-
dow shown in Figure 2-2.

In this window, click the Install... button and select installing an additional protocol. Then
choose “Microsoft TCP/IP version 6,” as shown in Figure 2-3.

■Note When Internet sharing is configured, which is almost unavoidable if you allowed Windows to “set up
or change your home or small office network,” some network interfaces may be bridged. In that case, the IPv6
protocol can’t be added to the bridged interfaces themselves, only to the “Network Bridge” virtual bridging
interface.

After installing the IPv6 protocol for any interface, the system will configure link-local
addresses and also try to configure global addresses on all interfaces. (See Chapter 3 for details.)
If you don’t want to have IPv6 enabled on one or more interfaces, it is possible to disable the pro-
tocol on a per-interface basis by clearing the checkbox in the “this connection uses the following
items” part of the Properties window for an interface.

Further configuration or monitoring of the protocol isn’t possible by using the graphical
user interface. You must use the ipv6.exe command or the newer, more general netsh com-
mand. To use these tools, select Start ➤ All Programs ➤ Accessories ➤ Command Prompt to
open a command prompt window. Listing 2-1 shows how to start the netsh command and its
use to see which addresses are configured. (Some additional output has been left out for brevity.)
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Figure 2-2. The Windows XP network interface setup window

Figure 2-3. The Windows XP network interface setup window



Listing 2-1. Monitoring IPv6 Addresses with the netsh Command

C:\>netsh
netsh>interface ipv6
netsh interface ipv6>show addres

Querying active state...

Interface 6: Local Area Connection 3
Addr Type  DAD State  Valid Life   Pref. Life   Address
---------  ---------- ------------ ------------ -----------------------------
Temporary  Preferred   6d23h38m55s     23h36m8s 2001:db8:1dde:1:6d16:9d1:b1ec:2245
Public     Preferred  29d23h59m30s  6d23h59m30s 2001:db8:1dde:1:201:2ff:fe29:23b6
Link       Preferred      infinite     infinite fe80::201:2ff:fe29:23b6

Interface 1: Loopback Pseudo-Interface

Addr Type  DAD State  Valid Life   Pref. Life   Address
---------  ---------- ------------ ------------ -----------------------------
Loopback   Preferred      infinite     infinite ::1
Link       Preferred      infinite     infinite fe80::1

Address Privacy
In this example, the computer has three addresses: a link-local address (address type “link”),
a regular EUI-64 derived address (type “public,” recognizable by the FF:FE sequence in the mid-
dle of the second half of the address), and another “temporary” address. Temporary addresses
are used for outgoing TCP connections, while a stable public address is available to receive
incoming connections. This is done to alleviate privacy concerns that stem from the presence
of the MAC address in IPv6 addresses. Without the use of temporary addresses as defined in
RFC 3041, an IPv6 user could be tracked by his or her MAC address, even when using different
IPv6 addresses in different locations. Because temporary addresses generally change every
24 hours, they also make it harder to track an IPv6 user who remains in the same location.
See Chapter 9 for more information on IPv6 security and related issues.

Of course, most Web sites track their users with cookies, and many applications require
the user to log in by using a name and password, so the actual privacy benefits of temporary
addresses are limited in practice.

FreeBSD
Several large Japanese companies started working on a joint IPv6 and IPsec implementation
in 1998 as part of the KAME project. The KAME effort resulted in a very mature IPv6 protocol
stack, which has been integrated into the members of the Berkeley Software Distribution family
of UNIX operating systems: FreeBSD, the most widely used member of the family, as of version
4.0, NetBSD in version 1.5, and OpenBSD and BSD/OS in versions 2.7 and 4.2, respectively.
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FreeBSD systems with IPv6 support in the kernel (which is the default for recent versions)
have IPv6 processing and the creation of link-local addresses enabled by default, but auto-
configuration of global scope addresses that use router advertisements is disabled. To enable
autoconfiguration, add the lines

ipv6_enable="YES"
ipv6_network_interfaces="auto"

to the file /etc/rc.conf and reboot. This syntax is confusing, because IPv6 is enabled by default,
so ipv6_enable="YES" doesn’t enable it, nor does ipv6_enable="NO" disable it. Also, the list of IPv6
interfaces doesn’t really do anything under FreeBSD 5.x, but, if the previous line is also present, it
tricks the FreeBSD 4.x startup scripts into setting the sysctl variable net.inet6.ip6.accept_rtadv
to 1, as IPv6 processing is enabled on all interfaces regardless of whether it’s listed or not. With the
new sysctl setting, global IPv6 addresses are configured for all interfaces that receive router
advertisements. The most likely explanation for this way of configuration would be that at some
point, functionality that used to be provided by startup scripts was moved to the kernel, but the
startup scripts remained.

The creation of IPv6 addresses can be monitored by using the ifconfig command, as
shown in Listing 2-2. It’s not necessary to be root to run ifconfig in this way.

Listing 2-2. Using ifconfig to Monitor IPv6 Addresses on FreeBSD

# ifconfig xl0
xl0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet 192.0.2.123 netmask 0xffffff00 broadcast 192.0.2.255
inet6 fe80::201:2ff:fe29:2640%xl0 prefixlen 64 scopeid 0x1
inet6 2001:db8:31:2:201:2ff:fe29:2640 prefixlen 64 autoconf 
ether 00:01:02:29:26:40
media: Ethernet autoselect (100baseTX <full-duplex>)
status: active

The scopeid value is just a numerical reference for an interface, and it’s listed to indicate
that the link-local address is only valid within the scope of this particular interface. The autoconf
keyword indicates that the listed global address was autoconfigured.

Triggering Router Solicitations
Router solicitation messages are still sent by a startup script or an external program, so when
IPv6 connectivity changes, it may take a while before new global IPv6 addresses are config-
ured, as the system waits for periodic unsolicited router advertisements. In these cases, it’s a
good idea to run rtsold, the router solicitation daemon. This can be done in one-shot mode
by using the following syntax:

rtsold -f1a

The -f flag prevents rtsold from becoming a daemon and running in the background, the
-1 flag makes the program quit after sending one router solicitation message and receiving a
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reply, and the -a flag is used to automatically find the interface to use, which only works if
there is just one non-loopback and non-point-to-point network interface. Note that rtsold
must be run as root. The program can also be run as a daemon:

rtsold xl0

The xl0 argument is the interface to be used for transmitting router solicitation messages.

Address Privacy
Address privacy isn’t enabled by default on FreeBSD and other KAME-derived IPv6 implemen-
tations (including MacOS X). You can enable it with the following sysclt setting (as root):

sysctl -w net.inet6.ip6.use_tempaddr=1

The new setting may not take effect until after an interface is reconfigured, for instance,
after a reboot or when a previously unconnected interface is connected to a network with an
IPv6 router.

Linux
IPv6 first became available in the Linux kernel version 2.1.8 in 1998. Since that time, the Linux
IPv6 implementation has advanced, and now many, but certainly not all, Linux distributions
have IPv6 support built in the kernel. In this book, we’ll cover the IPv6 specifics of the Red Hat 9
and Red Hat Enterprise Linux ES4 distributions. Because the IPv6 implementation itself is found
in the kernel, a lot of the information supplied also pertains to other Linux distributions, but
obviously the supporting programs are different from distribution to distribution. Note that in
addition to the “regular” Linux IPv6 implementation, there is another Linux IPv6 implementa-
tion by the USAGI (Universal Playground for IPv6, http://www.linux-ipv6.org/) project, which
works together closely with KAME.

The Red Hat distribution has supported IPv6 since version 7.1, and in ES4, it’s enabled by
default. Under Red Hat 9 (and at least a few other Linuxes), enabling IPv6 is done by adding
the line

NETWORKING_IPV6="yes"

to the file /etc/sysconfig/network. After a reboot, the system then automatically configures
link-local addresses and sends out router solicitation messages so it can autoconfigure global
addresses for interfaces that connect to IPv6 routers that reply with a router advertisement.
Linux sends a router solicitation only on startup, and a router solicitation utility isn’t available.
As with FreeBSD, the ifconfig command can be used to find out which IPv6 addresses were
configured. This is shown in Listing 2-3. The path to the ifconfig command (/sbin/) is given
because this directory isn’t in the default search path for non-root users.
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Listing 2-3. Using ifconfig to Monitor IPv6 Addresses on Linux

# /sbin/ifconfig eth0
eth0      Link encap:Ethernet  HWaddr 00:01:02:29:23:B6  

inet addr:192.0.2.8  Bcast:192.0.2.255  Mask:255.255.255.0
inet6 addr: fe80::201:2ff:fe29:23b6/64 Scope:Link
inet6 addr: 2001:db8:1dde:1:201:2ff:fe29:23b6/64 Scope:Global
UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
RX packets:226 errors:0 dropped:0 overruns:0 frame:0
TX packets:76 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100 
RX bytes:27348 (26.7 Kb)  TX bytes:13251 (12.9 Kb)
Interrupt:10 Base address:0xd000 

■Note ifconfig is generally not the tool of choice to manipulate network settings under Linux, as the
ifconfig command is rather limited. The ip package discussed in the next chapter is more powerful.

The Linux kernel version 2.4 doesn’t support RFC 3041 temporary addresses. The 2.6 ker-
nel, however, does: it’s enabled with sysctl -w net.ipv6.conf.all.use_tempaddr=2 or one of
several other tempaddr sysctls. (2 means that the temporary addresses are preferred, 1 indi-
cates that regular addresses are preferred, and 0 turns temporary addresses off.) However,
Red Hat ES Linux doesn’t seem to generate temporary addresses.

MacOS
Under MacOS X, IPv6 has been available since version 10.2 Jaguar. MacOS differs from other
operating systems in that IPv6 is enabled by default. However, because MacOS X doesn’t
expose any services to the network by default, there is little need for an IPv6 firewall. IPv6
support in Jaguar is fairly marginal as there is no way to enable/disable and configure the
protocol by using the regular (graphical) system configuration tools. This was changed in
MacOS 10.3 Panther, where IPv6 is controlled with the Network preference pane in the System
Preferences. Select the appropriate interface and click TCP/IP, which brings up a window
where both IPv4 and IPv6 can be configured, as shown in Figure 2-4. If IPv6 is enabled and
the interface is active, an IPv6 address will be present at “IPv6 Address.” This can be a global
address if one could be configured from router advertisements or a link-local address if a
global address isn’t available.

IPv6 can be disabled or manually configured by clicking the Configure IPv6... button.
Additionally, it is possible to turn off IPv4 and use IPv6 exclusively by selecting Off at Config-
ure IPv4. In this case, it’s important to list one or more IPv6 addresses for DNS servers that are
available over IPv6 because otherwise, the system can’t resolve names as there is currently no
way to discover IPv6 DNS servers automatically. The graphical MacOS tools don’t believe in
compressing unnecessary zeros in IPv6 addresses, so the addresses may look a bit different
than usual. You can find out where the listed IPv6 address came from by hovering the mouse
pointer over it.
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Because the System Configuration tool will only show a single IPv6 address and it doesn’t
always reflect the most current information, it can be useful to run the ifconfig command in
the Terminal (located in Applications ➤ Utilities), as shown in Listing 2-4.

Listing 2-4. Using ifconfig to Monitor IPv6 Addresses on MacOS

% ifconfig en1
en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet6 fe80::20a:95ff:fef5:246e prefixlen 64 scopeid 0x5 
inet6 2001:db8:1dde:1:20a:95ff:fef5:246e prefixlen 64 autoconf 
inet 172.31.0.20 netmask 0xffffff00 broadcast 172.31.0.255
ether 00:0a:95:f5:24:6e 
media: autoselect status: active
supported media: autoselect

Under MacOS X, the built-in Ethernet interface is usually en0, while the Airport (802.11b) or
Airport Extreme (802.11g) interface is en1. Without arguments, ifconfig shows information for
all interfaces. Because much of the MacOS UNIX core is derived from FreeBSD, many UNIX
commands work almost identically to their FreeBSD counterparts. So for more information
about the ifconfig output, see the explanation for the FreeBSD version of the command earlier.
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The DNS Problem
Just like IPv4, IPv6 uses the Domain Name System (DNS) to resolve host names into addresses
that make the desired communication possible. Requesting information from a DNS server is
also nearly identical in IPv4, except for one problem: in IPv6, there aren’t really any mechanisms
to automatically discover the addresses of the local DNS servers. In theory, IPv6 hosts can auto-
configure addresses and other information in two ways: stateless and stateful (see Chapter 8).
Stateless autoconfiguration is the mechanism defined in RFC 2462 we’ve been discussing so far.
But rather than supply the address prefixes themselves, routers can also indicate that hosts
should use a stateful mechanism to configure addresses and/or other configuration information
by setting the “managed address configuration” and “other stateful configuration” flags. The
stateful mechanism in question is the Dynamic Host Configuration Protocol modified for IPv6
(DHCPv6), defined in RFC 3315. This RFC was published only in July 2003, and at the time of this
writing, DHCPv6 hadn’t found its way into the operating systems that are discussed here, except
for Red Hat ES 4. See Chapter 8 for examples of how to use DHCPv6. Because DHCPv6 is cur-
rently the only way that is defined for automatically configuring IPv6 DNS addresses, current
OSs simply lack this capability. And, as working with addresses exclusively isn’t unlike cruel and
unusual punishment, an IPv6 hosts must either also run IPv4 and discover IPv4 DNS addresses
through DHCP(v4) or the IPv6 DNS addresses must be configured manually. In MacOS X Panther,
the graphical TCP/IP configuration panes accept IPv6 addresses, as mentioned earlier. Under
FreeBSD and Linux, this is done by adding a line like the following to the file /etc/resolv.conf:

nameserver 2002:a00:1:5353:20a:95ff:fef5:246e

Note that the above isn’t the address for a functioning nameserver (and an illegal 6to4 address
to boot). Under MacOS, the resolv.conf file is a symbolic link to the file /var/run/resolv.conf.
You can modify this file, but it’s removed and overwritten by the system whenever network
connectivity changes. Under Windows XP, it’s possible to configure a nameserver with the
netsh interface ipv6 add dns command, but this doesn’t result in Windows actually querying
the thus configured IPv6 DNS servers.

See Chapter 5 for more information on putting IPv6 information in the DNS and running
an IPv6-capable nameserver.

Diagnostics
The best test to see if your IPv6 configuration efforts were successful is to fire up a Web browser
and visit an IPv6-enabled Web site. A good choice is the Web site for the KAME project at
http://www.kame.net/. When using IPv6, you should see the famous “dancing kame” (turtle).
You’ll be told whether you’re using IPv4 or IPv6 as seen by the remote server at the bottom of
the page. The supplied Web browsers for all operating systems support and prefer IPv6 when
available: Windows (Internet Explorer), Linux and FreeBSD (Firefox, Mozilla, Konqueror, or
Lynx), and MacOS 10.4 (Safari). Older versions of Apple’s Web browser Safari will connect to
IPv6-only servers over IPv6 but prefer IPv4, so the KAME won’t dance. See Chapter 6 for more
information on IPv6-enabled Web browsers and other applications.
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Ping and Traceroute
Time-tested network debugging tools ping and traceroute are of course also available for
IPv6. However, on most systems, there is no integrated IPv4/IPv6 ping or traceroute, so ping-
ing and tracerouting in IPv6 must be done with separate commands: ping6 and traceroute6.
Under Windows, traceroute is “tracert” and the IPv6 version is “tracert6.” The regular
tracert also supports IPv6, and tracert6 is now deprecated under Windows though. On all
systems, ping6 and traceroute6 are command line utilities. Under Windows, start a command
prompt by choosing Start ➤ All Programs ➤ Accessories ➤ Command Prompt, and under
MacOS, use the Terminal application in Applications ➤ Utilities. Listing 2-5 shows output
from the traceroute6 command under FreeBSD.

Listing 2-5. traceroute6 on FreeBSD

% traceroute6 www.ipv6forum.com
traceroute6 to www.ipv6forum.com (2001:630:d0:131:a00:20ff:feb5:ef1e) from
2001:db8:31:2:201:2ff:fe29:2640, 30 hops max, 12 byte packets
1  46.ge-0-2-0.xr1.pbw.xs4all.net  0.984 ms  0.967 ms  0.798 ms
2  2001:db8:0:106::2  0.959 ms  0.93 ms  1.04 ms
3  0.ge-1-3-0.xr1.tc2.xs4all.net  1.35 ms  1.199 ms  1.125 ms
4  eth10-0-0.xr1.ams1.gblx.net  3.345 ms  1.299 ms  1.637 ms
5  2001:798:2014:20dd::5  19.015 ms  16.712 ms  17.752 ms
6  de.nl1.nl.geant.net  24.046 ms  23.325 ms  22.973 ms
7  nl.uk1.uk.geant.net  33.594 ms  31.715 ms  30.407 ms
8  janet-gw.uk1.uk.geant.net  29.726 ms  31.023 ms  28.623 ms
9  po3-0.lond-scr3.ja.net  28.85 ms  33.616 ms  28.204 ms
10  po6-0.lond-scr.ja.net  28.483 ms  28.863 ms  28.46 ms
11  po0-0.london-bar1.ja.net  29.143 ms  29.582 ms  28.813 ms
12  fe0-1-0.ulcc.ipv6.ja.net  24.845 ms  24.751 ms  24.918 ms
13  fa1-0.rtr1.ipv6.ja.net  24.844 ms  24.966 ms  24.565 ms
14  po2-0.rtr2.ipv6.ja.net  24.841 ms  24.639 ms  26.232 ms
15  zaphod.6core.ecs.soton.ac.uk  33.2 ms  32.621 ms  35.53 ms
16  2001:630:d0:131:a00:20ff:feb5:ef1e  32.953 ms  31.756 ms  30.08 ms

Unlike its IPv4 counterpart, traceroute6 as implemented in FreeBSD, MacOS, and Linux
doesn’t by default show both hostnames and addresses for each hop, as the lines get too long
that way. Instead, the command shows a hostname if one is available, and an address other-
wise. With the -l option, traceroute6 shows both hostnames and addresses, and as usual, the
-n option shows only addresses. Even more than with IPv4, it’s common that traceroute6 probes
don’t receive an answer because the destination host or a router in the middle is rate limiting
the number of ICMP messages it is prepared to return. Older IPv6 implementations tend to
limit the number of ICMP messages they send to one per second; newer implementations often
have a limit of one per 100 or 200 milliseconds. When traceroute6 doesn’t receive an answer, it
prints an asterisk to the screen instead of a time in milliseconds.

The ping6 command is mostly very similar to the IPv4 ping. Listing 2-6 shows the output
of the Windows XP ping6 command.
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Listing 2-6. The Windows XP ping6 Command

C:\>ping6 www.hitachi.co.jp

Pinging www.hitachi.co.jp [2001:240:400::101]
from 2001:db8:1dde:1:59eb:57:32ff:b6f4 with 32 bytes of data:

Reply from 2001:240:400::101: bytes=32 time=395ms
Reply from 2001:240:400::101: bytes=32 time=396ms
Reply from 2001:240:400::101: bytes=32 time=398ms
Reply from 2001:240:400::101: bytes=32 time=397ms

Ping statistics for 2001:240:400::101:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
Minimum = 395ms, Maximum = 398ms, Average = 396ms

The system will show the available options for traceroute6 (or tracert6) and ping6 com-
mands by typing the command without any arguments. Under Linux, FreeBSD, and MacOS,
more detailed information is available in the man pages; to access it, type man ping6 or man
traceroute6.
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Tunnels

In the previous chapter, we enabled IPv6 autoconfiguration, which works very well when
there are IPv6 routers on the local Ethernet or when there is some other type of “native” IPv6
connectivity over a different type of connection than Ethernet. Unfortunately, large parts of
the Internet are still IPv4-only. Rather than gloomily sit around and wait for the last IPv4
router to be upgraded to be able to run IPv6, the IETF standardized several tunneling mecha-
nisms. This chapter discusses automatic 6to4 tunneling and manually configured tunnels.

A tunnel is a mechanism whereby one protocol is encapsulated into another protocol
to be transported through a part of the network where the original protocol wouldn’t normally
be supported or would have been processed in some undesirable way. Tunneling IPv6 in IPv4
is usually done by simply adding an IPv4 header before the IPv6 packet. The resulting packet is
then forwarded to the destination address listed in the IPv4 header. At this destination, the
outer header is stripped away, and the packet is processed as if it had been received over a reg-
ular IPv6-enabled interface. Figure 3-1 shows what happens to a tunneled packet as it travels
from the IPv6 network on the left through the IPv4 network in the middle toward the IPv6 net-
work on the right.
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Figure 3-1. Tunneling of IPv6 packets through an IPv4 network



Tunnels come in two flavors: tunnels where each end has the other end’s address manually
configured and tunnels where the remote tunnel endpoint is determined automatically. Manu-
ally configured tunnels suffer from the downside that they must be manually configured on
both ends, but apart from that, they’re nice and simple, and the path tunneled packets follow
through the network is predictable. While the internals of automatic tunneling mechanisms are
more complex, their operation is usually very simple. Currently at least five different mecha-
nisms are defined that allow automatic tunneling of IPv6 over IPv4:

• “Automatic Tunneling,” using IPv4-compatible addresses (RFC 2893).

• 6over4: “Transmission of IPv6 over IPv4 Domains without Explicit Tunnels” (RFC 2529). 

• ISATAP: “Intra-Site Automatic Tunnel Addressing Protocol.” At the time of this writing,
ISATAP had not been published as an RFC yet.

• 6to4: “Connection of IPv6 Domains via IPv4 Clouds” (RFC 3056).

• Teredo: “Tunneling IPv6 over UDP through NATs.” Teredo was formerly known as
Shipworm. There is no RFC as of yet.

“Automatic Tunneling”
The first automatic tunneling mechanism was simply called “automatic tunneling,” which is
unfortunate because it is now one of many such mechanisms. “Automatic tunneling” is very
similar to 6to4, except that it suffers from the limitation that a single IPv4 address maps to just
a single IPv6 address. These IPv6 addresses are called “IPv4-compatible” and consist of 96 zero
bits (the prefix ::/96) followed by the 32-bit IPv4 address. Although not formally deprecated
by an IETF standards action, “automatic tunneling” should be considered obsolete. Figure 3-2
shows the IPv4-compatible address format used in “automatic tunneling.”

6over4 and ISATAP
The different automatic tunneling mechanisms all solve slightly different problems in slightly
different ways. 6over4 and ISATAP mostly address tunneling IPv6 in IPv4 within a single organi-
zation or site network.1 6over4 does this by treating an IPv4 network as a fully functional IPv6
subnet, allowing regular address autoconfiguration. Unfortunately, 6over4 requires that the IPv4
infrastructure over which it runs support multicast. Because most IPv4 networks don’t support
multicast routing, 6over4 hasn’t been deployed very widely, if at all. ISATAP on the other hand,
foregoes multicast and treats the IPv4 network as a Non-Broadcast, Multiple Access (NBMA)
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1. The word “site” comes up regularly in IPv6 specifications, but it is by no means well defined.
Examples of a site are a home, an office, or a campus.



network. Without multicasts, autoconfiguration and neighbor discovery don’t work, so ISA-
TAP encodes the IPv4 address into the interface identifier part of the IPv6 address. This way,
systems implementing ISATAP can easily determine which IPv4 host tunneled packets must
be addressed to. The bottom 32 bits of an ISATAP interface identifier contain the IPv4 address,
the top 32 bits are set to 02005EFE in hexadecimal when the IPv4 address is a regular, globally
routable one and 00005EFE if the IPv4 address is a private address from one of the RFC 1918
ranges, thus preserving the meaning of the universal/local bit in the interface identifier. Fig-
ure 3-3 shows the relationship between the IPv4 and IPv6 addresses in ISATAP.

Teredo
The idea behind Teredo is to allow hosts behind Network Address Translators to tunnel IPv6 in
IPv4, much the same way as non-NATed hosts can do using 6to4. Although some Teredo imple-
mentations are available, the protocol is still in somewhat of a state of flux, and the required
server and relay infrastructure hasn’t materialized yet. There isn’t even an address range assigned
by IANA for use with Teredo. 

6to4
6to4 is similar to ISATAP (or rather, the other way around), except that while ISATAP allows for
automatic tunneling within a site, 6to4 makes it possible to tunnel IPv6 over IPv4 between sites.
Every system that holds a valid, routable IPv4 address can automatically create a 6to4 prefix for
itself by combining its IPv4 address with the 16-bit value 2002 (hexadecimal), as shown in Fig-
ure 3-4. The resulting prefix is 48 bits long, leaving enough bits for 65536 64-bit subnets.

When a 6to4-capable system wants to send a packet to another 6to4-capable system, it
encapsulates the IPv6 packet in an IPv4 packet and addresses this packet to the IPv4 address
encoded in the 6to4 destination address. Upon reception, the destination IPv4 host removes
the IPv4 header and continues to process the IPv6 packet. Communication between the 6to4
world and the regular IPv6 Internet is facilitated by relays. It is possible to run a 6to4 relay at
an arbitrary address, but RFC 3068 defines 192.88.99.1 as a 6to4 anycast relay router address.
Don’t confuse this type of anycasting with actual IPv6 anycast addressing. People who run a
public 6to4 relay announce to the rest of the world that they’re prepared to handle traffic

CHAPTER 3 ■ TUNNELS 35

Figure 3-3. The ISATAP address format

Figure 3-4. The 6to4 address format



toward the IPv4 prefix 192.88.99.0/24 and the IPv6 prefix 2002::/16.2 This way, packets auto-
matically find their way to one of the relays without the need for any relay-specific configuration.
Anyone interested in using such a relay can enter 2002:c058:6301:: as a default gateway address.
Packets from a 6to4 user to the regular IPv6 Internet are then tunneled in IPv4 to the nearest
6to4 gateway. The gateway decapsulates the packet and sends it on its way over IPv6. Packets
in the other direction flow to one of the relays because of the 2002::/16 route. The relay encap-
sulates the packet in IPv4 and transmits it to the IPv4 address encoded in the 6to4 address.

■Note In the examples for different operating systems that follow, I’ll use 223.224.225.226 as the 
public IPv4 address. This is a “real” address, because the example address range 192.0.2.0/24 looks
too similar to 192.88.99.0/24, the 6to4 anycast relay address range and using RFC 1918 addresses isn’t
appropriate, because 6to4 doesn’t work with those addresses. 223.224.225.226 maps to the 6to4 prefix
2002:dfe0:e1e2::/48.

6to4 Under Windows
There is no need to specifically enable 6to4 under Windows XP. When IPv6 is installed, the sys-
tem automatically sets up a 6to4 pseudo interface if a public (non-RFC 1918) IPv4 address is
available. So packets to 6to4 addresses are directly tunneled to their destination in IPv4, as
long as the system has a regular IPv4 address. Additionally, if there is no other IPv6 connec-
tivity, Windows installs one or more IPv6 default routes that point to 6to4 relays. Rather than
blindly installing a default route toward the RFC 3068 anycast address, Windows looks up the
name 6to4.ipv6.microsoft.com in the DNS, transforms the resulting IPv4 addresses into 6to4
addresses, and pings them. Default routes and accompanying metrics (“Met” in the example
below) are installed, depending on the replies to these ping packets. (Although it seems that
any ICMP message, not just an ICMP Echo Reply, will do.) The default route with the lowest
metric is used. A metric of 2147483648 (231) means the relay router is unreachable and the route
can’t be used. Listing 3-1 shows the relevant netsh output with a 6to4 prefix based on the IPv4
address 223.224.225.226.

Listing 3-1. Listing Addresses and Routes Using the netsh Command

C:\>netsh interface ipv6 show address

Interface 3: 6to4 Tunneling Pseudo-Interface

Addr Type DAD State Valid Life  Pref. Life  Address
--------  --------- ----------- ----------- -----------------------
Other     Preferred infinite    infinite    2002:dfe0:e1e2::dfe0:e1e2

C:\>netsh interface ipv6 show routes
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Querying active state...

Publish  Type     Met  Prefix    Idx  Gateway/Interface Name
-------  ------- ----  --------  ---  ---------------------
yes      Manual  1191  ::/0        3  2002:836b:213c:1:e0:8f08:f020:8
yes      Manual  1041  ::/0        3  2002:c058:6301::c058:6301
yes      Manual  1001  2002::/16   3  6to4 Tunneling Pseudo-Interface

The netsh command can also be used to change the name and settings for the 6to4 relay
(type netsh, interface ipv6 6to4, and then help for more information), but the mechanism
whereby Windows uses a domain name to determine the 6to4 relays can’t be turned off.

6to4 Under MacOS
Unlike Windows XP, MacOS X doesn’t automatically enable 6to4. If you want to use 6to4 tun-
neling, you must create a new network port. Do so by selecting Network Port Configurations
in the Network pane of the System Preferences, as shown in Figure 3-5, clicking the New but-
ton, typing a name for the new port, and selecting Port: 6to4.
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The new port must be activated by clicking the Apply Now button. With a 6to4 port con-
figured, MacOS will automatically create a 6to4 address and install a default route toward the
anycast relay address as soon as it has IPv4 reachability with a public, non-RFC 1918 address.
The relay address can be changed in the 6to4 port configuration in the network settings, which
are shown in Figure 3-6. The 6to4 address assigned to the 6to4 port can’t be changed; this is
always address 1 in subnet 1 of the 6to4 prefix derived from the current IPv4 address.

■Note Sometimes 6to4 won’t work properly after it has been enabled, even though the system does have
a public IPv4 address. In those cases, it usually helps to make the interface that provides the IPv4 address
that 6to4 uses reacquire this address by taking the interface down and bringing it back up (for instance, by
unplugging the cable for a moment) or by clicking Renew DHCP Lease under the TCP/IP settings for the inter-
face. Also, 6to4 connectivity sometimes works even though no relay address or current address is shown.

Under the graphical configuration tool, MacOS uses the same stf tunneling device as
FreeBSD. Only the root (the UNIX super-user or system administrator) may manipulate net-
work interfaces, but MacOS doesn’t have the user root enabled by default. The easiest way to
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use the FreeBSD-derived command line utilities that need root privileges under MacOS is with
sudo, as shown in Listing 3-2. However, changing settings that are normally controlled by the
Preferences program may lead to unpredictable results.

Listing 3-2. Using sudo to Execute Commands as Root

% sudo ifconfig stf0 inet6 2002:dfe0:e1e2:1::1/16

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these two things:

#1) Respect the privacy of others.
#2) Think before you type.

Password:

When it’s used for the first time, sudo will display a warning. It then asks for the user’s pass-
word and then runs the intended command (ifconfig in this case) as user root. Subsequent
uses of sudo within a few minutes don’t require retyping the password. Only users with admin
privileges may use sudo.

6to4 Under FreeBSD
FreeBSD uses the stf pseudo device for 6to4 tunneling. Unfortunately, this device isn’t
included in the generic kernel in FreeBSD 4.9, so if you want to run 6to4 under FreeBSD,
you’ll have to build a custom kernel. The procedure for doing this is explained in Chapter 9
of the FreeBSD Handbook, “Configuring the FreeBSD Kernel.” The handbook is available on
the FreeBSD website at http://www.freebsd.org/. The line that needs to be added to the
kernel configuration file is

pseudo-device   stf

After installing the new kernel, a new network interface named stf0 should be available.
Under FreeBSD 5.4, there is no need to compile a custom kernel: you can simply create an stf
interface with the command ifconfig stf create. The stf interface is enabled by giving it an
IPv6 address that is a valid 6to4 address that corresponds to one of the host’s IPv4 addresses. An
online tool for calculating the 6to4 prefix that corresponds to a given IPv4 address is available at
http://www.bgpexpert.com/ipv6tools/. After this, the system is able to communicate with other
hosts that run 6to4. By adding a default route to a 6to4 relay, all non-local IPv6 traffic will be sent
through 6to4. Listing 3-3 sets both the address (based on the IPv4 address 223.224.225.226) and
a default route toward the anycast relay address. These commands must be executed as root.

Listing 3-3. Enabling 6to4

# ifconfig stf0 inet6 2002:dfe0:e1e2:1::1/16
# route add -inet6 default 2002:c058:6301::

With IPv6, setting a new address for an interface with ifconfig doesn’t remove the exist-
ing address. Listing 3-4 removes the address and the default route again. In this case, the
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prefix length (/16 in Listing 3-3) shouldn’t be included in the ifconfig command. Removing
a route will also work without specifying the destination address argument, if there is only a
single matching route.

Listing 3-4. Removing an Address and a Default Route

# ifconfig stf0 inet6 -alias 2002:dfe0:e1e2:1::1
# route delete -inet6 default 2002:c058:6301::

Alternatively, 6to4 can be enabled by the system startup scripts by setting the necessary
parameters in the /etc/rc.conf file, as outlined in Listing 3-5.

Listing 3-5. Enabling 6to4 in /etc/rc.conf

stf_interface_ipv4addr="223.224.225.226"
stf_interface_ipv6_ifid="0:0:0:1"
stf_interface_ipv6_slaid="0"
ipv6_defaultrouter="2002:c058:6301::"

If stf_interface_ipv6_ifid isn’t defined, the interface identifier part of the local 6to4
address will be set to 1. Note that the address must be specified as listed in the listing; ::1 doesn’t
work. It’s also possible to specify AUTO, in which case a MAC address–derived interface identifier
will be used. (The MAC address will be borrowed from an interface that has one.) Without speci-
fying stf_interface_ipv6_slaid, the subnet number will be 0. The file /etc/defaults/rc.conf
contains additional configuration options for rc.conf and brief explanations.

6to4 Under Linux
Under Red Hat 9 Linux,3 you can enable 6to4 during system startup by making sure that the
following lines are present in the file /etc/sysconfig/network:

NETWORKING_IPV6="yes"
IPV6_DEFAULTDEV="tun6to4"

Additionally, the contents of the file that determines the behavior of the interface supply-
ing the IPv4 address (such as /etc/sysconfig/network-scripts/ifcfg-eth0 in the case of the
eth0 interface) must have these lines in it:

IPV6INIT=yes
IPV6TO4INIT=yes

You need to be root to change these files. With these settings, the system will use the IPv4
address that has been configured or discovered by using DHCP for the interface in question
to construct a 6to4 prefix and install a semi-default route over the anycast 6to4 relay address.
Many additional settings are possible, and they are listed in the file sysconfig.txt, which is
in the directory /usr/share/doc/initscripts-7.14/ or one ending in a slightly different ver-
sion number.
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Wait a minute—“semi-default”? That’s right. Listing 3-6 shows the IPv6 routing table
when 6to4 has been enabled by the system startup scripts.

Listing 3-6. Output of the netstat Command

# netstat -rn --inet6
Kernel IPv6 routing table
Destination             Next Hop          Flags Metric Ref Use Iface
::1/128                 ::                U     0      0   0 lo
::/96                   ::                U     256    0   0 tun6to4
2002:dfe0:e1e2:1::1/128 ::                U     0      0   0 lo
2002::/16               ::                UA    256    0   0 tun6to4
::/0                    ::                UDA   256    0   0 eth0
2000::/3                ::192.88.99.1     UG    1      0   0 tun6to4

At first glance, the default route seems to point at the eth0 interface (which is because of the
“on-link assumption” discussed later this chapter). However, there is also a route for 2000::/3,
which is the entire IPv6 global unicast address space as currently defined by the IANA: the initial
RIR block (2001::/16), the 6bone block (3ffe::/16), and the 6to4 block (2002::/16) are all part of
this larger block. The 2000::/3 route points toward the 6to4 anycast relay address. Because the
2000::/3 route is more specific than the ::/0 default, this one takes precedence.

■Note I was unable to get Red Hat’s Enterprise Linux ES4 to enable 6to4 by using the preceding configu-
ration. However, setting up 6to4 manually as in Listing 3-7 worked without problems, except that the (IPv4)
iptables filter blocked most of the tunneled packets. (See later in this chapter and also Chapter 9 for more
information on filters.)

THE LONGEST MATCH FIRST RULE

In IPv4 and IPv6, overlapping routes are always resolved by using the “longest match first” rule: the route
that covers the smallest block of address space always wins. The route that covers less address space is
therefore said to be “more specific,” and the number of bits in the prefix is higher (so the prefix is longer),
making it the “longest match.” Suppose the routing table holds three routes:

• 2001:db8::/32 over interface eth0.

• 2001:db8:31:1::/64 over interface eth1.

• 2001:db8:31:::/48 over interface eth2.

A packet for 2001:db8:31:1:20a:95ff:fef5:246e would potentially match any (or all) of these
three entries, but the longest match first rule mandates that the middle one is “longest” at 64 bits, so the
packet will be forwarded over interface eth1.

The longest match first rule makes fact that the metric is better (lower) for the 2000::/3 route in
Listing 3-6 irrelevant: even with a lower metric, the ::/0 route would be ignored because of the difference
in prefix length.
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Using 2000::/3 rather than ::/0 when a default route is called for is somewhat of a tradi-
tion under Linux. It appears that there are even some older versions of Linux that won’t accept
a ::/0 route and require a 2000::/3 route instead when the system is configured as an IPv6
router. However, hard-coding the fact that the Internet Assigned Numbers Authority has so far
only allocated 2000::/3 for use as unicast address space into systems isn’t a good idea, as other
parts of the IPv6 address space may be used for unicast in the future as well. After listing the
multicast and special-purpose address blocks, RFC 3513 states:

“Future specifications may redefine one or more sub-ranges of the global unicast space

for other purposes, but unless and until that happens, implementations must treat all

addresses that do not start with any of the above-listed prefixes as global unicast

addresses.”

Should you desire to make your Red Hat Linux system RFC 3513-compliant, you can do this
by changing all three occurrences of 2000::/3 to ::/0 in the file /etc/sysconfig/network-scripts/
network-functions-ipv6.

Manual manipulation of the 6to4 functionality is best done by using the iproute package
that comes with Red Hat. Most Linux distributions have this package on board, but some distri-
butions don’t or even lack support for netlink sockets in the kernel, which are used by iproute
(and, optionally, by Zebra). If you’re the adventurous type, you could install iproute yourself
and compile a kernel with netlink support. Listing 3-7 creates a 6to4 tunneling interface and
a default route toward the anycast 6to4 relay address. These commands must be executed
as root.

Listing 3-7. Manual 6to4 Configuration

# ip tunnel add tun6to4 mode sit ttl 64 remote any local 223.224.225.226
# ip link set dev tun6to4 up
# ip -6 address add 2002:dfe0:e1e2:1::1/16 dev tun6to4
# ip -6 route delete ::/0
# ip -6 route add ::/0 via ::192.88.99.1

FreeBSD and Cisco IOS make packets flow to the 6to4 relay router by pointing a route to
the IPv6 relay address, but with Linux, the route to the 6to4 relay must be specified in IPv4-
compatible form, hence the ::192.88.99.1. Deleting the default route in the second to last
line is necessary to remove a default route that is installed at boot time in order to generate
“destination unreachable” messages.

For more information on the iproute package and the ip command, have a look at the file
ip-cref.ps that should be available in the /usr/share/doc/iproute-2.4.7/ directory, or one
with a name based on a slightly different version number. This is a PostScript file, so you need
a PostScript printer to print it or software that can display PostScript, such as Ghostscript.
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TUNNEL TTL

In Listing 3-7, the tunnel Time to Live (TTL) value is supplied explicitly. Without this value, the new IPv4
header that is added when an IPv6 packet is tunneled will inherit the Time to Live value from the one in
the IPv6 header (where it’s called Hop Limit). In theory, this is good, as it makes sure that the TTL can
only get lower so when there are routing loops or tunneling loops, the TTL in looping packets will eventu-
ally reach zero and the packet is destroyed. However, when the TTL is inherited, traceroutes look very
strange. traceroute works by first sending out packets with a TTL of one. Because routers always
decrement the TTL by one for packets they forward, the TTL will reach zero in the first router, which
means that the router won’t forward the packet but sends back an ICMP “Time to Live exceeded in tran-
sit” message. The traceroute program now knows the address of the first router on the path to the
destination in question, so it sends a packet with a TTL of 2. This packet will go through the first router
unharmed, but its TTL will reach zero in the second router, which then sends back an ICMP message.
This continues until the packet reaches its destination.

The problem with an inherited TTL value in tunneled packets is that the TTL in the IPv4 packet will now
reach zero on one of the hidden IPv4 hops, which is invisible in IPv6. This results in one or more lines with
asterisks that indicate lost packets. However, there is no impact on regular packets as these generally start
out with a Hop Limit/Time to Live of 60 or higher.

6to4 on a Cisco Router
Configuring 6to4 on a Cisco router under IOS is very simple, as shown in Listing 3-8. However,
this configuration isn’t all that useful without setting up another interface for IPv6 and enabling
IPv6 forwarding, because without that, only the router itself can use the 6to4 tunnel. Examples
for that are given in the next chapter, which covers routing.

Listing 3-8. Enabling 6to4 on a Cisco Router

!
interface Tunnel2002
ipv6 address 2002:dfe0:e1e2:1::1/16
tunnel source 223.224.225.226
tunnel mode ipv6ip 6to4
!
ipv6 route ::/0 2002:c058:6301::
!

The IPv4 address listed as the tunnel source must be an address configured on another
interface, over which the router is reachable from the rest of the Internet. It is also possible to
supply this address indirectly by pointing the tunnel source toward the interface that supplies
the address in question rather than specify the address directly. The tunnel source address
then automatically tracks any changes in the address of the tunnel source interface. However,
because the 6to4-derived IPv6 address for the tunnel interface (and possibly other interfaces)
must also be changed manually when this happens, there is little advantage in onfiguring a
6to4 interface this way. The ipv6 route command sets up a default route toward the anycast
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6to4 relay address. Without this command, the router will still use 6to4 to reach 6to4
addresses, as those are “directly connected” to the tunnel interface, but destinations with
regular non-6to4 addresses will then be unreachable if there isn’t another default route or
a suitable more specific route.

6to4 Security Issues
In theory, hosts should be able to handle all possible incorrect and even intentionally harmful
packets that they receive. Unfortunately, this isn’t always the case in practice, so more often than
not, it’s necessary to have filters or firewalls in place to filter out unwanted packets. Chapter 9
has more information about security issues and packet filtering in particular. However, there are
some security issues that are specific to 6to4 tunneling that are best discussed here.

It is currently considered “best current practice” (BCP)4 by the IETF for Internet Service
Providers to make sure they only forward packets from their customers to the rest of the Internet
if those packets have a source address that actually belongs to the customer in question. This is
called “anti-spoofing” or “ingress” filtering. With anti-spoofing filters in effect, a customer can
still attack hosts elsewhere on the Internet (either by choice or because their computer has been
turned into a “zombie” after being infected with malicious software), but the packets involved in
such an attack are simple to trace back and relatively straightforward to filter out. 6to4 allows
people to create packets with spoofed IPv6 addresses and encapsulate them in legitimate IPv4
packets, thereby bypassing anti-spoofing filters that may be in effect. (However, many ISPs don’t
have anti-spoofing filters in place.) An attacker can do this either by addressing packets directly
to the IPv4 address of the target, or by routing them over a 6to4 relay.

To reject the most obvious attacks that use 6to4, most systems filter out several ranges of
invalid 6to4 addresses (see Listings 3-9 and 3-10). Additionally, it’s conceivable that in the future
6to4 hosts, routers and/or relays will start rejecting 6to4 packets where the IPv4 address in the
outer header doesn’t match the embedded IPv4 address in the 6to4 IPv6 address in the inner
header. So when using 6to4, make sure there is always a one-to-one relationship between the
48-bit 6to4 prefix and the IPv4 address used for 6to4 to avoid problems in this area.

Monitoring 6to4
Listing 3-9 shows how the ifconfig and netstat commands can be used to monitor the
behavior of the FreeBSD or MacOS X stf0 interface and the IPv6 routing table.

Listing 3-9. Monitoring 6to4 Under FreeBSD or MacOS

# ifconfig stf0
stf0: flags=1<UP> mtu 1280

inet6 2002:dfe0:e1e2:1::1 prefixlen 16 
# netstat -rnf inet6
Destination        Gateway               Flags      Netif Expire
::/96              ::1                   UGRSc       lo0 =>
default            2002:c058:6301::      UGSc       stf0
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::1                ::1                   UH          lo0
::ffff:0.0.0.0/96  ::1                   UGRSc       lo0
2002::/24          ::1                   UGRSc       lo0 =>
2002::/16          2002:dfe0:e1e2:1::1   Uc         stf0
2002:7f00::/24     ::1                   UGRSc       lo0
2002:dfe0:e1e2::1   link#7               UHL         lo0
2002:e000::/20     ::1                   UGRSc       lo0
2002:ff00::/24     ::1                   UGRSc       lo0

The netstat flags are -r to list the routing table, -n to suppress looking up network
names in the DNS, and -f allows us to specify the address family, where “inet6” means IPv6.
The netstat output is rather extensive, even without the link local information that has been
left out in the example. The ::/96 route allows special handling of IPv4-compatible addresses
for the purpose of automatic tunneling, and the localhost address (::1) route points to the
loopback interface. The ::ffff:0.0.0.0/96 route is linked to special addresses that make it
possible for programs using the IPv6 socket API to communicate over IPv4 (see Chapter 6).
The 2002::/24, 2002:7f00::/24, 2002:e000::/20, and 2002:ff00::/24 routes correspond to the
0.0.0.0/8, 127.0.0.0/8, 224.0.0.0/4, and 255.0.0.0/8 prefixes, respectively. These are IPv4
address blocks that aren’t valid sources or destinations of 6to4 packets.

The 2002:dfe0:e1e2::1 route corresponds to the local 6to4 address. The 2002::/16 route
makes sure that all packets with 6to4 destinations are handled by the stf0 interface in order to
tunnel them directly to their destination over IPv4. Last but not least, the default route directs
all remaining packets to the 6to4 anycast relay address 2002:c058:6301:: for relaying.

Listing 3-10 lists the IPv6 routing table under Linux with the ip command. This provides
much more information than the netstat command.

Listing 3-10. Monitoring 6to4 Under Red Hat 9 Linux

# ip -6 route
::/96 via :: dev tun6to4  metric 256  mtu 1480 advmss 1420
unreachable ::/96 dev lo  metric 1024  error -101 mtu 16436 advmss 16376
unreachable ::ffff:0.0.0.0/96 dev lo  metric 1024  error -101 mtu 16436 advmss 16376
unreachable 2002:a00::/24 dev lo  metric 1024  error -101 mtu 16436 advmss 16376
unreachable 2002:7f00::/24 dev lo  metric 1024  error -101 mtu 16436 advmss 16376
unreachable 2002:a9fe::/32 dev lo  metric 1024  error -101 mtu 16436 advmss 16376
unreachable 2002:ac10::/28 dev lo  metric 1024  error -101 mtu 16436 advmss 16376
unreachable 2002:c0a8::/32 dev lo  metric 1024  error -101 mtu 16436 advmss 16376
unreachable 2002:e000::/19 dev lo  metric 1024  error -101 mtu 16436 advmss 16376
2002::/16 dev tun6to4  proto kernel  metric 256  mtu 1480 advmss 1420
unreachable 3ffe:ffff::/32 dev lo  metric 1024  error -101 mtu 16436 advmss 16376
default via ::192.88.99.1 dev tun6to4  metric 1024  mtu 1480 advmss 1420

Another difference from FreeBSD is that the Linux 6to4 implementation filters out even
more invalid IPv4 prefixes: 10.0.0.0/8, 169.254.0.0/16, 172.16.0.0/12, 192.168.0.0/16, and
224.0.0.0/3. Note that these routes/filters don’t show up in either the netstat -r output or the
iptables firewall rules. Apparently, the Linux developers also found it necessary to filter out
3ffe:ffff::/32, the last /32 block in the 6bone prefix, which is often used in examples. How-
ever, Red Hat ES4 doesn’t install any of the unreachable routes.
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TUNNEL MTU

If you paid close attention to the listings, you may have noticed a difference in MTU for the tunnel interfaces
on different systems: Windows, FreeBSD, and MacOS use the IPv6 standard minimum packet size of 1280
bytes on tunnel interfaces, while Linux and Cisco IOS make the tunnel MTU as large as will fit in the parent
interface’s MTU. This generally means 1480 bytes, as the Ethernet MTU is 1500 bytes and the extra IPv4
header takes up 20 bytes.

Using a 1280 byte MTU for tunnels has the advantage that there won’t be any need for any further frag-
mentation, as this is the minimum MTU for IPv6. On the other hand, the 1480 byte MTU allows for an extra
200 bytes of payload per packet, so it’s more efficient.

Under FreeBSD and MacOS, the tunnel MTU is easily changed with ifconfig gif0 mtu 1480 or
something along similar lines. Under IOS, you can set the IPv6 MTU (as opposed to the actual interface MTU)
with the ipv6 mtu ... command in interface configuration mode.

In theory, when (for instance) a FreeBSD and a Linux host communicate over a tunnel and both use their
default tunnel MTU, reliable communication shouldn’t be possible, as the Linux host will at some point send
packets that are larger than the FreeBSD host’s MTU. Fortunately, this isn’t an issue in practice, as all the
mentioned systems accept tunneled packets that are larger than their MTU.

However, all bets are off when ICMP Packet Too Big messages are filtered out somewhere along the
way, so that Path MTU Discovery can’t work. See the next chapter for more on that.

Manually Configured Tunnels
6to4 has the advantages that it’s easy to configure and there is no need to obtain IPv6 address
space. However, 6to4 also has some disadvantages: whenever the IPv4 address changes, the
IPv6 addresses must also change, and communication with users of regular IPv6 address
space often incurs detours through remote relays in the absence of relays closer by. Also, the
relay service isn’t always very reliable, and the traffic flow is generally asymmetric (that is,
packets in both directions follow different paths through the network). On the other hand,
the fact that the remote endpoint is known for manually configured tunnels makes it easier
to reject fake packets. Last but not least, unlike 6to4 tunnels, manually configured or point-
to-point tunnels can transport multicast packets. Apart from allowing the use of multicast
applications, this also makes it possible to use regular IPv6 autoconfiguration mechanisms
and routing protocols, if desired.

Windows
Because the Windows graphical user interface lacks the capability to configure IPv6, creating a
tunnel must be done by using the netsh command. Listing 3-11 shows how to create and
configure a manual tunnel.

CHAPTER 3 ■ TUNNELS46



Listing 3-11. Creating and Configuring a Manual Tunnel

C:\>netsh
netsh>interface ipv6
netsh interface ipv6>add v6v4tunnel interface=tun0 localaddress=192.0.2.1
remoteaddress=223.224.225.226
netsh interface ipv6>add address interface=tun0 address=2001:db8:31:1::2
Ok.

netsh interface ipv6>add route prefix=2001:db8:31:1::/64 interface=tun0
Ok.

netsh interface ipv6>add route prefix=::/0 interface=tun0 nexthop=2001:db8:31:1::1
Ok.

netsh interface ipv6>quit

When netsh is started without any arguments, it waits for commands. Commands are avail-
able in several “contexts,” most notably the interface ipv6 context. After switching to this
context, the first order of business is to create the tunnel. The interface option takes the tunnel
name as its argument; in this case, tun0. The localaddress and remoteaddress specify the local
and remote addresses that will be used for this tunnel (the endpoints). The next command sets
up an address for the new interface. Unlike most other systems, Windows doesn’t automatically
create a “directly connected” route that makes systems on the same subnet reachable, so we
must configure this route ourselves. This explains why the add address command doesn’t take
an argument that specifies the prefix length. After creating the subnet route, which does include
the subnet prefix length, it’s possible to set up a default route toward the router on the other end
of the tunnel. Although the nexthop option with the IPv6 address of the remote router as its argu-
ment is optional here, without this, the default route won’t work. Depending on the service pack
that’s installed, the system may now respond when another system tries to ping6 it: with Service
Pack 1, Windows XP doesn’t reply to IPv6 pings or traceroutes. With Service Pack 2, it responds to
pings but not to traceroutes. See Chapter 9 for more information on how to modify firewall set-
tings to change this behavior.

■Note Commands that create new interfaces, addresses, and routes with netsh generally allow the option
store, which can either be active or persistent. With store=active, the changes don’t survive a reboot,
but with store=persistent, they become permanent until another command removes them again. If the
store option isn’t provided, the default is persistent.

In many cases, the keyword preceding an argument (such as interface=) can be left out, as the order
of the arguments for any command is fixed so that netsh doesn’t need to be told which argument is which.
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Listing 3-12 shows how to delete the routes, address, and interface created in Listing 3-11.

Listing 3-12. Removing a Manual Tunnel

C:\>netsh
netsh>interface ipv6
netsh interface ipv6>delete route prefix=::/0 interface=tun0 nexthop=2001:db8: ➥

31:1::1
Ok.

netsh interface ipv6>delete route prefix=2001:db8:31:1::/64 interface=tun0
Ok.

netsh interface ipv6>delete address interface=tun0 address=2001:db8:31:1::2
Ok.

netsh interface ipv6>delete interface interface=tun0
Ok.

FreeBSD
Under FreeBSD, manual tunnels run over the gif virtual interfaces. A gif interface must be
configured with two IPv4 addresses: the tunnel source and the tunnel destination. This can be
done with the ifconfig command but also with the special gifconfig command. Apart from
the tunnel source and destination and the fact that the interface is virtual, a gif interface is
configured like any other interface. Listing 3-13 shows how to create a gif interface and how
to configure the tunnel endpoint addresses.

Listing 3-13. Creating a gif Interface and Setting Up Tunnel Endpoints

# ifconfig gif create
gif2
# ifconfig gif2 tunnel 192.0.2.1 223.224.225.226

After creating a new gif interface, the system will echo back the full interface name. If
an unused gif interface already exists, creating a new one is, of course, unnecessary. The first
argument following the tunnel keyword is the address for the local tunnel endpoint; the sec-
ond, the address for the remote endpoint. It’s fairly easy to forget the tunnel keyword, in which
case the gif interface won’t work. Unfortunately, the resulting output from ifconfig is very
similar to that with the tunnel keyword, as shown in Listing 3-14.
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Listing 3-14. Tunnel Configuration Mistakes

# ifconfig gif3
gif3: flags=8010<POINTOPOINT,MULTICAST> mtu 1280
# ifconfig gif3 tunnel 192.0.2.1 223.224.225.227
# ifconfig gif4 192.0.2.1 223.224.225.228
# ifconfig
gif3: flags=8050<POINTOPOINT,RUNNING,MULTICAST> mtu 1280

tunnel inet 192.0.2.1 --> 223.224.225.227
gif4: flags=8011<UP,POINTOPOINT,MULTICAST> mtu 1280

inet 192.0.2.1 --> 223.224.225.228 netmask 0xffffff00 
inet6 fe80::201:2ff:fe29:2640%gif4 prefixlen 64 scopeid 0xc 

After creation, gif interfaces aren’t automatically brought up, so they also don’t have a link-
local address yet. But there is no need to bring up tunnel interfaces explicitly with the ifconfig
gif0 up command, as this happens automatically as soon as the interface is configured with an
address, as shown in Listing 3-15.

Listing 3-15. Configuring an IPv6 Address for a gif Interface

# ifconfig gif0
gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280
# ifconfig gif0 up
# ifconfig gif0 inet6 2001:db8:31:1:: eui64
# ifconfig gif0
gif0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1280

tunnel inet 192.0.2.1 --> 223.224.225.226
inet6 fe80::201:2ff:fe29:2640%gif0 prefixlen 64 scopeid 0x9 
inet6 2001:db8:31:1:201:2ff:fe29:2640 prefixlen 64 

We first need to set the interface to the “up” state, or setting an address in the next line will
be rejected with the error message “Could not determine link local address.” In the next line,
the eui64 keyword tells the system to fill in the bottom 64 bits in the address with a modified
EUI-64 interface identifier. It’s also possible to specify the full address, in which case a prefix
length may be supplied, either affixed to the address with a slash in between or preceded by the
keyword prefixlen. Listing 3-16 shows how to remove an IPv6 address and tunnel endpoint
addresses from a gif interface and how to remove the interface from the system.

Listing 3-16. Removing Tunnel Settings and a Tunnel Interface

# ifconfig gif0 inet6 delete 2001:600:8:34::2
# ifconfig gif0 deletetunnel
# ifconfig gif0 destroy

Although gif tunnel interfaces will happily autoconfigure if the router on the other side
sends out router advertisements, this is rare, so configuring the tunnel interface and setting
up a default route is usually done manually or through a startup script. Listing 3-17 shows
how to do it manually, along with the shortened output of the netstat -r command that shows
the effect on the routing table.
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Listing 3-17. Setting Up a Default Route Toward a Tunnel

# route add -inet6 default 2001:db8:31:1::1
# netstat -rnf inet6
Routing tables

Internet6:
Destination                      Gateway              Flags      Netif Expire
default                          2001:db8:31:1::1     UG1c       gif1
2001:db8:31:1::/64               link#9               UC         gif1
2001:db8:31:1::1                 link#9               UHLW       gif1
2001:db8:31:1:201:2ff:fe29:2640  link#9               UHL         lo0

In this example, the local system has address 2001:db8:31:1:201:2ff:fe29:2640, and
the other side has the 1 address within the same subnet. This is where the default route
points. It’s also possible to have the FreeBSD system set up one or more tunnels during
startup. Listing 3-18 shows the necessary additions to the /etc/rc.conf file.

Listing 3-18. Configuring an IPv6 Tunnel at System Startup by Using /etc/rc.conf

cloned_interfaces="gif0"
gif_interfaces="gif0"
gifconfig_gif0="192.0.2.1 223.224.225.226"
ipv6_ifconfig_gif0="2001:db8:31:1::2 prefixlen 64"
ipv6_defaultrouter="2001:db8:31:1::1"

MacOS X
The MacOS system preferences only support 6to4 tunneling, so manual tunnels must be con-
figured with the ifconfig command. However, creating new tunnel interfaces on the fly isn’t
possible under MacOS X, so the lone gif0 interface that’s supplied by default will have to do.
Don’t forget to use sudo, as changing interfaces with ifconfig requires root privileges.

Even though the ifconfig commands are largely identical to those used under FreeBSD,
making MacOS enable the tunnel at system startup is very different. To do this, you must cre-
ate a startup script of your own. See Appendix B for information on how to do that.

Linux
Although there are several ways to set up a manual tunnel in Linux, only one consistently pro-
duces the intended result: the ip command. Listing 3-19 creates and configures a new tunnel
device tun0 with ip.

Listing 3-19. Creating a Manual Tunnel Under Linux

# ip tunnel add name tun0 mode sit local 192.0.2.1 remote 223.224.225.226 ttl 64
# ip link set dev tun0 up
# ip address add 2001:db8:31:1::2/64 dev tun0
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The mode is set to sit, which stands for Simple Internet Transition. The sit tunnel type is
used for all IPv6-in-IPv4 tunnels, including 6to4. The difference between a 6to4 tunnel and a
manual tunnel is just the remote address: this is any for 6to4 tunnels, while it is (of course) set
to a specific value for manually configured tunnels. In theory, it’s also possible to create tun-
nels with the ifconfig command, but it’s not possible to specify a local address this way, so it
makes more sense to stick to ip when managing tunnels. To be able to use the tunnel, it’s nec-
essary to add a default route pointing to the new tun0 interface. This, along with showing the
routing table using the ip command, is done in Listing 3-20.

Listing 3-20. Adding a Default Route and Displaying the Routing Table with ip

# ip route add default via 2001:db8:31:1::1 metric 15
# ip -6 route show
2001:db8:31:1::/64 via :: dev tun0  proto kernel  metric 256  mtu 1480 advmss 1420
fe80::/64 dev eth0  proto kernel  metric 256  mtu 1500 advmss 1440
fe80::/64 via :: dev tun0  proto kernel  metric 256  mtu 1480 advmss 1420
default via 2001:db8:31:1::1 dev tun0  metric 15  mtu 1480 advmss 1420
default dev eth0  proto kernel  metric 256  mtu 1500 advmss 1440
unreachable default dev lo  metric -1  error -101

Although the syntax is a bit different, the ip route add command that sets up the default
route isn’t all that different from the commands that add routes to the routing table on other
systems, except for one thing: the metric. A metric is a preference value that makes it possible
for the system to select the best route if there are several toward the same destination prefix.
In the example, the ip -6 route show command shows that there are actually two default routes
in the IPv6 routing table: the one specified just before in the example and another one point-
ing toward the eth0 (Ethernet) interface, with no next hop address specified. This extra default
route exists to meet the on-link assumption as explained in the sidebar. However, the metric
for this route is 256, while the default metric for routes created with ip is 1024. Because a lower
metric is better, it’s necessary to specify a metric that’s lower than 256 when adding a default
route, to make sure that the system doesn’t use the existing route toward the eth0 interface.
(A third default route with a strange -1 metric is used to generate “unreachable” messages in
the absence of any other routing information.) Again, in Red Hat ES4, these special-purpose
routes are no longer there, which means that ES4 doesn’t implement the on-link assumption.
The reason there is no need to use the -6 flag when configuring the route though -6 is required
when listing routes is that the supplied next hop address allows ip to determine that we’re
talking about IPv6; but nothing in route show hints toward a specific IP version, so without
the -6 flag, IPv4 is assumed.

■Note The error “RTNETLINK answers: Network is down” means that the interface wasn’t properly brought
up by using the ip link ... up command. Also, ip has the unpleasant habit of accepting certain incorrect
commands without complaining but without executing them, either.
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MISSING IPV6 DEFAULT ROUTE

When an IPv6 host doesn’t have a default route, RFC 2461 specifies that it is should consider the entire IPv6
address space to be “on-link.” This means that the host assumes that these addresses are reachable on the
local subnet. The advantage the on-link assumption is that this way, any systems connected to the same
physical or logical network (such as a large Ethernet) are able to communicate in the absence of any routers,
even if they have addresses in different subnet prefixes. However, many systems don’t implement the on-link
assumption. The problem is that the on-link assumption makes it hard to ignore IPv6 when there is no IPv6
connectivity. Most systems that support IPv6 will immediately return a “host unreachable” error when an
application tries to connect to an IPv6 address, so the application can retry over IPv4 without delay. However,
if all IPv6 destinations are considered on-link, the system must try to connect to any given IPv6 destination
locally and wait for a time out when this (surprisingly) doesn’t work. There are also security issues, because
local systems could pretend to hold arbitrary IPv6 addresses. It’s likely that the on-link assumption will be
removed in a new version of RFC 2461.

Adding and displaying routes can also be done by using the route and netstat com-
mands, as shown in Listing 3-21.

Listing 3-21. Adding a Default Route and Displaying the Routing Table with route and netstat

# route -A inet6 add default gw 2001:db8:31:1::1
# netstat -rnA inet6
Kernel IPv6 routing table
Destination               Next Hop          Flags Metric Ref Use Iface
::1/128                   ::                U     0      0     0 lo      
2001:db8:31:1::2/128      ::                U     0      0     0 lo      
2001:db8:31:1::/64        ::                UA    256    1     0 tun0    
fe80::/64                 ::                UA    256    0     0 eth0    
fe80::/64                 ::                UA    256    0     0 tun0    
::/0                      2001:db8:31:1::1  UG    1      0     0 tun0    
::/0                      ::                UDA   256    0     0 eth0    

Both the route and the netstat commands take a -A inet6 flag that specifies the IPv6
“address family.” The gw argument indicates that the next value is the Next Hop address. The
default route makes sure that all packets are delivered to the router with this address. With
route, there is no need to specify a metric, as routes created with this command receive a
metric of 1 by default. Two additional flags are specified for netstat: -r and -n. The former
tells netstat to show the routing table (the default is to show current TCP, UDP, and UNIX
sockets), and the latter disables DNS lookups for the routing table entries.

The differences between the ip route show and the netstat -r output is mostly of little
consequence (and undocumented), except that netstat also shows host routes that are cre-
ated for individual addresses the system needs to keep track of. Listing 3-22 shows how to
remove a route, an IPv6 address, and a tunnel interface.
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Listing 3-22. Removing a Default Route and a Manual Tunnel Under Linux

ip route delete default via 2001:db8:31:1::1
ip address del 2001:db8:31:1::2/64 dev tun0
ip tunnel del name tun0

Just as with 6to4, Red Hat Linux (including ES4) is able to configure a manual tunnel
automatically on startup. This behavior is controlled by two files: /etc/sysconfig/network and
/etc/sysconfig/network-scripts/ifcfg-sit1. Listing 3-23 shows the manual tunnel–related
contents of the /etc/sysconfig/network file, and Listing 3-24 shows the full contents of the
/etc/sysconfig/network-scripts/ifcfg-sit1 file.

Listing 3-23. The Contents of /etc/sysconfig/network

NETWORKING_IPV6="yes"
IPV6_DEFAULTDEV=sit1
IPV6_DEFAULTGW=2001:db8:31:1::1

Listing 3-24. The Contents of /etc/sysconfig/network-scripts/ifcfg-sit1

DEVICE=sit1
BOOTPROTO=none
ONBOOT=yes
IPV6INIT=yes
IPV6TUNNELIPV4=192.0.2.1
IPV6TUNNELIPV4LOCAL=223.224.225.226
IPV6ADDR=2001:db8:31:1::2

Note that the name of the tunnel interface must be sit and then a digit, but not sit0, and
IPV6TUNNELIPV4 specifies the remote tunnel endpoint address.

■Caution Be careful when changing Linux tunnel interface settings, as the system may no longer be able
to shut down properly when the shutdown scripts want to shut down a tunnel that’s not there.

IFCONFIG: FRIEND OR FOE

People often assume that when someone has written a book about something, he or she knows a lot about
the subject in question. I’m glad to say that this is generally indeed the case. After writing the book, at least.
Authors discover many an interesting tidbit of information only during the writing process, which can be a
humbling experience for those of us who think we knew everything already.

What I will take away from writing this book is knowledge of the proper ifconfig syntax. The first day
at my first job in the Internet business, I impressed my new boss by reconfiguring an Ethernet interface on a
SunOS machine with a new MAC address. Not all that impressive in and of itself, but the SunOS operating
system had the strange habit of reprogramming all the Ethernet interfaces in a machine with the same MAC
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address. Because the server in question was connected to the same Ethernet with two interfaces, this meant
that it would receive every packet twice (once on each interface), which didn’t exactly help performance. With
different MAC addresses on both interfaces, the speed increased significantly.

That day was probably the last time that I consulted the ifconfig man page, because I’ve been strug-
gling with the command’s syntax ever since. I can never remember the order of the inet6 (no, not -inet6)
argument and the add, delete, alias, -alias parameters and the like on various UNIX-like systems. So imagine
my surprise when, after scrutinizing a rough draft of this chapter, Pim van Pelt (one of the two invaluable
technical reviewers for this book) pointed out that the proper order is as follows:

ifconfig [-L] [-m] interface [create] [address_family]
[address[/prefixlength] [dest_address]] [parameters]

So the correct syntax in Listing 3-16 wouldn’t be ifconfig gif0 inet6 delete
2001:600:8:34::2 (or ifconfig gif0 inet6 -alias 2001:600:8:34::2) but ifconfig gif0
inet6 2001:600:8:34::2 delete. I think I can remember that.

The moral of the story is that commands such as ip, ifconfig, route, and netstat are sufficiently
complex and different between various operating systems that it pays to have a look at the man page when
you need to do things that fall outside your everyday routine. Whether allowing different ways to achieve the
same result is a good idea is a philosophical question. It is certainly confusing from time to time.

■Note I’m not going to change the listings as a result of my new insight, both to keep them as a reminder
and because editing examples is a surefire way to introduce errors.

Cisco
Using a manually configured tunnel comes very natural to Cisco’s Internetwork Operating Sys-
tem (IOS), and it’s very easy to configure, as shown in Listing 3-25. However, this example only
allows the router itself to use the tunnel, just as with the examples for Windows, FreeBSD,
MacOS X, and Linux. See Chapter 4 for more information on routing IPv6.

Listing 3-25. Configuring a Tunnel Interface and an IPv6 Default Route Under Cisco IOS

!
interface Tunnel0
ipv6 address 2001:DB8:31:1::2/64
ipv6 enable
tunnel source 192.0.2.1
tunnel destination 223.224.225.226
tunnel mode ipv6ip
!
ipv6 route ::/0 2001:DB8:31:1::1
!
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The tunnel interface is created and put in the “up” state as soon as the interface tunnel0
command is given. (Deleting the interface again is done with no interface tunnel0.) IPv6 is
enabled for the interface as soon as an IPv6 address is configured, so the ipv6 enable com-
mand isn’t really necessary here. When configuring the address, the router won’t accept the
address without a prefix length, which is usually /64, as in the example. The tunnel source
command also accepts an interface as its argument. In that case, the primary IPv4 address
for that interface is used as the tunnel source. Because IOS supports a number of different
tunneling mechanisms, it is necessary to specify IPv6 in IP encapsulation explicitly with the
tunnel mode ipv6ip command.

The other tunneling mechanisms aren’t appropriate for IPv6, with the exception of Generic
Route Encapsulation (GRE). GRE is a tunneling protocol developed by Cisco that allows the trans-
port of many protocols other than just IPv6 over IP tunnels. GRE also offers additional features,
such as having a checksum over the tunneled packets or enforcing that packets aren’t delivered
out of order. However, GRE adds a few more housekeeping bytes on top of the new IPv4 header,
so if the additional GRE features aren’t needed, simple IPv6 in IP is the best choice.

■Note Both manually configured tunnels (RFC 2893) and all automatic tunneling mechanisms except
Teredo set the “protocol” field in the IPv4 header to 41 (decimal) to indicate that the content of the IPv4
packet is an IPv6 packet. The protocol number for GRE is 47. Teredo uses UDP port 3544. Be sure, if you
run a firewall or other filter, that your tunnel protocol is allowed through. For instance, Red Hat ES4 with
the default firewall configuration filters out protocol 41 so that 6to4 or manual tunnels don’t work reliably.
See Chapter 9 for more information on packet filters, including the Linux ip(6)tables filter.

SOURCE ADDRESS PROBLEMS

Most of the systems discussed here check whether the local address for a tunnel is indeed a valid address
for the local system when a tunnel source address is configured. FreeBSD 4.9, MacOS, and Cisco will happily
send out packets with the configured tunnel source as the source address, regardless of whether this is
indeed an address that is present on the system. FreeBSD 5.4, Linux, and Windows, on the other hand,
accept the configuration but don’t transmit the packets.

Manually Configured Tunnels and NAT
Manually configured tunnels themselves can deal with Network Address Translation (NAT) with-
out problems if the configuration on both ends is changed to reflect the idea each end has about
its own address and the remote end’s address. For instance, let’s assume a tunnel between
192.0.2.1 and 223.224.225.226. Now the host that used to have the address 223.224.225.226 is
moved behind a NAT and given the new (private) address 10.0.0.203. The old address is given
to the NAT box. To keep the tunnel working, the configuration on the host behind the NAT box
must now reflect that it has a private address, so the tunnel source becomes 10.0.0.203. But the
configuration on the other host remains the same.

However, many NAT implementations can deal with only TCP and UDP and fail to handle
IP packets with a protocol 41 payload. A larger class of NATs can handle forwarding protocol
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41 packets toward a fixed internal address, which would of course be the host that’s the local
tunnel endpoint. This configuration item is often called “default host,” or “DMZ.” A small class
of NATs can handle IPv6-in-IPv4 tunneling without any configuration. Unfortunately, there is
no good way to find out what kind of NAT is implemented in a particular device other than
just seeing what happens. 

It’s better to set up the default host or DMZ anyway, as otherwise the NAT limitation that
external systems can’t initiate communications toward internal systems also applies to the tun-
neled IPv6 connectivity. But the effect is slightly different than in IPv4: when an internal system
connects to the outside world over IPv6, the appropriate NAT state is set up so that incoming
tunnel packets are delivered to the system that terminates the tunnel. External systems can
now connect to internal systems. When the tunnel is idle for some time, the NAT removes the
mapping, and after that, systems elsewhere on the Internet can no longer reach IPv6 systems
behind the tunnel that crosses the NAT device. You can solve this by periodically generating
some traffic over the tunnel, for instance, by starting a one-packet ping to a remote system
from the cron every minute.

Very much the same thing happens when there is a stateful IPv4 filter that allows incom-
ing protocol 41 packets only after there have been outgoing protocol 41 packets.

Getting a Tunnel
After all the examples of how to create a manually configured tunnel, just one ingredient is miss-
ing for a successful tunnel setup: the other side. In this regard, there is good news and bad news.
The good news is that many places around the Net offer tunnel connections. The bad news is
that many of them are hard to find. This is especially true for ISPs that offer tunnels, as IPv6 isn’t
exactly big business (yet) for ISPs. Still, a tunnel from an ISP has considerable advantages. First,
because your traffic flows over their network anyway, there is no detour for IPv6 traffic. Second,
they know you, so it’s usually possible to get a fixed tunnel without the need for authentication
systems. Third, getting IPv6 traffic from your ISP doesn’t cost them any extra bandwidth. Getting
it from a third party means that all IPv6 traffic to and from you needs to flow over their network,
and giving this away for free isn’t a sustainable business model in the long run.

However, if your ISP doesn’t support IPv6, you’ll have to get a tunnel somewhere else. The
6bone is being phased out, so the old advice of connecting to the 6bone with a tunnel that still
floats around the Net is no longer very useful. Your best bet is one of the tunnel brokers. Most,
if not all, tunnel brokers give out IPv6 tunnels to the general public for free. However, they all
approach this task differently. Most require some kind of registration, and some use special
client software to set up the tunnel. The amount of address space they give out greatly varies,
from a single address to a full /48. Table 3-1 lists some well-known tunnel brokers. It is well
worth the time to find one that suits your needs rather than to pick just a random one. 
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Table 3-1. Tunnel Brokers

Name URL Location

Hurricane Electric IPv6 Tunnel Broker http://www.tunnelbroker.net/ Fremont, California

Hexago Freenet6 http://www.hexago.com/ Quebec, Canada

Consulintel Tunnel Broker http://tb.consulintel.euro6ix.org/ Madrid, Spain

SixXS Tunnel Broker http://www.sixxs.net/ Various locations in
Europe



Routing

“Ah, yes. It’s a lot like Star Trek: The Next Generation. In many ways, it’s superior but will

never be as recognized as the original.”
—Wayne Campbell in the movie Wayne’s World

For IPv6 packets to reach remote destinations, they must generally pass through several
IPv6 routers. This chapter explains how to set up IPv6 routing, both in a simple end-user
environment and in an ISP or enterprise environment, where one or more routing protocols
are deployed. Most residential gateways and small office/home office routers that are sold
these days don’t support IPv6, so it’s common for a simple end-user network to use a regular
computer as an IPv6 router. Routing/forwarding IPv6 packets is supported on Windows XP
and all UNIX-like operating systems such as Linux, the BSD family, and MacOS, which sort
of married into the BSD family as of version “X.”

Figure 4-1 shows the layout of the example network we’ll be discussing in the rest of this
chapter. A router sits between the host and the IPv6 Internet. The Ethernet link between the
router and the host is depicted somewhat archaically as some length of coaxial Ethernet cable
with terminators at both ends. This avoids any possible confusion that could be the result of
including switches in the network diagram. 
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Figure 4-1. A simple example network with a router and a host



Routing IPv6
There is a difference between routing and forwarding a protocol. Routing is the process of
maintaining a routing table, usually (but not necessarily) aided by routing protocols. With a
routing table in place, any packets that come in that aren’t addressed to the router can be for-
warded to their destination, or to another router closer to that destination. Not everyone cares
to make the distinction between the two, so “routing” is sometimes used to describe both.

In IPv6, there is more to being a router than just routing and forwarding. The host in
Figure 4-1 not only depends on the router to forward packets to and from the Internet on its
behalf; it also needs the router to provide an address prefix so it can autoconfigure an IPv6
address. So the router in Figure 4-1 must, like all well-behaved IPv6 routers, listen on the all-
routers multicast address (ff02::2) for incoming router solicitation packets. When it receives
one of those, it replies with a router advertisement (to the all-hosts group address, ff02::1)
that contains the desired configuration information. Routers also send out router advertise-
ments periodically to let hosts know that previously learned information is still valid.

In IPv4, routers often supply configuration information to hosts by using the Dynamic
Host Configuration Protocol (DHCP), but there is no requirement that DHCP runs on a router:
the DHCP service can be provided by a regular server, if desired. Stateless autoconfiguration,
on the other hand, is closely tied to routing functionality, and therefore supplying the infor-
mation that clients need to autoconfigure themselves must be done on actual routers. There
is also DHCP for IPv6 (DHCPv6), but it’s not widely supported yet, and it’s doubtful that it ever
will as a mechanism for hosts to configure their IPv6 addresses. See Chapter 8 for more infor-
mation on DHCPv6.

Routing on Windows XP
Although Windows can forward IPv6 packets between any two IPv6-capable interfaces that
happen to be present, we’ll assume connectivity to the IPv6 Internet over a tunnel, as config-
ured in Chapter 3. Listing 4-1 shows that the tunnel interface configured in Listing 3-11 is still
present.

Listing 4-1. Listing IPv6 Interfaces

C:\>netsh interface ipv6 show interface
Querying active state...

Idx  Met   MTU    State         Name
---  ----  -----  ------------  -----
7     1   1280  Connected     tun0
6     2   1280  Disconnected  Teredo Tunneling Pseudo-Interface
5     0   1500  Connected     Local Area Connection 3
4     0   1500  Disconnected  Bluetooth Network
3     1   1280  Connected     6to4 Pseudo-Interface
2     1   1280  Connected     Automatic Tunneling Pseudo-Interface
1     0   1500  Connected     Loopback Pseudo-Interface

Addresses can be listed with the show address command. The address for our tun0 inter-
face is 2001:db8:31:1::2. The Windows machine will be acting as a router and will share the
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connectivity it has to the IPv6 Internet over its IPv6 tunnel with another host on the local
Ethernet (see Figure 4-1). The necessary commands are shown in Listing 4-2.

Listing 4-2. Configuring Windows XP as an IPv6 Router

C:\>netsh
netsh>interface ipv6
netsh interface ipv6>add address interface="local area connection 3" address=2001:➥

db8:31:2::1
Ok.

netsh interface ipv6>add route prefix=2001:db8:31:2::/64 interface=5 publish=yes
Ok.

netsh interface ipv6>set interface interface=5 forwarding=enabled advertise=enabled
Ok.

netsh interface ipv6>set interface interface=7 forwarding=enabled
Ok.

In the first step, interface Local Area Connection 3 (or interface 5 for short; see Listing 4-1)
gets an address in a previously unused subnet. The second line adds the new subnet to the routing
table, and the keyword publish=yes tells Windows that this address prefix is eligible for inclusion
in router advertisements. After that, forwarding and router advertisements are enabled for the
Ethernet interface (5), and forwarding is enabled on the tunnel interface (7). In Windows, enabling
forwarding on an interface allows packets that are received on this interface to be forwarded.
So, to make Windows forward packets coming in from the Internet over the tunnel interface
to the Ethernet subnet and from the Ethernet subnet to the Internet, forwarding must be
enabled on both interfaces. Because there are no hosts that require configuration information
on the tunnel subnet, sending router advertisements isn’t appropriate on this interface (nor
does Windows allow it). See http://www.microsoft.com/resources/documentation/WindowsServ/
2003/standard/proddocs/en-us/netsh_int_ipv6.asp for more information on the netsh com-
mand’s interface ipv6 context. Navigating this page may not work on browsers other than
Internet Explorer.

In the days before Service Pack 2, this would be the end of it. However, as of SP2, Windows
will no longer touch Internet Control Message Protocol (ICMP) packets with a 10-foot pole. This
creates two problems for hosts sitting behind a Windows IPv6 router: the Windows router doesn’t
show up in traceroutes, and Path MTU Discovery (PMTUD) doesn’t work. While the former is a
minor inconvenience, the latter is absolutely fatal (see sidebar), especially because the default
Maximum Transmission Unit (MTU) for tunnel interfaces is 1280, so any 1500-byte packets
received over an Ethernet interface can’t be forwarded over a tunnel. Listing 4-3 solves both these
problems by enabling the appropriate sending of ICMP messages types 2 and 11. Type 2 “Time
Exceeded” is used by traceroute, and type 11 “Packet Too Big” is used for PMTUD. Because these
settings govern the sending of ICMP packets, there shouldn’t be any security risks.
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Listing 4-3. Enabling traceroute and PMTUD ICMP Messages

netsh interface ipv6>firewall
netsh firewall>set icmpsetting type=11 mode=enable
Ok.

netsh firewall>set icmpsetting 2 enable
Ok.

PATH MTU DISCOVERY IN IPV6

IP allows packets to be up to nearly 64 kilobytes, but most of the link layer technologies it runs over support
much smaller maximum packet sizes (Maximum Transmission Unit, or MTU). For instance, in IP over Ethernet,
the maximum size of IP packets that may traverse an Ethernet network is 1500 bytes. Link layers that are
newer than the original Ethernet, but that have subsequently been made obsolete by Ethernet’s more recent
incarnations, typically have larger MTUs, as bigger packets make for more efficient communication. For
instance, FDDI, Token Ring, ATM, and Packet over SONET have (default) MTUs around the 4.5-kilobyte mark.
The original ARPANET, on the other hand, used a 1006 byte MTU. Different kinds of tunneling, such as IPv6 in
IP or PPP over Ethernet, reduce the “standard” 1500 byte MTU, and with Gigabit Ethernet, it’s often possible
to use “jumbo frames” (generally up to 9000 bytes).

To be able to route packets from one type of link layer to another, routers must accommodate for the MTU
differences. In IPv4, this is done by “fragmenting” packets that are too large to be transmitted whole over a cer-
tain link. However, fragmenting takes extra work for the router that performs the fragmentation and for the
destination host, which must reassemble the fragments into the original packet again. Enter Path MTU Discovery
(PMTUD). The idea behind PMTUD is to discover the smallest MTU in a path toward a given destination so that it’s
possible to send the largest possible packets that the various links along the path can support without fragmenta-
tion. This works by setting the “don’t fragment” bit in the IPv4 header. When a router encounters a packet that’s
too big to be transmitted over the link where it needs to go, the router drops (destroys) the packet and sends back
a “packet too big” ICMP message containing the MTU of the offending link. The source host can now reduce the
size of packets that it sends, so there is no need for fragmentation. This process is illustrated in Figure 4-2.
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In IPv6, Path MTU Discovery works exactly the same. However, there is an important difference when
PMTUD isn’t desired: in IPv4, PMTUD can be disabled and packets are sent with the “don’t fragment” bit set
to zero, so they can be fragmented when necessary. Not so in IPv6, as routers don’t get to fragment packets.
In essence, IPv6 behaves as if the “don’t fragment” bit is always set. But unlike IPv4, IPv6 has a reasonable
minimum MTU of 1280 bytes. So a host that isn’t prepared to perform PMTUD can limit itself to sending
packets of 1280 bytes or fewer. Routers, on the other hand, don’t get to choose: they must send back
“packet too big” ICMP messages when they encounter a packet that’s too large for the link MTU. If they
don’t, communication becomes impossible, as the source host keeps sending oversized packets. This is
already a problem with IPv4, and it’s worse with IPv6 because it can’t be fixed like in IPv4 by fragmenting the
packets anyway, despite the value of the DF bit. The mandatory minimum MTU of 1280 bytes in IPv6 means
that “legacy” links with smaller MTUs (576 or even 296 were once common for dial-up) must be upgraded, or
special measures must be taken to make the smaller physical MTU invisible to IPv6. See the discussion of
IPv6 over IEEE 1394 in Chapter 8.

FreeBSD
FreeBSD is very easy to configure as an IPv6 router. All that’s needed, in addition to (for instance)
IPv6 connectivity over a tunnel as shown in Listing 3-18 in Chapter 3, are some extra lines in the
/etc/rc.conf file, as shown in Listing 4-4.

Listing 4-4. Enabling IPv6 Routing Under FreeBSD

ipv6_ifconfig_xl0="2001:db8:31:2:: eui64 prefixlen 64"
ipv6_gateway_enable="YES"
rtadvd_enable="YES"
rtadvd_interfaces="xl0"

The first line configures an IPv6 address for the xl0 Ethernet interface, with the eui64 keyword
instructing the system to use a MAC address–derived modified EUI-64 for the lower 64 bits of
the address. If the interface itself doesn’t have a MAC address, one is borrowed from another
interface. The second line enables IPv6 forwarding on all interfaces. The last two lines enable
and configure rtadvd, the router advertisement daemon.

MacOS
The MacOS startup scripts don’t provide the same IPv6 configurability that the FreeBSD ones
do, so setting up a Mac as an IPv6 router requires a homegrown script, like the one in Appen-
dix B. The easiest way to make one is to take Listings B-4 and B-5 from the appendix and add
lines similar to those in Listing 4-5.

Listing 4-5. Enabling IPv6 Routing Under MacOS

ifconfig en0 inet6 2001:db8:31:2::1/64
sysctl -w net.inet6.ip6.forwarding=1
rtadvd en0
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All these commands must be run as root. So if they’re not part of a script that runs with root
privileges, execute them with sudo. The first line specifies an address for the en0 (Ethernet) inter-
face. Note that this can also be done by using the GUI. Because, unlike its FreeBSD counterpart,
the MacOS ifconfig command doesn’t support FreeBSD’s eui64 keyword, you must supply the
full address and accept the annoyance of having to keep track of which address is assigned to
which system. It is of course possible to take the MAC address and specify an EUI-64–derived
address manually, but that’s not really worth the effort, especially as, presumably, this Mac is the
only router on the subnet; so, the address ending in ::1 is a natural choice. The next line enables
IPv6 forwarding in the kernel, and the last one starts the router advertisement daemon.

■Note The rtadvd daemon will silently fail unless IPv6 forwarding is enabled.

On systems like FreeBSD, the sysctl net.inet6.ip6.accept_rtadv determines whether
the system accepts router advertisements (1) or not (0). This setting changes the behavior of
all interfaces. Under MacOS, the System Preferences allow the user to configure the IPv6 sta-
tus of individual interfaces as autoconfiguring, manually configured, or disabled, so even
though net.inet6.ip6.accept_rtadv is present, it’s ignored. Unfortunately, this means that
there is no easy way to stop the system from listening for router advertisements from a
script. This becomes rather embarrassing when the MacOS router sees its own router adver-
tisements and sets up a default route toward itself, breaking IPv6 connectivity to the rest of
the world in the process. The best way to solve this is with a firewall rule, as in Listing 4-6.
See Chapter 9 for more information on filtering IPv6 packets and other security issues.

Listing 4-6. Filtering Out Incoming Router Advertisements

ip6fw add 65000 drop ipv6-icmp from any to any icmptypes 134 in

Linux
Like FreeBSD, setting up Red Hat Linux for routing IPv6 is pretty straightforward when using
the system startup scripts. Assuming connectivity to the IPv6 Internet through the sit1 tunnel
interface, as per Listings 3-23 and 3-24 in Chapter 3, all that’s needed are some changes to
/etc/sysconfig/network and /etc/sysconfig/network-scripts/ifcfg-eth0. Listing 4-7 lists
the former; Listing 4-8 the latter.

Listing 4-7. Enabling IPv6 Routing in /etc/sysconfig/network

NETWORKING_IPV6=yes
IPV6FORWARDING=yes

Listing 4-8. Manual Configuration of the eth0 Interface

IPV6INIT=yes
IPV6ADDR=2001:db8:31:2::1/64
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With IPv6 forwarding enabled, several settings now have different defaults. For instance,
in the absence of other instructions, incoming router advertisements are ignored, as routers
are expected to have their IPv6 addresses configured manually. The term “manual configura-
tion” may seem out of place here, but it just means that the address configuration doesn’t
happen automatically. In the previous FreeBSD example, the first 64 bits were configured
manually, and the lower 64 bits were derived from the EUI-64. Strictly speaking, that would
be a hybrid manual/automatic configuration, but I still call it “manual” because the address
isn’t configured fully automatically like it is with stateless autoconfiguration or DHCPv6.

Even though all Red Hat variations come with all the necessary scripts, one thing is lack-
ing from the workstation distributions: a router advertisement daemon. A radvd daemon (as
opposed to rtadvd under FreeBSD) can be installed by using various packages. Some packages
and the source can be downloaded at http://v6web.litech.org/radvd/. Don’t forget to set up
a configuration file for radvd. When you compile the daemon from the source yourself, the
default place for this file is /usr/local/etc/radvd.conf, but Red Hat may expect to see the file
in /etc. Listing 4-9 is a very basic radvd configuration. You may also need to add a startup
script (see Appendix B) for radvd.

Listing 4-9. An radvd Configuration File

interface eth0
{
AdvSendAdvert on;
prefix 2001:db8:31:2::/64 { };

};

Static Routes
If your IPv6 network is more complex, you may need to set up static routes to get packets from
one router to the next. For instance, the host in the subnet 2001:db8:31:c03::/64 in Figure 4-3
may be reachable through Router 2, which has, for instance, the address 2001:db8:31:2::abf.
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Listings 4-10 to 4-13 show how to create, inspect, and remove a static route for the extra sub-
net under Windows, FreeBSD, MacOS, and Linux, respectively.

Listing 4-10. A Static Route Under Windows

C:\>netsh
netsh>interface ipv6
netsh interface ipv6>add route prefix=2001:db8:31:c03::/64 interface=5 ➥

nexthop=2001:db8:31:2::abf
Ok.

netsh interface ipv6>show routes
Querying active state...

Publish  Type     Met  Prefix                Idx  Gateway/Interface Name
-------  ------  ----  --------------------  ---  ------------------
no       Manual     0  2001:db8:31:c03::/64    5  2001:db8:31:2::abf

netsh interface ipv6>delete route prefix=2001:db8:31:c03::/64 interface=5 ➥

nexthop=2001:db8:31:2::abf

Ok.

Listing 4-11. A Static Route Under FreeBSD

# route add -inet6 2001:db8:31:c03::/64 2001:db8:31:2::abf
add net 2001:db8:31:c03::/64: gateway 2001:db8:31:2::abf
# netstat -rnf inet6
Routing tables

Internet6:
Destination           Gateway             Flags  Netif Expire
2001:db8:31:c03::/64  2001:db8:31:2::abf  UGSc   xl0 
# route get -inet6 2001:db8:31:c03::/64

route to: 2001:db8:31:c03::
destination: 2001:db8:31:c03::

mask: ffff:ffff:ffff:ffff::
gateway: 2001:db8:31:2::abf

interface: xl0
flags: <UP,GATEWAY,DONE,STATIC,PRCLONING>

recvpipe sendpipe ssthresh rtt,msec rttvar hopcount   mtu  expire
0         0        0        0      0        0  1500       0

# route delete -inet6 2001:db8:31:c03::/64 2001:db8:31:2::abf
delete net 2001:db8:31:c03::/64: gateway 2001:db8:31:2::abf

It’s also possible to set up static routes in the /etc/rc.conf file in FreeBSD. See the exam-
ples under “ipv6_static_routes” in /etc/defaults/rc.conf. However, I find this syntax to be
confusing, and the trouble with setting anything up in rc.conf is that you need to reboot the
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system to see if it works correctly. I recommend having the static routes set up in a shell script
and then calling this script at system boot time, as explained in Appendix B. The ability to exe-
cute the script manually makes for much easier testing.

Listing 4-12. A Static Route Under MacOS

% sudo route add -inet6 2001:db8:31:c03:: -prefixlen 64 2001:db8:31:2::abf
% netstat -rnf inet6
Routing tables

Internet6:
Destination           Gateway             Flags  Netif Expire
2001:db8:31:c03::/64  2001:db8:31:2::abf  UGSc   en0
% route -n get -inet6 2001:db8:31:c03:: -prefixlen 64

route to: 2001:db8:31:c03::
destination: 2001:db8:31:c03::

mask: ffff:ffff:ffff:ffff::
gateway: 2001:db8:31:2::abf

interface: en0
flags: <UP,GATEWAY,DONE,STATIC,PRCLONING>

recvpipe sendpipe ssthresh rtt,msec rttvar hopcount   mtu  expire
0         0        0        0      0        0  1500       0

% sudo route delete -inet6 2001:db8:31:c03:: -prefixlen 64 2001:db8:31:2::abf
delete net 2001:db8:31:c03::: gateway 2001:db8:31:2::abf

Listing 4-13. A Static Route Under Linux

# route --inet6 add 2001:db8:31:c03::/64 gw 2001:db8:31:2::abf
# route --inet6
Kernel IPv6 routing table
Destination           Next Hop            Flags Metric Ref Use Iface
2001:db8:31:c03::/64  2001:db8:31:2::abf  UG    1      0     0 eth0
# route --inet6 delete 2001:db8:31:c03::/64 gw 2001:db8:31:2::abf

■Note Alternatively, you may want to use the ip package to set up static routes under Linux, like in
Listing 3-20 in Chapter 3.

Windows and Linux only allow listing the entire IPv6 routing table (only the route that
was just added is shown in the listings), while FreeBSD and MacOS also support looking up
individual routes. The MacOS syntax is somewhat different than that of FreeBSD: the prefix
length must be specified by using the -prefixlen option (purists feel that -prefixlen should
be used on FreeBSD as well), and the route get command needs the -n option to turn off
DNS lookups, or the “route to” and “destination” will be listed as “invalid” if they’re not in
the DNS. Note that manipulating the routing table (route add and route delete) requires
root privileges, but just looking at the table doesn’t.
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Dynamic Routing
In a simple two- or three-router setup, using static routes isn’t a problem. However, at some
point, static routing becomes unmanageable. Currently four routing protocols work with IPv6:

• RIPng: the IPv6 version of RIP.

• OSPFv3: the IPv6 version of OSPF.

• Integrated IS-IS: the OSI IS-IS routing protocol extended for IPv6.

• BGP-4 with Multiprotocol Extensions.

The Routing Information Protocol (RIP) is an old and very simple routing protocol for
small to medium-sized networks. It basically broadcasts the content of the routing table peri-
odically and incorporates these broadcasts from other routers in its own table. A simple “hop
count” makes sure that the most direct route is preferred. RIP suffers from two downsides: it
doesn’t work too well in large networks because of all the broadcasts, and it takes very long
(several minutes) to detect outages and reroute traffic around the failure. These are funda-
mental problems caused by the way RIP works, so they’re also present in RIPng.

Open Shortest Path First (OSPF) is a much more advanced routing protocol, which keeps
maps of the entire network topology. OSPF sends out “hello” packets to see if neighboring
routers are still reachable and to find new neighbors. Apart from that, it only sends out updates
when there is a change in the network. In this case, all routers execute the Shortest Path First
algorithm, and traffic immediately starts taking the new best path. Its quick reaction to outages
and mechanisms to contain routing information to a subset of the network make OSPF suitable
for networks of all sizes. Apart from the obsolete version 1, there are currently two versions of
OSPF: OSPFv2 (for IPv4) and OSPFv3 (for IPv6). They are completely separate protocols that
don’t interact when both are enabled. 

Intermediate System to Intermediate System1 (IS-IS) is the OSI CLNS routing protocol for use
within a single network or organization. It was later extended to carry IPv4 routing information as
well as OSI CLNS routing information. The extended version is referred to as integrated IS-IS. The
integrated version is very popular with large Internet Service Providers, because although its basic
architecture is very similar to OSPF, its implementation makes it better capable of handling very
large networks. In addition to CLNS and IPv4, IS-IS can also carry IPv6 routing information. Until
not very long ago, this came with the caveat that every link or subnet that runs IPv4 must also run
IPv6, and vice versa. However, there is now “multitopology” support for IS-IS, which removes this
limitation when it’s not desired. Because of its OSI background, IS-IS is not for the faint of heart:
once it’s up and running, IS-IS isn’t too difficult to manage, but it does require that you to set up
CLNS/CLNP addresses and routing and suffer the OSI jargon that comes with it. For small to
medium-sized networks, IS-IS provides very few, if any, advantages over OSPF.

Unlike the other three routing protocols, the Border Gateway Protocol (BGP) is used between
the networks of different organizations. BGP makes it possible for packets to find their way from
one ISP to the other. BGP is also used by organizations that connect to two or more ISPs.2 The cur-
rent version of BGP is version 4. Multiprotocol extensions allow BGP4 to be used for different
address families, such as IPv4 multicast or IPv6.
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Routing protocol support on Cisco routers depends very much on the model and the soft-
ware image. Larger models such as the Cisco 7200 support all IPv6 routing protocols. (One of
the technical reviewers tells me a Cisco 7200 is no longer considered a “large” model. Obvi-
ously he never had to carry one from one end of a big building to another!) Smaller models
such as the ancient Cisco 2500 support RIPng and BGP (even though it’s not really powerful
enough to do much with BGP), often but not always OSPF (depending on the IOS release train
and version), and never IS-IS. The small SOHO/DSL models only support RIPng.

A Linux or FreeBSD machine (or even a MacOS one) can be turned into a full-fledged IPv6
router by installing the right software. In the beginning, there was Zebra, which implements
RIP, OSPF, and BGP each for both IPv4 and IPv6. The makers of Zebra later started working on
a commercial version, sold by IP Infusion. The commercial ZebOS has many more features,
including IS-IS, IPv4 and IPv6 multicast routing, MPLS, and VLAN switching. Zebra progress
slowed down significantly, and eventually, another group took advantage of the fact that Zebra
was released under the GNU Public License and started developing its own version under the
name Quagga. Quagga also supports IS-IS. See http://www.bgpexpert.com/hardsoft.php for a
more extensive list of BGP implementations. The rest of the chapter will have examples for
Zebra because it’s very similar to Cisco and the configuration commands aren’t subject to
change to the degree they are in Quagga. The examples may or may not work with Quagga.

Installing Zebra
Zebra (or Quagga) is probably available as a package or RPM for your system, but compil-
ing the source yourself is no trouble at all (for the routing protocol daemons, at least). The
source is available from the Zebra website at http://www.zebra.org/. Listing 4-14 lists the
commands for building and installing Zebra version 0.94. However, Zebra 0.95 was released
in early 2005. The output of the commands in question is left out.

Listing 4-14. Compiling Zebra

# gunzip zebra-0.94.tar.gz
# tar xvf zebra-0.94.tar
# cd zebra-0.94
# ./configure
# make
# make install

The code compiles under Linux, FreeBSD, and MacOS. Under MacOS, it’s usually a good idea
to install UNIX software under a special prefix, for instance, with ./configure --prefix=/sw. This
way, the binaries will be installed in /sw/sbin and the configuration files in /sw/etc rather than in
/usr/local/sbin and /usr/local/etc, respectively, so they don’t get in the way of the MacOS sys-
tem. Zebra consists of a collection of different daemons: 

• zebra, the daemon that ties it all together, on port 2601.

• ripd, the daemon that implements RIP for IPv4, on port 2602.

• ripngd, the daemon that implements RIPng for IPv6, on port 2603.

• ospfd, the daemon that implements OSPF for IPv4, on port 2604.
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• bgpd, the daemon that implements BGP for both IPv4 and IPv6, on port 2605.

• ospf6d, the daemon that implements OSPF for IPv6, on port 2606.

The right way to start each of the daemons is to execute it with the option -d so it runs in
the background. The daemons will start even if they’re not run as root, but they may not work
as desired because they may need access to privileged network services. It’s generally best to
start zebra first, as this daemon manages the communication between the different daemons
on the one hand and the kernel on the other hand. If zebra is already running, it can provide
bgpd, ospfd, and/or ospf6d with a router identifier. Each of these protocols requires a router
identifier to identify the local system. Almost always, this is one of the IPv4 addresses config-
ured on the system. If the zebra daemon isn’t running and a router identifier isn’t specified in
the configuration file, routing protocols can’t determine the router identifier, and they won’t
work. Other than zebra itself, there is no need to run any of the other daemons unless the
routing protocol they provide is desired.

Configuring the daemons is generally done by connecting to it using telnet (hence the
port numbers listed previously), even though the configuration is kept in a file on disk. But
editing the file directly has a big downside: the daemon must be restarted for the changes to
take effect. Restarting routing protocols is less than desirable, as it interrupts the flow of traf-
fic through the router. Before you can type telnet localhost 2601 for the first time, however,
it’s necessary to create basic configuration files. Listing 4-15 shows a configuration file for the
zebra daemon, although the same configuration can be used for all the daemons.

Listing 4-15. A Basic zebra Configuration

!
hostname zebra
password easy-to-guess
enable password hard-to-guess
!
access-list zebra-access permit 127.0.0.1/32
!
ipv6 access-list zebra-access-ipv6 permit ::1/128
!
line vty
access-class zebra-access
ipv6 access-class zebra-access-ipv6
exec-timeout 60
!

If you’re used to Cisco routers, this won’t look a million miles removed from something
familiar. However, note the small but important differences, such as the lack of numbers after
the line vty configuration command. This configuration sets the hostname to “zebra,” which
is useful to be able to keep the daemons apart later. The password line sets the first password
the daemon asks for when you telnet to it, and the enable password sets the password that’s
required to enter privileged mode, which is required to view or change the configuration. The
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remaining lines set up an access list that limits incoming telnet connections to those coming
from the IPv4 or IPv6 localhost addresses. Without this, anyone can telnet to your routing
daemons. Note that the configuration is stored in clear text. However, you can scramble the
passwords in the configuration file somewhat by specifying service password-encryption in
the configuration. The exec-timeout 60 command specifies a timeout of 60 minutes rather
than the default of five minutes for virtual terminal sessions.

■Tip Under Linux and FreeBSD, you can run the configure script with the options --enable-vtysh and
--with-libpam to build the additional vtysh utility. vtysh makes it possible to communicate with the vari-
ous Zebra daemons as a single entity, mimicking the Cisco user interface more closely. However, some
configuration commands don’t work in vtysh. Should you wish to use vtysh, you have to create a
vtysh.conf file in the appropriate directory. If you add lines like username iljitsch nopassword to this
file, then the user in question doesn’t have to provide a password when starting vtysh. If vtysh asks for a
password (which it may or may not do), it wants to hear the current user’s login password.

Listing 4-16 shows how to connect to the zebra daemon, list the configuration, and make a small
change. Changing configuration for the different routing protocols all happens in a similar vein,
so this example should function as a very short introduction to the Zebra/Cisco command line.
Have a look at a Cisco tutorial if you want to know more about how this command line interface
works. It’s not all that hard, as long as you remember that the Cisco command line has several
modes or contexts, and each one accepts different commands. The prompt always shows the
current mode.

Listing 4-16. Connecting to the zebra Daemon for the First Time

# telnet localhost 2601
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

Hello, this is zebra (version 0.94).
Copyright 1996-2002 Kunihiro Ishiguro.

User Access Verification

Password: 
zebra-t> enable
Password: 
zebra-t# show running-config 
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Current configuration:
!
hostname zebra-t
password 8 U2uZd3cGSy89g
enable password 8 0qFt0GjdVxDwI
service password-encryption
!
interface lo
!
interface eth0
ipv6 nd suppress-ra
!
interface sit1
ipv6 nd suppress-ra
!
access-list zebra-access permit 127.0.0.1/32
!
!
line vty
access-class zebra-access
!
end
zebra-t# configure terminal 
zebra-t(config)# interface eth0
zebra-t(config-if)# description First Ethernet interface
zebra-t(config-if)# exit
zebra-t(config)# exit
zebra-t# show interface eth0 
Interface eth0
Description: First Ethernet interface 
index 3 metric 1 mtu 1500 <UP,BROADCAST,RUNNING,MULTICAST>
HWaddr: 00:01:02:29:23:b6
inet 172.16.1.5/24 broadcast 255.255.255.255
inet6 fe80::201:2ff:fe29:23b6/64
inet6 2001:db8:31:2::1/64
input packets 9624, bytes 1142979, dropped 0, multicast packets 0
input errors 0, length 0, overrun 0, CRC 0, frame 0, fifo 0, missed 0
output packets 5549, bytes 1042517, dropped 0
output errors 0, aborted 0, carrier 0, fifo 0, heartbeat 0, window 0
collisions 0

zebra-t# quit
Connection closed by foreign host.

■Note Zebra keeps a watchful eye on the kernel, so when interfaces acquire new addresses or new
routes get added to the kernel routing table, the zebra daemon incorporates this information in its interface
status or master routing table. However, this information is not added to the Zebra configuration file. And, of
course, routing information and addresses in Zebra are communicated to the kernel.
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Enabling IPv6 on Cisco and Zebra
On Cisco routers, IPv6 must be enabled per-interface either by explicitly specifying ipv6 enable
or by assigning an IPv6 address to the interface. In addition, IPv6 routing must be enabled by
using the ipv6 unicast-routing configuration command. On Zebra, this isn’t necessary: the
interface IPv6 status is inherited from the kernel and startup scripts, and Zebra enables IPv4 and
IPv6 forwarding when the zebra daemon starts, although it doesn’t disable forwarding when the
daemon exits. Setting up routing between a tunnel interface and an Ethernet interface is very
simple by using Zebra or a Cisco router, as shown in Listing 4-17. This example builds on
Listing 3-25. A static route as in Listings 4-10 to 4-13 is thrown in for good measure.

Listing 4-17. Routing IPv6 on a Cisco Router

!
ipv6 unicast-routing
!
interface Ethernet0
ipv6 address 2001:db8:31:2::/64 eui-64
!
ipv6 route 2001:db8:31:c03::/64 2001:db8:31:2::abf
!

■Caution If you have access restrictions on (among others) telnet access to a Cisco router, you need to
set up similar restrictions for IPv6, or the router will be accessible from every possible IPv6 address.

On a Cisco router, this is enough to make the router send out router advertisements. Zebra
on the other hand, adds the line ipv6 nd suppress-ra to the configuration of each interface,
which, unsurprisingly, stops the sending of router advertisements. (The nd part of the command
refers to neighbor discovery, which is the more general mechanism router advertisements are
part of.) So the Zebra version of Listing 4-17 would be Listing 4-18. These settings are for the
zebra daemon (telnet to port 2601).

Listing 4-18. Routing IPv6 on a Zebra Router

!
interface eth0
ipv6 address 2001:db8:31:2::1/64
no ipv6 nd suppress-ra
!
ipv6 route 2001:db8:31:c03::/64 2001:db8:31:2::abf
!

Unlike Cisco IOS, Zebra doesn’t support the eui-64 keyword, so the full address must be
specified. Listing 4-19 lists the IPv6 routing table on a Cisco router.
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■Tip It’s always a good idea to use the eui-64 keyword to fill in the lowest 64 bit in a router’s address
from a MAC address when possible. This is especially beneficial on interfaces between two or more routers:
because these interface configurations now don’t contain any information that is specific to the individual
router, it’s very easy to copy and paste an interface configuration between routers, and it’s no longer neces-
sary to keep records about which router holds which address in a subnet.

A slight downside is that it’s a bit harder to populate the reverse DNS with long EUI-64–based addresses
rather than much shorter manually assigned addresses.

Listing 4-19. Listing the IPv6 Routing Table

Cisco#show ipv6 route
IPv6 Routing Table - 4 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP

U - Per-user Static route
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2

S   ::/0 [1/0]
via 2001:DB8:31:1::1

C   2001:DB8:31:1::/64 [0/0]
via ::, Tunnel0

L   2001:DB8:31:1::2/128 [0/0]
via ::, Tunnel0

C   2001:DB8:31:2::/64 [0/0]
via ::, Ethernet0

L   2001:DB8:31:2:260:70FF:FE35:AA5E/128 [0/0]
via ::, Ethernet0

L   FE80::/10 [0/0]
via ::, Null0

L   FF00::/8 [0/0]
via ::, Null0

There is one static route (the default route), two “connected” routes for the subnets of
directly connected interfaces, and several “local” routes. The first two local routes point toward
the router’s own addresses, and the last two encompass the link-local and multicast address
blocks, which require special treatment. The Zebra routing table looks somewhat different, but
this depends greatly on the host operating system. The main difference is that Zebra also lists
“kernel” routes, which were added to the system routing table manually or through a routing
process other than Zebra. Additionally, the routes that are actually used for forwarding traffic
(i.e., which are in the “Forwarding Information Base”) are listed with an asterisk. On most
routers, there is a RIB and one or more FIBs. The Routing Information Base (RIB) is simply the
routing table, as shown in the example. The Forwarding Information Base (FIB) is a copy of the
RIB in a format that’s highly optimized for packet forwarding. On Cisco routers, the most com-
mon form of a FIB is the Cisco Express Forwarding (CEF) table. Listing 4-20 turns on CEF for
IPv6 and displays the CEF table. (Very small models such as SOHO routers don’t support CEF.)
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Listing 4-20. Cisco Express Forwarding for IPv6

RouterE#show ipv6 cef
%IPv6 CEF not running
RouterE#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
RouterE(config)#ipv6 cef
%Must enable IPv4 CEF first
RouterE(config)#ip cef  
RouterE(config)#ipv6 cef
RouterE(config)#^Z
RouterE#show ipv6 cef
2001:DB8:31:2:260:70FF:FE35:AA5E/128
Receive

2001:DB8:31:2::/64
attached to Ethernet0 

2001:DB8:31:1::2/128
Receive

2001:DB8:31:1::/64
attached to Tunnel0 

FE80::/10
Receive

FF00::/8
Receive

::/0
attached to Tunnel0

For IPv6 CEF to work, IPv4 CEF must be enabled, too. The CEF table is similar to the rout-
ing table, except that it focuses more on what should actually happen to packets toward a
certain prefix. In this example, there are two variants: “receive” means that the router processes
the packet locally, and “attached to ...” means that the packets should go to the indicated inter-
face. Also, the default route resolves to an “attached to Tunnel0” route in the CEF table, even
though it points toward a specific neighbor address in the regular routing table. You can find
out more detailed information with the show ipv6 cef detail command.

■Warning Zebra really doesn’t like it when the clock is adjusted significantly. Because most PC hardware
is hampered by enthusiastically drifting clocks, synchronizing the time over the network is almost a neces-
sity. When this is done periodically with a program like ntpdate, the clock will often jump many seconds,
which may cause erratic behavior by the Zebra daemons, such as broken BGP sessions. A better alternative
is to run the ntpd daemon, which will speed up or slow down the clock by a fraction when needed.

It’s a good idea to read about RIPng even if you only plan to use OSPFv3 and read about
RIPng and OSPFv3 if you only plan to use BGP, as some more general routing concepts and
IPv6 peculiarities aren’t repeated for the other protocols. 
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RIPng
Because of its wide availability across the Cisco product line (and elsewhere), the Routing
Information Protocol Next Generation is very well suited to replace a relatively small number
of static routes in an environment where the network is expected to be stable and failure sur-
vivability isn’t the number-one priority. Examples of such a network would be a SOHO (small
office/home office) or residential network with just a few routers. (In a network with only one
router, there is little need for routing protocols.) Listing 4-21 shows the Zebra ripngd (port
2603) configuration to enable RIPng.

Listing 4-21. Enabling RIPng on Zebra

!
router ripng
default-information originate
redistribute static
network xl0
!

In this example, RIPng is enabled on the xl0 interface. It’s also possible to specify and address
range, and Zebra will find interfaces with addresses in that range and enable RIPng on those
interfaces; in other words, the behavior of most IPv4 routing protocols. The default-information
originate command instructs ripngd to broadcast a default route, and the redistribute static
command allows static routes to be inserted into RIPng. These routes, along with any routes
learned from other routers through RIPng, are entered into the RIPng database, which is shown in
Listing 4-22.

Listing 4-22. Displaying the RIPng Database on Zebra

ripngd# show ipv6 ripng

Codes: R - RIPng

Network                Next Hop                 If Met Tag Time
R  ::/0                   ::                        0   1   0   
R  2001:db8:31:1::/64     fe80::260:70ff:fe35:aa5e  3   2   0 02:59
S  2001:db8:31:2::/64     ::                        3   1   0 
R  3ffe:9500:3c:600::/56  fe80::204:27ff:fefe:249f  3   2   0 02:54

The default route has the unspecified address as its next hop, meaning that the route is
generated locally and the next hop address is outside of RIPng’s view. The same is true for the
redistributed static route (indicated with an S). The two other RIP routes (lines starting with
an R) have link-local addresses for their next hops, so RIPng routing is independent of the
global scope IPv6 addresses that the routers participating in the protocol happen to have. This
is a fairly significant departure from IPv4, where it’s a common problem for routing protocols
to fail to initialize properly because two or more routers have different ideas about the address
range used for a certain physical subnet. “If” is a pointer to the next hop interface, and “Met”
is the metric, which in RIP equals the hop count or number of routers between the local sys-
tem and the destination prefix. When several RIP routes are available from different routers,
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the one with the lowest metric (which is the hop count in RIP) is used. When two routes have
the same hop count, they’re both installed into the routing table for load balancing purposes.
The tag is used in more complex setups, and the time shows how long the route has to live
before it’s considered unreachable and removed. The default life time of a route is three min-
utes, and RIP updates come along every 30 seconds, so under normal circumstances, the life
time counts down to 2:30 and then reinitializes to 3:00 because of a RIP update.

The Cisco configuration for RIPng is quite different, as shown in Listing 4-23.

Listing 4-23. Enabling RIPng on a Cisco Router

!
interface Ethernet0
ipv6 rip my-rip enable
ipv6 rip my-rip default-information originate
!
ipv6 router rip my-rip
redistribute connected
!

Unlike with Zebra, and unlike nearly all IPv4 routing protocols, RIPng is enabled for an
interface in the configuration for that interface. In Cisco IOS, it’s possible to have several
instances of the RIP protocol active on a single router, making it necessary to name each
instance. In the listing, this name is “my-rip.” The name is only meaningful within this router;
there is no requirement that other routers use the same name for their RIPng instance.

Whether or not a default route is broadcast through RIPng is also determined per inter-
face. It’s also possible to specify default-information only, in which case a default route and
nothing else will be sent out over the interface in question. In this example, static routes aren’t
redistributed in RIPng, but connected routes are. Connected routes are routes that exist
because the route has an interface configured with the prefix in question. Apart from static
and connected routes (and in Zebra, kernel routes), it’s also possible to redistribute routes
learned from other routing protocols, but this can be dangerous. It is possible to redistribute
selectively by applying a route map (examples of those, but in other contexts, are included
later this chapter) to the redistribution. Listing 4-24 displays the RIPng database Cisco-style.

Listing 4-24. Displaying the RIPng Database on a Cisco Router

#show ipv6 rip database
RIP process "my-rip", local RIB
2001:DB8:31:2::/64, metric 2, installed

Ethernet0/FE80::204:27FF:FEFE:249F, expires in 155 secs
3FFE:9500:3C:600::/56, metric 2, installed

Ethernet0/FE80::201:2FF:FE29:23B6, expires in 173 secs

Notice the different take Cisco has on displaying the RIPng database: it only displays
routes received through RIPng, unlike Zebra, which also displays static and connected routes
that are being transmitted through RIP. Currently, there is no way to determine whether Cisco
IOS includes a certain route in RIPng updates, other than turning on RIPng debugging with
debug ipv6 rip and terminal monitor to display the debugging output. These are turned off
with undebug ipv6 rip (or undebug all) and terminal no monitor, respectively.

CHAPTER 4 ■ ROUTING 75



■Note RIPng “broadcasts” are sent to the ff02::9 multicast group address, UDP port 521.

OSPFv3
OSPF for IPv6 is an extensive and complex protocol, and it’s impossible to do it justice in a few
pages. However, the complexities are as good as identical to those of OSPF for IPv4, so if you
want to know the gory details about running OSPF over non-broadcast links, connecting non-
backbone areas through virtual links, or about the use of not-so-stubby areas (NSSAs), then
read up on OSPF in general. The following information should be enough to enable those
familiar with OSPF in the IPv4 world to apply their knowledge to IPv6 and those unfamiliar
with OSPF to start running OSPF in most small to medium-sized networks. Listing 4-25
enables OSPFv3 on a Cisco router.

Listing 4-25. OSPFv3 on a Cisco Router

!
interface FastEthernet2/0
ipv6 ospf 230 area 0.0.0.0
!

The number 230 designates the OSPFv3 process, which is required as it’s possible to have
several OSPFv3 instances running concurrently on a router. As with a RIPng instance name,
the process number only has local meaning inside the router.

Areas and Metrics
Apart from major differences “under the hood” because OSPF is a link-state routing protocol
while RIP is a distance-vector protocol, the two things that make OSPF much better suited for
larger networks are the use of areas and a much better metric. When the original OSPF was devel-
oped around 1990, there were significant concerns about whether the routers would be able to
run the heavy SPF algorithm that determines the best path. By allowing the network to be split up
in different “areas” and containing the SPF calculations to a single area, it was possible to build
much larger OSPF networks. However, this simplification requires that all the traffic between dif-
ferent areas only flows through a special “backbone” area. The backbone area is area 0. In a small
network of 25 routers or fewer, it’s best to stick with just a backbone area.

■Note Area numbers are 32 bits long and can be written either as a regular number or in IPv4 addresses
format (not IPv6 addresses format), so the backbone area may also show up as 0.0.0.0. Cisco routers
accept both, but Zebra wants to see only the IPv4-like notation.
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The difference between the OSPF metric and the RIP hop count is illustrated in Figure 4-4.
There are two ways to get from router 1 to router 2: one 10 Mbps hop or three 100 Mbps hops.
To RIP this is a no-brainer (although this can be tweaked somewhat): one hop is better than
three. OSPF, on the other hand, takes the bandwidth of the links in to account and decides that
three 100 Mbps hops are better than one 10 Mbps hop. OSPF does this by assigning a “cost” to
each interface. Under Cisco IOS, the default cost is a hundred million divided by the interface
speed in bits per second. So for a 1544 kbps T1 circuit, that would be 64, for 10 Mbps Ethernet
10, and for 100 Mbps or faster interfaces 1. So in the example in Figure 4-1, the direct link
between routers 1 and 2 has a cost of 10, and the path through routers 3 and 4 has total cost of
3. The cost for an interface can be modified with the ipv6 ospf cost ... interface mode com-
mand (ipv6 ospf6 cost ... under Zebra; note the extra 6), where the cost is a number from
1 to 65535. On a Cisco router, changing the cost for an interface can be useful or even neces-
sary when there are Gigabit Ethernet links, because by default, both 100 Mbps and 1000 Mbps
Ethernet have a cost of 1. On Zebra, changing the default is always a good idea, as Zebra doesn’t
have good access to interface bandwidth information (assuming it bothers to look at this
information at all).

Although Listing 4-25 enables OSPF on an interface and creates an OSPFv3 process with
number 230, it doesn’t enable any redistribution, so any routes that show up in OSPF are routes
for the address prefixes present on interfaces for which OSPF is configured.

Redistribution
Listing 4-26 enables redistribution of static and connected routes so that all static routes and
connected routes from interfaces that don’t run OSPFv3 are injected into the protocol. In addi-
tion to this, a default route is injected into OSPF, and the log-adjacency-changes command
makes the router write a message to the logging buffer (and all other places the router is config-
ured to log to) when an OSPFv3 neighbor appears or disappears. Listing 4-27 displays the
resulting OSPF routes in the IPv6 routing table.
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Listing 4-26. Enabling Redistribution in OSPF

!
ipv6 router ospf 230
log-adjacency-changes
default-information originate
redistribute connected
redistribute static
!

Listing 4-27. The OSPF Routes in the IPv6 Routing Table

#show ipv6 route ospf
IPv6 Routing Table - 644 entries
Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP

U - Per-user Static route
I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary
O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2
ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2

O   2001:7F8:1::/64 [110/2]
via FE80::290:6902:EE02:E43E, FastEthernet2/0

O   2001:DB8:31:2::/64 [110/2]
via FE80::212:1E02:EE05:58DB, FastEthernet2/0

OE2  3FFE:9500:3C:600::/56 [110/0]
via FE80::212:1E02:EE05:58DB, FastEthernet2/0

The first two routes are “real” OSPF routes, as opposed to redistributed ones. As with RIPng,
the next hop points toward a link-local address and an output interface, isolating OSPFv3 from
potential address instability. The [110/2] information indicates that the routes have an “adminis-
trative distance” of 110 and a metric of 2. The administrative distance is a value that determines
the preference between routing protocols. For instance, OSPF has 110 and RIP 120. So if both
OSPF and RIP supply a route toward the same destination, the OSPF route is preferred because
of the lower “distance.”

The third route is an “external type 2” route, which means that it was redistributed. Redistrib-
uted routes may also take the shape of “external type 1” routes, but only when this is configured
explicitly. There is a slight difference in the metric handling between type 1 and type 2: with type
1, the metric is updated at each router hop; with type 2, the metric set by the router that does the
redistribution stays the same throughout the network. OSPF routes are of course also included
when listing all IPv6 routes with the show ipv6 route command.

Neighbors
Because unlike RIP(ng), OSPF explicitly creates neighbor relationships with other routers, it’s
useful to list all the neighbors for a router in order to see what’s going on. This is done with the
show ipv6 ospf neighbor command, as shown in Listing 4-28.
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Listing 4-28. Displaying Active OSPFv3 Neighbors

#show ipv6 ospf neighbor        
Neighbor ID  Pri  State         Dead Time  Interface ID  Interface
192.0.2.91   128  FULL/BDR      00:00:38   3             FastEthernet2/0
192.0.2.17   128  FULL/DROTHER  00:00:35   2             FastEthernet2/0
192.0.2.19     1  FULL/DROTHER  00:00:30   8             FastEthernet2/0

Under Zebra, the command is show ipv6 ospf6 neighbor, and there can’t be any further
arguments. IOS accepts an interface name or detail as an additional argument. The neighbor
ID is the router identifier for the neighbor. “Pri” is the priority of a router. Rather than have
every router on a subnet communicate with every other router on the subnet, a “designated
router” (DR) and a “backup designated router” (BDR) are selected to coordinate the commu-
nication between OSPF routers in a subnet. The routers with the highest priority become DR
and BDR. The priority can be set by using the ipv6 ospf priority ... command for an inter-
face (ipv6 ospf6 priority ... under Zebra). Priority values range from 0 to 255, with 1 being
the default and 0 meaning that the router isn’t eligible to become a DR or BDR. Stable states
for a neighbor are FULL or 2WAY. FULL is to/from a DR or BDR, and 2WAY between two non-
DR/non-BDR routers. DR or BDR under state indicate that the router in question is the DR or
BDR, and DROTHER means it’s neither. In Listing 4-28, no DR is listed, which means that the
local router is the designated router. This also explains why the state for the DROTHER routers is
FULL rather than 2WAY. The dead time counts down the time until the neighbor is considered
“dead.” OSPF routers send out “hello” packets every 10 seconds to find new neighbors and let
existing neighbors know they’re still alive. After missing four hellos, a neighbor is considered
“dead.” So under normal circumstances, the dead time counts down from 40 seconds to 30
and then a hello is received, so it jumps back to 40 again.

■Note Hello and dead time intervals can be changed by using ipv6 ospf / ipv6 ospf6 interface mode
commands, but the values must be the same for all routers on a subnet for OSPF to work properly.

As with RIPng, the Zebra approach to configuring OSPFv3 is more traditional, with most
of the configuration commands grouped under the router ospf6 heading rather than under
an interface heading. Also, the Zebra implementation of OSPFv3 isn’t nearly as complete as
the Cisco implementation. For instance, Zebra doesn’t support external type 1 or 2 routes in
OSPFv3, even though it does in OSPFv2. Listing 4-29 enables OSPFv3 under Zebra. These
commands are for the ospf6d daemon, which lives on port 2606.

Listing 4-29. Enabling OSPFv3 Under Zebra

!
interface xl0
ipv6 ospf6 cost 10
!
router ospf6
router-id 192.0.2.18
redistribute static
interface xl0 area 0.0.0.0
!
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■Note Zebra’s ospf6d isn’t capable of learning the router ID from the zebra daemon, so the router ID
must always be set with the router-id command in the router ospf6 context.

Listing the OSPF routes in the IPv6 routing table works the same way as on a Cisco router
with show ipv6 route ospf (on the zebra daemon), and listing OSPFv3 neighbors is done with
show ipv6 ospf6 neighbor (on the ospf6d).

■Note OSPFv3 hello packets are sent to the ff02::5 multicast address. OSPF doesn’t use UDP (or TCP),
but runs directly on top of IP, using protocol number 89.

■Note Neither Cisco IOS nor Zebra implement authentication for RIPng or OSPFv3.

BGP
The Border Gateway Protocol is very different from all other current routing protocols, both in
purpose and in the way it’s configured and subsequently operates. RIP, OSPF, and IS-IS are all
Interior Gateway Protocols (IGPs), which is a fancy way of saying that they operate within a
single organization’s network. BGP, on the other hand, is an External Gateway Protocol (EGP),
and is used to communicate between networks from different organizations. BGP makes it
possible for packets to find their way from one Internet Service Provider to the next. This
means that all ISPs that are big enough to connect to two or more other ISPs run BGP. In fact,
even end users who connect to two or more ISPs and want to use the different connections
together (i.e., use the same address space over both connections) must run BGP. Doing this
allows them to dynamically reroute existing sessions over another connection and thereby
isolate themselves from most problems that may occur in the network of an upstream ISP.
This is called “multihoming.”

To keep the BGP protocol somewhat manageable, it doesn’t concern itself with individual
routers. Rather, BGP works with “autonomous systems.” What an autonomous system (AS) is
isn’t easy to define. Generally, it’s a set of routers operated by a single organization. However,
ISPs generally don’t operate their customer’s routers, but still customers are part of their ISP’s
AS, because they don’t do BGP routing themselves and therefore can’t express a “routing policy”
of their own. A routing policy determines which packets go where. With only one connection to
the Internet, a routing policy obviously doesn’t amount to much: locally generated packets are
transmitted to the ISP, and incoming packets always find their way through the same ISP. How-
ever, even very small organizations with just a single router can be an AS if they connect to two
or more ISPs and talk BGP with those ISPs.
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Listing 4-30 shows an excerpt of the IPv4 “global routing table,” which is what the full set
of BGP routing information for the entire Internet is called. (The shorter addresses make the
IPv4 information easier to look at than the equivalent IPv6 information.) 

Listing 4-30. Part of the IPv4 BGP Global Routing Table

Network        Next Hop     Metric LocPrf     Weight Path
*  4.0.0.0        62.9.194.3      40             0 646 335 i
*                 80.31.82.129    50             0 645 335 i
*>                23.248.72.89          105      0 129 335 i
*> 64.86.28.0/24  80.31.82.129    50             0 645 3047 i
*                 62.9.194.3      40             0 646 645 3047 i
*                 23.248.72.89    60             0 129 645 3047 i
*>i145.52.0.0     195.69.14.34     0    110      0 110 i
*                 62.9.194.3      40             0 646 110 i
*                 23.248.72.89    60             0 129 354 110 i 
*                 80.31.82.129    50             0 645 354 110 i

The example lists four destination prefixes or networks, each of them reachable over three
or four different paths. The next hop address is simply the address where the packets go to (the
next router). Three main “path attributes” determine which path is selected for each destina-
tion: the local preference, the AS path, and the metric, or Multi Exit Discriminator (MED). The
local preference is the “strongest” path attribute: the highest local preference always wins. This
is clear for the first and last prefixes in the listing, as indicated by the greater-than sign on the
lines that sport a local preference value. The other lines don’t have a local preference, which is
equal to having one of 100. For the middle prefix, the local preference is the same for all paths,
so the choice is determined by the AS path length. The first AS path only has two ASes in it, so
it is preferred over the other two routes which both have three ASes in the path. In cases where
the local preference and the AS path length are the same, the choice comes down to the MED
metric, for which lower is better.

Address Families
Unlike with RIP and OSPF, there isn’t a separate BGP protocol for IPv6. BGP operation for both
IPv4 and IPv6 may even overlap. And, generally, after enabling IPv6 in BGP, the IPv4 configura-
tion will look different. If you’re familiar with BGP in IPv4, you’ll expect to see a configuration
like the one in Listing 4-31.

■Note In Zebra, BGP commands go to the bgpd daemon on port 2605.
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Listing 4-31. A Simple IPv4 BGP Setup

!
router bgp 65500
no synchronization
bgp log-neighbor-changes
network 192.0.2.0
neighbor 172.16.1.242 remote-as 65500
neighbor 172.16.1.242 prefix-list outfilter out
no auto-summary
!
ip route 192.0.2.0 255.255.255.0 Null0
!
ip prefix-list outfilter seq 5 permit 192.0.2.0/24
!

This configuration sets up a BGP session toward a router with IP address 172.16.1.242 in
AS 65500. The network 192.0.2.0/24 is advertised in BGP, and the prefixlist outfilter only
allows this prefix and nothing else (by virtue of the “implicit deny” in Cisco filters) in outgoing
updates toward the peer (neighboring router). The route to the Null0 interface makes sure that
192.0.2.0/24 is in the routing table so that BGP will actually advertise it to its neighbors. The
no synchronization command avoids trouble when there are more BGP routers in the AS and
there is also an interior routing protocol active, and bgp log-neighbor-changes makes sure
that neighbors coming up and going down are logged. The no auto-summary command is a
default setting that finds its way into the configuration automatically and keeps the router
from exhibiting some very old and generally undesirable behavior. Listing 4-32 is a similar
configuration for IPv6.

Listing 4-32. A Simple IPv6 BGP Setup

!
router bgp 65500
bgp log-neighbor-changes
neighbor 3ffe:9500:3C:74::10 remote-as 64900
no neighbor 3ffe:9500:3C:74::10 activate
!
address-family ipv6
neighbor 3ffe:9500:3C:74::10 activate
neighbor 3ffe:9500:3C:74::10 prefix-list outfilter-ipv6 out
network 2001:DB8:31::/48
no synchronization
exit-address-family
!
ipv6 prefix-list outfilter-ipv6 seq 5 permit 2001:DB8:31::/48
ipv6 route 2001:DB8:31::/48 Null0
!
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The no neighbor ... activate line makes sure the IPv4 “address family” is disabled for
the IPv6 neighbor. Other than this, the IPv6 configuration is pretty much identical to the IPv4
one, except that all the IPv6 settings are stored under the address-family ipv6 heading. Don’t
forget to add a no synchronization line to the IPv6 address family, or IOS will wait for iBGP
routes (internal BGP, discussed later this chapter) to show up in the interior routing protocol,
which isn’t going to happen as redistributing BGP routes into an IGP went out of style before
the first IPv6 RFC saw the light of day. Zebra is more advanced than Cisco in this regard and
doesn’t support synchronization, so there is no need to turn it off.

Note that it’s necessary to leave the address family configuration mode explicitly by using
the exit-address-family command, which is unusual for IOS. In most cases, after adding IPv6
information to and existing BGP setup, the IPv4 part of the BGP configuration stays the same.
However, without any prior warning, the IPv4 settings may move to an address-family ipv4
heading. Because it’s almost impossible to keep this from happening by itself at some point
and there is no way back, short of removing the full BGP configuration and re-entering it, it’s
best to make this happen immediately, as shown in Listing 4-33.

Listing 4-33. The IPv4 Address Family Configuration Grouping

Cisco#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
Cisco(config)#router bgp 65500                                             
Cisco(config-router)#address-family ipv4                                     
Cisco(config-router-af)#^Z
Cisco#show running-configuration | begin router bgp
router bgp 65500
bgp log-neighbor-changes
neighbor 3ffe:9500:3C:74::10 remote-as 64900
neighbor 172.16.1.242 remote-as 65500
!
address-family ipv4
no neighbor 3ffe:9500:3C:74::10 activate
neighbor 172.16.1.242 activate
neighbor 172.16.1.242 prefix-list outfilter out
no auto-summary
no synchronization
network 192.0.2.0
exit-address-family
!

The router will continue to accept old-style IPv4 BGP configuration commands without
problems. Zebra works the same, except that it sticks with a hybrid configuration that shows
an old-style IPv4 BGP configuration (no address-family heading for IPv4) and new-style IPv6
BGP configuration (address-family heading for IPv6) longer.

In most cases, IOS add an extra line to the configuration that explicitly disables the IPv4
address family for a neighbor with an IPv6 address. However, sometimes an IPv6 neighbor
may inadvertently have the IPv4 address family enabled, with puzzling results: IPv4 routes
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from the neighbor show up, but they aren’t usable because of nonsensical next hop addresses.
This can happen because with the introduction of the multiprotocol extensions in RFC 2858,
BGP can exchange routing information for a great number of “address families.”3 BGP runs over
TCP, and TCP generally runs over IPv4 or IPv6. So it’s possible to exchange IPv6 routing infor-
mation over an IPv4 TCP session, or the other way around. In theory, exchanging IPv4 routing
information over an IPv6 TCP session isn’t a problem, but in practice, it is. When exchanging
IPv4 routes over an IPv4 session or IPv6 routes over an IPv6 session, the BGP router knows
which next hop address it should include in the BGP updates: usually, the local address for the
BGP TCP session. But when it has to transmit IPv4 routes over an IPv6 BGP TCP session (or the
other way around), determining which next hop address it should include suddenly becomes a
problem, because it doesn’t know which of the local addresses share a subnet with the other
router. For this reason and because of easier debugging, it’s common practice to set up an IPv4
TCP session to exchange IPv4 routing information and a separate IPv6 TCP session to exchange
IPv6 routing information between routers in different autonomous systems (in other words,
when using external BGP or eBGP).

iBGP
However, for iBGP (internal BGP between the routers in the same AS), having one session for
both is often beneficial. Unlike with eBGP (toward a router in another AS), in iBGP the next hop
address isn’t changed: it’s communicated to the other routers within the AS as-is. As a result,
there is no issue with exchanging IPv6 routes over an IPv4 TCP session for iBGP, so reusing the
existing IPv4 session for this makes a lot of sense. Listing 4-34 does this, and more.

Listing 4-34. IPv6 iBGP Routes over an IPv4 TCP Session

!
router bgp 65500
neighbor rrclients peer-group
neighbor rrclients remote-as 65500
neighbor 172.16.1.5 peer-group rrclients
!
address-family ipv4
neighbor rrclients activate
neighbor rrclients route-reflector-client
neighbor 172.16.1.5 peer-group rrclients
no synchronization
network 192.0.2.0
exit-address-family
!
address-family ipv6
neighbor rrclients activate
neighbor rrclients route-reflector-client
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neighbor 172.16.1.5 peer-group rrclients
neighbor 172.16.1.5 activate
network 2001:DB8:31::/48
no synchronization
exit-address-family
!

The neighbor 172.16.1.5 activate line shouldn’t be necessary, as the peer group is already
activated for IPv6 (although that doesn’t initially happen when entering the neighbor rrclients
activate line, but only when entering the next one). Still, what should happen and what does
happen aren’t always the same in these cases, and explicitly activating the neighbor doesn’t do
any harm in cases where it isn’t needed.

The example defines a peer group named rrclients. Peer groups are an easy way to con-
figure several peers with the same settings: every peer that is assigned to the group inherits all
the settings. Additionally, peer groups make BGP processing more efficient because the router
can generate a single update message and send it to all members of the group, rather than
generate a separate update message for each individual neighbor. In this case, two settings are
defined for rrclients: the AS number 65500 and the route-reflector-client setting. Because
65500 is the local AS number, all sessions toward BGP neighbors that have this AS number are
iBGP sessions. Route reflection is a mechanism to make iBGP more scalable. Without it, every
BGP router in the AS is required to have a BGP session with every other BGP router in the AS.
With route reflection in effect, certain routers (the route reflectors) pass iBGP information on
from one router to the next, which isn’t allowed normally. The interesting part in this example
is that the route-reflection-client setting is address family specific. So a router may be a
route reflector client in IPv4 but not in IPv6, or the other way around. Obviously, such a setup
is asking for trouble, so in this case, 172.16.1.5 is a reflector client for both protocols. (And by
turning another router into a client, the local router automatically becomes a reflector for that
client. The client itself gets no say in the matter.) Exchanging IPv6 routes over an IPv4 BGP
TCP session results in routes such as the one in Listing 4-35.

Listing 4-35. An iBGP Route

bgpd-t# show bgp ipv6 2001:db8:31::/48
BGP routing table entry for 2001:db8:31::/48
Paths: (1 available, best #1, table Default-IP-Routing-Table)
Not advertised to any peer
65200
3ffe:9500:3C:74::10 from 172.16.1.6 (10.0.0.10)
Origin IGP, metric 0, localpref 100, valid, internal, best
Last update: Tue Feb 15 00:02:42 2005

For some strange reason, the equivalents of the IPv4 show ip bgp ... commands aren’t
show ipv6 bgp ..., but simply show bgp .... Zebra accepts the command show bgp <prefix>
for displaying BGP routing information, but Cisco wants this to be show bgp ipv6 <prefix>,
which also works under Zebra. The commands for showing a BGP summary and showing the
full BGP table are show bgp summary and show bgp, respectively. The commands show ip bgp
neighbors and show bgp neighbors both show all neighbors on Zebra: the IPv4 ones as well as
the IPv6 ones.
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Anyway, the most interesting part in Listing 4-35 is the line that lists the next hop address
(3ffe:9500:3C:74::10), the neighbor address for the TCP session (172.16.1.6) and finally the
router identifier for the neighbor (10.0.0.10). Note that as in IPv4, it’s necessary to run an
internal routing protocol that propagates the next hop addresses throughout the network, or
the BGP routers won’t be able to forward packets according to iBGP routes. Running OSPFv3
and redistributing connected routes accomplishes this quite nicely. Running OSPFv2 and
redistributing connected routes is also useful to allow the routers to find each other’s IPv4
addresses so that the iBGP TCP sessions can be established.

■Note An address family is only activated for a BGP session when it’s configured on the routers on both
ends. Use the show ip bgp neighbor ... command to see the capabilities that the local router adver-
tises to its neighbor and that the neighbor advertises to the local router.

Global and Link-Local Next Hop Addresses
Although this isn’t apparent when looking at the BGP routing table, multiprotocol BGP actually
employs two next hop addresses: a global scope address, which functions just as the IPv4 next
hop address, and a link-local next hop address. The reason for this has to do with ICMP redi-
rects, which are used to avoid unnecessary router hops. When a router receives a packet on an
interface, and this packet is forwarded out of the same interface, either to its destination or to
another router, the source could just as easily have sent this packet directly to the destination or
router in question, as it’s on the same subnet. The redirect message is used to tell the source
about this so that subsequent packets skip the unnecessary hop. Because the IPv6 standards
require ICMP messages to point to the link-local address of the next hop router, all routing pro-
tocols must exchange link-local addresses. (When the redirect points to the ultimate destination
of the packet, it contains the destination address and not a link-local address.) This explains why
routes have different next hop addresses in the BGP table than in the IPv6 routing table, as
shown in Listing 4-36.

Listing 4-36. Next Hop Addresses in the BGP and IPv6 Routing Tables

Cisco#show bgp 
BGP table version is 3, local router ID is 10.0.0.10

Network          Next Hop            Metric LocPrf Weight Path
*> 2001:DB8:31::/48 3ffe:9500:3C:74::10

0             0 9000 i
Cisco#show ipv6 route
IPv6 Routing Table - 17 entries
B   2001:DB8:31::/48 [20/0]

via FE80::20A:95FF:FECD:987A, Ethernet0

If desired, the global and/or link-local next hop addresses can be changed in a route map,
as shown in Listing 4-37.
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Listing 4-37. Changing Global and Link-Local Next Hop Addresses

!
router bgp 65500
neighbor 3ffe:9500:3C:74::10 remote-as 65200
!
address-family ipv6
neighbor 3ffe:9500:3C:74::10 route-map setnexthop in
exit-address-family
!
route-map setnexthop permit 10
set ipv6 next-hop 2001:DB8:31:2::1 FE80::290:6902:EE02:E43E
!

The set ipv6 next-hop line in the route map first sets a global IPv6 address, followed by a
link-local address. Although this configuration apparently sets both the global and link-local
next hop addresses, it seems that only the global address is affected when the route map is
applied to incoming BGP updates, as in the listing. When applying the route map to outbound
BGP updates, the link-local address is also changed. Zebra takes a slightly different syntax for
this, as shown in Listing 4-38.

Listing 4-38. Changing Next Hop Addresses Under Zebra

!
route-map setnexthop permit 10
set ipv6 next-hop local fe80::290:6902:ee02:e43e
set ipv6 next-hop global 2001:db8:31:2::1
!

Interdomain Routing Guidelines
Around the beginning of 2005, the IPv4 global routing table reached a size of 150,000 prefixes,
even though there were fewer than 20,000 active ASes. (For IPv6, the numbers were 700 and
500, respectively, at that time.) During the past 15 years, there were several times that router
hardware could only barely keep up with the growth of the global routing table. The reason for
this state of affairs is manifold, with factors being:

• Lax ISP behavior: not bothering to aggregate several adjacent address blocks into one
large one.

• Multihoming: end-user organizations wanting to connect to more than one ISP.

• Traffic engineering: advertising different routes with different properties makes it eas-
ier to influence the way traffic flows.

• IPv4 address conservation: Regional Internet Registries are frugal with IPv4 addresses,
so people have to come back for more and end up with several nonadjacent small
blocks.

The main approach to avoid these problems in IPv6 was to give out very large address
blocks to ISPs in order to avoid fragmenting their IPv6 BGP announcements. So while a small
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ISP may receive between a /21 and a /19 initially in IPv4, all ISPs get a /32 in IPv6. Even though
an end-user gets a /48, no questions asked, in IPv6, a /32 serves some 65,000 customers. A /19
in IPv4 on the other hand, is enough to supply no more than some 8000 customers with just a
single IPv4 address. Really large ISPs can even get initial IPv6 blocks that are bigger than a /32.

Unfortunately, there is no easy way to limit the number of prefixes in the global routing
table due to multihoming. The IETF is currently working on ways to achieve multihoming
benefits without the need to run BGP and inject a prefix into the global routing table, but it’s
slow going. In the mean time, there are no provisions for multihoming in IPv6. Only ISPs that
plan on giving out IPv6 address space to at least 200 customers in two years and operators of
critical Internet resources (think root nameservers) can obtain independent IPv6 address
blocks. (See Chapters 2 and 11 for more details on obtaining address space.) Everyone else has
to obtain addresses from their ISP and renumber when changing ISPs. However, there is con-
siderable pressure to allow provider-independent (PI) address space in IPv6 so that end users
can multihome and/or move from ISP to ISP while taking their address space with them.

A practical issue is how to filter. In IPv4, address blocks that are smaller than a /24 are fil-
tered out routinely. So someone who wants to multihome or announce a prefix for some other
reason, must at least obtain a /24. This requires fairly extensive documentation of a real-world
need for so many addresses, which is a significant hurdle. In IPv6, on the other hand, anyone
can get a /48, so if those aren’t filtered out, the IPv6 global routing table will most likely become
very large, much larger than the IPv4 table. A solution to this would be to give out address blocks
that are larger than a /48 to people who want to multihome and/or want PI address space. How-
ever, then the question becomes: who deserves such a bigger block, and who doesn’t?

If you would like to filter out /48s, be careful that several Regional Internet Registries (RIRs)
give out /48 blocks to Internet exchanges so the routers of the IX members can interconnect by
using independent address space. These prefixes can be filtered out without problems because
they’re only relevant to networks that connect to those Internet exchanges. However, ARIN, the
American Registry for Internet Numbers, also gives out /48 for “critical Internet infrastructure,”
as explained on http://www.arin.net/reference/micro_allocations.html. These micro alloca-
tions currently come from the 2001:500::/30 block. Listing 4-39 implements a prefix length
filter that takes micro allocations into consideration.

Listing 4-39. Sanitizing the IPv6 Global Routing Table

!
router bgp 65500
neighbor 3ffe:9500:3C:74::10 remote-as 65200
!
address-family ipv6
neighbor 3ffe:9500:3C:74::10 maximum-prefix 2500 80
neighbor 3ffe:9500:3C:74::10 prefix-list sanitize in
exit-address-family
!
ipv6 prefix-list sanitize seq 5 permit 2001:500::/30 le 48
ipv6 prefix-list sanitize seq 10 permit 2002::/16
ipv6 prefix-list sanitize seq 15 permit 2000::/3 le 32
ipv6 prefix-list sanitize seq 20 deny ::/0 le 128
!
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The first line in the prefix list allows prefixes of 48 bits and shorter from the ARIN micro allo-
cation block. The second line allows the 6to4 block. More specific prefixes from this block aren’t
supposed to leak into the global routing table, because this would import the entire IPv4 table
into the IPv6 one. The third line permits prefixes of 32 bits and shorter in the address space cur-
rently set aside for global unicast use. In the beginning, ISPs received /35 address blocks, and
some of them still announce this block, although those blocks have been upgraded to /32s that
encompass the /35s. The filter removes these /35s. Implementations are supposed to treat all
other address space, except that which has explicitly been given a different purpose, as global
unicast space. However, it’s unlikely that address space from outside 2000::/3 is legitimately
going to find its way into the IPv6 BGP table any time soon. The last line filters out all prefixes of
128 bits or shorter in the entire IPv6 address space or, in one word: everything. The customary
implicit deny at the end of any filter does the same, though.

■Warning New address space is put into use all the time. By the time you read this, the filters in the
example may be out of date and filter out legitimate prefixes! Whenever you implement filters like this, you
must check on a regular basis, like once a month, whether the filter is still valid. If you are unsure whether
you can keep the filter up to date, please don’t install them, as obtaining previously unused address space
and not being able to use it because it’s filtered all over the Net causes a lot of grief.

The IANA keeps a list of address space it has allocated to the Regional Internet Registries at http://
www.iana.org/assignments/ipv6-unicast-address-assignments, and the RIRs keep full records of
all allocations and assignments on their FTP servers.

The maximum-prefix line instructs the router to disable the BGP session when the number
of IPv6 routes learned from the peer reaches 2500. A warning is logged when the number of pre-
fixes increases beyond 80 percent of 2500. Although a maximum prefixes setting doesn’t stop
bad routing information from coming in, it does stop too much routing information from com-
ing in. A sudden increase in the number of routes that a BGP neighbor sends is nearly always
due to some problem, such as a neighboring AS leaking routes from an internal routing protocol
into BGP.

It’s possible to make this filter much stricter, for instance by only allowing the specific /16
blocks that are currently in use. However, there is little additional benefit in doing so, as some-
one who wants to inject malicious routes can easily do so in (for instance) the 2001::/16 block.
Or an attacker could inject 250,000 /48s within 2001:500::/30 into BGP to make the router run
out of memory, if there is no maximum-prefix setting in effect. A different approach to filtering is
to generate filters that allow only known good routes from information in the routing registries.
However, the required Routing Protocol Specification Language (RPSL) extensions were a long
time in coming, and it’s safe to assume that it will take some time before the routing registries
are a good reflection of the IPv6 BGP routing that’s going on in the real world.

The BGP TCP MD5 option that can be used to authenticate the TCP communication
between BGP routers should be available in IPv6 the same way as it’s available in IPv4. How-
ever, most Zebra routers don’t support the option because it operates on the TCP level, which
is inaccessible to the routing daemons. Kernel patches may be available, though. Some older
IOS versions may also have trouble computing the MD5 hash correctly because the imple-
mentation of the option makes assumptions that are incorrect with IPv6.
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Avoiding Tunnels
For a long time, running IPv6 meant connecting to the 6bone over a tunnel. As a matter of
routine, everyone provided access to everyone else over such tunnels. These days, more and
more networks support native IPv6, and the ones that don’t generally have their tunneling
aligned fairly closely with the IPv4 infrastructure, so as a rule, long distance tunnels between
different organizations aren’t necessary anymore. However, some of these tunnels remain in
operation, and some networks still give away “free transit” by allowing traffic between two
remote networks to pass through their network. This is unfortunate, because it’s not uncom-
mon for a long distance tunnel to be preferred over several native or short-range tunnel hops
by routing protocols. BGP is especially bad in this area, because it mostly looks at the number
of AS hops between a source and destination.

In practice, this means that sometimes two ISPs (most end-users don’t get to do BGP)
have a “shorter” tunneled path between them, as seen by BGP. In Figure 4-5, the native path
from ISP1 to ISP4 has two additional hops, while the tunneled path over the remote ISP5 has
only one intermediate hop. It’s not unheard of for IPv6 packets between two places in Europe
to be tunneled to Japan and back in situations like this.

One way to avoid these problems is simply to not peer (exchange traffic) with these net-
works. However, if your upstream ISP does peer with them, you may still experience some of
the adverse effects. Alternatively, you can use a BGP policy to assign a lower preference to net-
works that “over-tunnel.” This is what Listing 4-40 does.
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Listing 4-40. Lowering the Preference for Tunneled Destinations

!
router bgp 65500
neighbor 2001:7f8:1::a506:3000:1 remote-as 64900
neighbor 3ffe:9500:3C:74::10 remote-as 65200
!
address-family ipv6
neighbor 2001:7f8:1::a506:3000:1 activate
neighbor 2001:7f8:1::a506:3000:1 route-map punish-tun in
neighbor 3ffe:9500:3C:74::10 activate
neighbor 3ffe:9500:3C:74::10 route-map punish-tun in
neighbor 3ffe:9500:3C:74::10 route-map prepend2 out
!
ip as-path access-list 66 permit _64512_
ip as-path access-list 66 permit _64999_
!
route-map punish-tun permit 10
match as-path 66
set local-preference 66
!
route-map punish-tun permit 20
!
route-map prepend2 permit 10
set as-path prepend 65500 65500
!

The configuration in the example has two neighbors. Both have the IPv6 address family
activated, and for both, the route map punish-tun is applied to incoming BGP updates. This
route map, listed near the end of the example, first passes all updates through the AS path fil-
ter 66, which matches any BGP route with AS 64512 or 64999 in the AS path. These are the AS
numbers for networks that do too much tunneling. Then, if there was a match, the set clause
of the route map comes into effect, and the local preference for the matching route is set to 66.
Because all other routes have an empty local preference value, which equals 100, these routes
are now only used if there is no alternative. All BGP updates that didn’t match AS path access
lists 66 end up at the route-map punish-tun permit 20 line, which doesn’t implement any
match or set conditions, so the routes that end up there are simply accepted into the BGP
table without further changes.

Looking at Figure 4-5, we can imagine that ISP5 would be affected by this route map so
that the route from ISP1 to ISP4 over ISP5 will have a local preference of 66, while the route
over ISPs 2 and 3 has a default local preference. Because a higher local preference trumps a
shorter AS path, packets from ISP1 now flow to ISP4 through ISP2 and ISP3.

ISP4 would have to implement a similar policy for packets to avoid the tunnels on the trip
back. Just in case ISP4 doesn’t do this, Listing 4-40 also applies the route map prepend2 on out-
going updates toward AS 65200, which is presumably a tunnel-happy AS. The prepend2 route
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map adds the local AS number 65500 two extra times to the AS path on outgoing updates. This
makes paths through AS 65200 artificially longer, making it less likely to “attract” traffic at the
expense of native connectivity.

■Note BGP uses TCP port 179.

OSPFv3 and BGP for IPv6 on Juniper
So far, the only type of routers (except the one that you build yourself based on UNIX) we’ve dis-
cussed is Cisco. Cisco has a lot of advantages: it makes a lot of fine products, ranging from very
small to very big. As a rule, you can learn your way around on a small model and then leverage
what you’ve learned on a larger model. And even though the configuration statements are quaint
at times, they’re not too hard to follow. All this is very different with Juniper: its smallest models
are medium-to-high range, and although its configuration mechanism has a lot going for it, it’s
hard to understand at first. This made me hesitant to explain IPv6 on Juniper. On the other hand,
Juniper implements IPv6 very well, and, more importantly, fast. The Application Specific Inte-
grated Circuit (ASIC) that powers Juniper routers fully supports IPv6, so IPv6 isn’t a second-class
citizen in Juniper-land.

■Note Because of its additional complexity, it’s impossible to even scratch the surface of the Juniper con-
figuration syntax. You must be able to configure a Juniper router for IPv4 in order to understand the following
listings.

Listing 4-41 shows the first part of a Juniper configuration where interface characteristics
are defined.

Listing 4-41. The “Interfaces” Part of a Juniper Configuration

interfaces {
ge-0/0/0 {

vlan-tagging;
unit 288 {

vlan-id 288;
family inet6 {

address 2001:db8:31:288::/64 {
eui-64;

}
}

}
}               

}
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All this is business as usual, except that there is an “inet6” address family, which accepts
an IPv6 address with the eui-64 keyword that indicates that the bottom 64 bits in the address
should be copied from a MAC address. Listing 4-42 contains the routing options.

Listing 4-42. The “Routing-options” Part of a Juniper Configuration

routing-options {
rib inet6.0 {

static {
route 2001:db8:31::/48 {

discard;
install;
readvertise;

}
route 2001:db8:31:3000::/52 {

next-hop 2001:db8:31:3::2;
install;

}
}

}
router-id 192.0.2.7;
autonomous-system 65500;

}

The rib inet6.0 on the second line is the standard IPv6 Routing Information Base, so this
is where static IPv6 routes normally go. In this case, there is a static route for 2001:db8:31::/48
that discards all packets that it catches (similar to a route to the null0 interface on a Cisco
router) and is readvertised into routing protocols. The second static route is for a large chunk
of the /48 (a /52) and points to an address to which matching packets should be forwarded.
Last but not least, there is a router ID, and the BGP AS number is defined. Listing 4-43 shows
the “protocols” part of the configuration.

Listing 4-43. The “Protocols” Part of a Juniper Configuration

protocols {
bgp {

group ibgp {
type internal;
local-address 192.0.2.7;
family inet {

unicast;
}
family inet6 {

unicast;
}
peer-as 65500;
neighbor 192.0.2.18;

}           
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group bgp-v6 {
type external;
import bgp-v6-in;
family inet6 {

unicast;
}
export bgp-v6-out;
neighbor 2001:7f8:1::a506:3000:1 {

authentication-key "$9$5Fdsikekasi/97dj"; ## SECRET-DATA
peer-as 64900;

}
}

ospf3 {
export redist-ospf3;
area 0.0.0.0 {

interface lo0.0;
interface ge-0/2/0.288;

}
}

}

Under the BGP protocol, there are two groups, with a single neighbor each. The first group
holds an iBGP neighbor with an IPv4 address, with both the inet and inet6 address families
enabled, so routing information for both IPv4 and IPv6 will be exchanged with this neighbor.
The bgp-v6 group holds an external neighbor that we talk to over IPv6. Unlike the iBGP neigh-
bor, routing information to and from this one is filtered by using the bgp-v6-in and bgp-v6-out
filters. The authentication-key holds the secret key for BGP TCP MD5 authentication. The
router encrypts the key after it’s entered for the first time to ward off “over the shoulder attacks,”
where someone reads the secret key from the screen.

The OSPFv3 configuration is exactly the same as an OSPFv2 configuration, save for the
extra “3” and that any filters must work on IPv6 prefixes rather than IPv4 ones. Last but not
least, Listing 4-44 contains the filters or “policy-options.”

Listing 4-44. The “Policy-options” Part of a Juniper Configuration

policy-options {
policy-statement import-v6 {

term 1 {
from {

route-filter 2001:16F8::/32 orlonger;
}
then accept;

}
then reject;

}
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policy-statement bgp-v6-in {
term 1 {

from policy import-v6;
then reject;

}
then {

local-preference 300;
accept;

}
}
policy-statement bgp-v6-out {

term 1 {
from {

route-filter 2001:db8:31:/48 exact;
}
then accept;

}
then reject;

}
policy-statement redist-ospf3 {

term connected {
from protocol direct;
then accept;

}
term static {

from protocol static;
then accept;

}
}

}

The first filter, import-v6, allows the local prefix 2001:db8:31::/48 or longer prefixes within
this /48. However, this filter isn’t used directly. Rather, it’s called by the next one, bgp-v6-in. This
filter rejects all packets that match 2001:db8:31::/48 or longer through import-v6 and then goes
on to accept all other routes for further processing, assigning them a local preference value of
300 in the process. In this small example, the indirection through import-v6 doesn’t make much
sense, but in a real-world configuration, it does, because different BGP neighbors or groups are
likely to have different filters, and having the same address range (or worse, ranges) in different
filters doesn’t make for easy configuration management.

The bgp-v6-out filter, on the other hand, isn’t set up for future scalability and matches the
local prefix directly. Unlike the incoming filter, which rejects our own prefix and any longer
prefixes falling inside it, this one matches only the /48 and nothing else in order to avoid leak-
ing more specifics.

The redist-ospf3 filter makes sure that IPv6 connected and static routes show up in
OSPFv3.
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Site-Local Addresses
In IPv4, it’s common to use RFC 1918 private address ranges (10.0.0.0/8, 172.16.0.0/12, and
192.168.0.0/16) for internal communication. The idea was to take private addresses to the
next level in IPv6 by introducing the “scope” mechanism. We’ve already discussed addresses
with link-local scope. Because those are only valid on an individual subnet, they can be
reused on other subnets without real problems. Site-local addresses are supposed to work in
a similar vein: they are only used within an individual “site” so that other sites can reuse the
same address range. But can router vendors make that a router that connects to two different
sites, manages to keep packets from site A in site A, and packets from site B in site B, even
though both sites use the same addresses? This would require hacks such as using different
routing tables, depending on the interface a packet was received on. For link-local addresses,
this isn’t a problem, because packets with those addresses are never forwarded by a router:
they flow directly from the source to the destination over the local link; so there is never any
real ambiguity. Experience with RFC 1918 addresses has also uncovered other problems, such
as packets with private addresses leaking into the global network, where they can’t be traced
back to the source (to fix the leak) because of their ambiguity. And, when two large organiza-
tions that both use private addresses merge, their addresses plans often clash, requiring
inconvenient renumbering efforts.

Then there is the problem that the word “site” is ill defined: does it mean the entire net-
work for an organization, possibly spanning multiple locations? The network for the part of
an organization in one location? The “inside” network, the DMZ, or both? What happens
when direct connectivity between two parts of a “site” breaks so packets have to travel off-
site to reach the other part? A narrow interpretation of the word “site” doesn’t provide the
functionality that users require, while a broad interpretation leads to all kinds of implemen-
tation issues.

For all of these reasons, the IETF decided to deprecate the existing site-local specification in
RFC 3879. Existing implementations and deployments may continue to use site-local addresses
in the address range fec0::/10, but the special behavior associated with site-locals should be
removed in future versions of router and host implementations.

Despite problems outlined in this section, site-local addressing has a number of legitimate
uses that aren’t easily transferred to other types of addresses. Two examples are networks that
aren’t connected to the Internet at all and networks that have only intermittent connectivity.
For instance, an airplane would very likely connect to a network when it’s at the terminal so
that maintenance personnel can connect to the various on-board systems. When the plane is in
the air, it will generally not have connectivity for these types of systems (even though there are
some carriers that provide Internet connectivity to passengers during the flight).

To accommodate these needs, the IETF is in the process of defining a new type of site-
local addresses: “unique local IPv6 unicast addresses.” The idea is that this address type is still
local, but it’s also globally unique. This means that routers, hosts, and applications can treat
them like regular global scope addresses.

Figure 4-6 shows the format of these addresses. The prefix is fc00::/7. The local bit indi-
cates whether the global ID was randomly generated (L = 1) or registered through a registry
(L = 0), which may be possible in the future. The 40-bit global ID is large enough to make acci-
dental collisions rate, but they may still happen on occasion. A collision is the situation where
two organizations pick the same unique local prefix.
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In IPv4, it’s common practice that all hosts have private addresses that are translated into
global addresses at the network border. Due to lack of NAT, this setup is hard to implement in
IPv6: the alternative is to use proxies, but these aren’t available for all protocols. An alternative
is to give all hosts both private/local and public/global addresses. But unless hosts implement
advanced source address selection (see Chapter 8), they may try to connect to a global desti-
nation address by using a local source address, which won’t work. To avoid the reverse, where
a host tries to contact a far away server by its local address, it’s recommended to keep these
addresses out of the DNS (they shouldn’t appear in either AAAA or PTR records). Because, obvi-
ously, using the addresses means having them in the DNS, this effectively means the IETF is
mandating the practice of “two-faced DNS,” where a DNS server gives a different reply based
on the address of the host performing the query.
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The DNS

“The author of the Iliad is either Homer or, if not Homer, somebody else of the same

name.”
—Aldous Huxley

For us humans, it’s difficult and not very pleasant to work with IP addresses, especially with
IPv6 addresses. Fortunately, the Domain Name System (DNS) allows us to work with much more
user-friendly symbolic names most of the time.1 Because the DNS translates from names to IP
addresses for us (and the other way around), the DNS itself needs to be updated to support IPv6.
Due to its distributed nature, making the Domain Name System IPv6-aware is much more com-
plex than upgrading a single application. Later in this chapter, we’ll look at the Berkeley Internet
Name Domain (BIND) DNS server software, but before that, I’ll provide a refresher on how the
DNS works and the changes that were necessary (and the changes that were not so necessary)
for IPv6. Figure 5-1 shows the interaction between different parts of the Domain Name System.
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Figure 5-1. Looking up information in the Domain Name System

1. DNS and BIND, by Paul Albitz and Cricket Liu (O’Reilly & Associates), is an excellent guide to the
subject. Unfortunately, the fourth edition was published in 2001, so it is outdated on the subject of
IPv6 in the DNS.



When an application wants to communicate over the network, it takes the full name of
the destination, such as www.example.com (this is often called the “fully qualified domain
name,” or FQDN),2 and finds the matching IP address in the DNS. The application does this
by calling on the resolver library. This is step 1 in Figure 5-1. The resolver library knows
enough about the DNS protocol to be able to send a request for the required information to
a “caching” or “recursive” DNS server using the DNS protocol (step 2). If the caching server
just started and hasn’t had the chance yet to live up to its name by caching the answers to
previous requests in its memory, it will have no idea where to find the requested informa-
tion. So it contacts one of the root DNS servers (step 3). The root servers don’t know the
address for www.example.com either, but they do have pointers to the DNS servers responsi-
ble for all “top-level domains” (TLDs), such as .com, so in step 4, the root server sends back
pointers to the .com TLD nameservers. Information received from remote nameservers such
as this is kept in the local cache if it was received from a server that’s part of the authorita-
tive delegation chain. The caching nameserver proceeds to contact one of the .com TLD
servers and repeats the question about the address that goes with www.example.com in step 5.
Like the root server, the TLD server doesn’t know the answer, but it supplies pointers to the
nameservers that are responsible for the example.com domain name in step 6. In step 7, the
caching server once again asks for the address information for www.example.com, and this
time the answer finally contains the requested information (step 8). The caching server can
now send back a response to the resolver library in step 9, which in turn relays the informa-
tion to the application (step 10). The application now has the information it needs to (for
instance) set up a TCP connection to www.example.com.

Representing IPv6 Information in the DNS
Ignoring caching for a moment, every DNS request involves the root nameservers, TLD servers
and the destination’s nameserver, and often nameservers from the initiator’s and/or destina-
tion’s ISPs. Requiring all those nameservers to be upgraded to support IPv6 in order to be able
to look up IPv6 addresses in the DNS would make it almost impossible to deploy IPv6. Fortu-
nately, this isn’t necessary. In 1995, RFC 1886 described a very straightforward way to publish
IPv6 information in the DNS that provided an easy upgrade path. However, in 2000, a more
ambitious way to do the same was published in RFC 2874. This new mechanism was partially
implemented, but more detailed analysis and practical experience showed that it was perhaps
a bit too ambitious, so around 2001, the IETF started moving away from the new method, and
in 2003, RFC 1886 was reinstated for the most part but with one small, yet important change
(RFC 3596).

■Note All implementations of IPv6 reverse DNS lookups from before 2000 and many from before 2003 are
outdated and may not work. If they work, they may not continue to do so for much longer.

CHAPTER 5 ■ THE DNS100

2. Purists always type a period at the end of an FQDN, to indicate that it’s an FQDN. This stops the
resolver from thinking it needs to stick the local domain name to the end. In the example.com net-
work, www.kame.net may mean www.kame.net.example.com or www.kame.net, but www.kame.net. is
always www.kame.net.



RFC 1886: AAAA and ip6.int
In IPv4, addresses are stored in A (address) records, and the reverse mapping is done by creat-
ing a special domain name that consists of the values of the individual bytes in the address in
reverse order, followed by in-addr.arpa. Looking up such a domain name results in a PTR
(pointer) record containing the domain name associated with the address in question. See
Listing 5-1.

Listing 5-1. An IPv4 Address in the DNS

www.example.com.         IN A   192.0.2.17
17.2.0.192.in-addr.arpa. IN PTR www.example.com.

As we’ll see later in this chapter, these lines don’t appear together in the DNS zone files.3 The
names end in a dot to indicate they are absolute addresses (FQDNs), so no additional domain
names should be added. RFC 1886 sticks very close to the IPv4 way of doing things, as outlined in
RFC 1035. IPv6 addresses are stored in AAAA (“quad A”) records. The reverse mapping is done by
taking the hexadecimal digits of the IPv6 address (all of them, including zeros that would nor-
mally be left out) in reverse order and adding ip6.int, as in Listing 5-2. When RFC was published
in the mid-1990s, the .int level domain was the “infrastructure TLD” of choice, probably because
at the time, it was the only truly international TLD; .com, .edu, .gov, .mil, .net, and .org were all
still considered US-only, and .arpa was a relic from the by-then defunct ARPANET.  

Listing 5-2. An IPv6 Address in the DNS According to RFC 1886

www.example.com. IN AAAA 2001:db8:1bff:c001::390
0.9.3.0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.c.f.f.b.1.8.b.d.0.1.0.0.2.ip6.int. IN PTR ➥

www.example.com.

RFC 2874: A6, DNAME Bitlabels, and ip6.arpa

■Note These mechanisms aren’t in use on the Internet at present, so skipping this section is of little con-
sequence.

By the turn of the millennium, basic IPv6 features were well established, so the IETF’s attention
focused on more subtle issues and on problems that IPv6 didn’t solve. The biggest problem that
IPv6 doesn’t solve is routing, as we saw in Chapter 4. One thing would make the routing situa-
tion much better: rapid renumbering. If renumbering were trivial, people would be more likely
to use address space that can be aggregated by ISPs so the routing tables stay smaller.
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3. A “zone” is a “the complete database for a particular ‘pruned’ subtree of the domain space” (RFC
1035). A zone file contains all the DNS records for a domain and any subdomains that aren’t dele-
gated to another zone.



The A6 Name-to-Address Mapping
The RFC 2874 approach to renumbering is as follows. Suppose you ask someone for his work
phone number, and the answer is “1-512-555-5501.” This would enable you to call your friend, as
long as nothing changes. Would the answer have been “extension 501 at IBM Research in Austin,
Texas,” you’d still be able to call (with a little extra effort), even if the actual number didn’t work
anymore, for instance, because the Austin area code changed. The RFC 1886 AAAA method is sim-
ilar to simply giving out the requested number. RFC 2874 is more like providing a path through
the addressing hierarchy, not unlike giving out a phone number by providing an extension,
organization, and city. Listing 5-3 shows what an A6 hierarchy looks like in the DNS.

Listing 5-3. A6 Records in the DNS

www         IN  A6  64  ::0000:0000:0000:0390  subnet-a
subnet-a     IN  A6  48  0000:0000:0000:c001::  prefix-isp1
subnet-a     IN  A6  48  0000:0000:0000:c001::  prefix-isp2
prefix-isp1  IN  A6  0   2001:0db8:1bff::
prefix-isp2  IN  A6  0   3ffe:9500:003c::

Unlike the previous examples, all domain names in Listing 5-3 are relative. Assuming they’re
in the example.com zone file, the nameserver will add .example.com after each name. Every A6
record provides part of the address and a pointer to where the rest of the address can be found.
The first A6 record (the one for www) leaves 64 bits blank to be defined later and continues to pro-
vide the IPv6 address ::390 to fill in the 128 – 64 = 64 bits that it does specify. The address bits
specified in the A6 record at hand are copied from their respective place in the listed address. The
part of the address that isn’t specified here must be set to zero in the address provided in the zone
file. The name following the IPv6 address-like value in the A6 record points to the place in the DNS
hierarchy where the rest of the address can be found; in this case, under the name subnet-a. And
indeed, under subnet-a is another A6 record or, rather, two of them. They both set the bits
between 48 and 64 to c001 (the rest of the bits is zero) and point to prefix-isp1 and prefix-isp2,
respectively, for the rest of the address. Under these names, the remaining bits from 0 to 48 are
provided, and a pointer to elsewhere isn’t needed, as the address is now complete. Because
subnet-a has two pointers for the upper 48 bits, the whole procedure results in two complete
addresses: 2001:db8:1bff:c001::390 and 3ffe:9500:3c:c001::390.

With A6 records, updating the DNS when there is a renumbering event is a breeze: rather
than having to change all addresses in all domains for a site, only a single A6 record has to be
changed. For instance, if the 3ffe:9500:3c::/48 prefix in Listing 5-1 were to be changed to
2007:4580:73::/48, this would only require an update of the prefix-isp2 record, an all A6
records that point to it automatically reflect the new information.

The Bitlabel and DNAME Address-to-Name Mapping
In addition to the A6 method for forward mapping, RFC 2874 also specifies a new way to do
the reverse mapping from address to name. It uses two mechanisms that were defined in RFCs
2672 and 2673, respectively: DNAME and bitlabels. The DNAME record is somewhat similar to the
CNAME record. But rather than providing an alias for a single name, like CNAME does, DNAME can
provide an alias for an entire branch in the DNS tree: a domain or subdomain. Listing 5-4
shows DNAME in action.
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Listing 5-4. The DNAME Record

research.example.com         IN DNAME  r-and-d.example.com.
www.plastics.r-and-d.example.com.  IN A      192.0.2.1
www.biotech.r-and-d.example.com.   IN A      192.0.2.2

With this DNAME record in effect, all records and subdomains under r-and-d.example.com are
also present under research.example.com. So looking up www.biotech.research.example.com has
the same result as looking up www.biotech.r-and-d.example.com. To be backward compatible,
the nameserver will “synthesize” a CNAME record for the requested information, along with pro-
viding the actual DNAME record. However, apparently some older resolver libraries wouldn’t handle
DNAME records properly.

The idea behind bitlabels (also sometimes called “binary labels”) is that the traditional
...4.3.2.1.in-addr.arpa or ...e.f.f.3.ip6.int delegation mechanism is less than perfect
because it only allows delegation on 8- or 4-bit boundaries, respectively. So conceptually, a
bitlabel is an expression of a very long domain name with individual bits separated by periods.
(In the domain name system, the data between two periods is called a “label.”) However, within
the DNS protocol, a bitlabel is expressed as a single chunk of binary data, regardless of the
number of bits it contains, rather than a long list of individual ASCII labels. In the DNS zone
files, bitlabels may be specified in either binary, octal, decimal, or hexadecimal, with an explicit
value indicating the length in bits. Listing 5-5 shows several bitlabel representations of the
same information.

Listing 5-5. Bitlabels in Zone Files

\[xf0d2b496785a3c1e]               IN PTR www.example.com.
\[b1111000011010010101101001001011001111000010110100011110000011110] IN PTR ➥

www.example.com.
\[o7415126445474132170170/64]      IN PTR www.example.com.
\[120.90.60.30].\[240.210.180.150] IN PTR www.example.com.

The first bitlabel is in hexadecimal, as denoted by the initial x. The second is in binary (b)
and the third is in octal (o). Because one octal digit represents three bits, the 22-character string
would normally specify 66 bits. The explicit /64 indicates that only 64 bits should be considered
part of the bitlabel. The last line is in dotted-quad decimal notation. Because this notation is
limited to 32 bits, we need to concatenate two bitlabels to arrive at the full 64 bits. Note that
although within each bitlabel the more natural most-significant-to-least-significant notation
is used, the domain name system’s least-significant-to-most-significant label ordering comes
back when concatenating bitlabels. So if 64-bit decimal dotted-quads were allowed, that ver-
sion of the bitlabel in Listing 5-5 would look like \[240.210.180.150.120.90.60.30]. Together,
DNAME and bitlabels allow reverse mapping information to be delegated as in Listing 5-6.

Listing 5-6. Reverse Mapping with DNAME and Bitlabels

\[x20010DB81BFF/48].ip6.arpa.  IN  DNAME  rev.example.com.
\[xC001/16].rev.example.com    IN  DNAME  srvrs.rev.example.com.
\[x0000000000000390/64].srvrs.rev.example.com. IN PTR www.example.com.
www.example.com.        IN  AAAA   2001:db8:1bff:c001::390
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In real life, the first line would have to be a delegation by an ISP, so it would be in the ISP’s
zone file. However, the other lines could all be in the same zone file (the one for example.com,
for instance), or they can be spread out across several zones for added flexibility and ease of
renumbering.

RFC 1886 vs. RFC 2874
When a host that implements RFC 1886 looks up an IPv6 address in the DNS, its resolver library
will send out a request for AAAA records. Obviously, the last DNS server in the chain must under-
stand what those are, but the intermediate DNS servers (see Figure 5-1) don’t; they just see a
resource record type that they don’t recognize, but the format is familiar so they know how to
process the information. Looking up reverse information in the ip6.int domain is even easier,
because to a nameserver, there is nothing special about this domain.

The same is true for processing A6 records: this is all done by the resolver, so again,
nameservers in the middle don’t have to understand the A6 semantics. However, obtaining an
address this way is a fairly involved process, especially if the pointers from one A6 record to
the next jump between different servers in different domains, or when the chain of A6 point-
ers is very long. The fact that this procedure is supposed to be executed by the resolver and
not the caching nameserver necessitated a substantial rewrite of the BIND software and the
addition of a resolver daemon. The traditional resolver library wasn’t really equipped to han-
dle such complex tasks.

Although full support for the DNAME record requires changes to caching nameservers as
well as to the nameservers hosting the DNAME information, the synthesis of additional CNAME
records makes it possible for unmodified resolvers and caching nameservers to work with
DNAME. Things are different for bitlabels, however. DNS queries that contain bitlabels need
different processing from queries that only contain traditional ASCII labels, so in addition to
the resolver and the nameserver holding the bitlabel information, all nameservers in between
(the caching nameserver, root, and TLD servers) must understand bitlabels.

RFC 3596: AAAA and ip6.arpa
Not surprisingly, there was considerable debate in the IETF over the relative merits of the RFC
1886 and the RFC 2874 ways of doing things. Part of this discussion condensed in RFCs 3363 and
3364 in 2002. The main arguments in favor of RFC 2874 were flexibility and support for rapid
renumbering. The arguments against using A6 records to store IPv6 addresses in the DNS, and bit-
labels to perform reverse mapping, were that they add complexity and increase the time needed
for looking up the information (if it’s spread out over several nameservers). RFC 3364 also notes
that A6 records are “optimized for write” even though “reading” DNS information is much more
frequent than changing it. It’s also hard to imagine a way in which the information in the DNS
would remain in sync with the actual addresses used by hosts during a renumbering event.

Eventually, this led to the conclusion that AAAA records would be the best way to store IPv6
addresses in the DNS, and the nibble method the preferred way to do reverse mapping. A nib-
ble is 4 bits, which refers to the ...1.0.0.2.ip6... reverse mapping technique. However, in
the mean time, in 2001, the Internet Architecture Board (IAB) had published RFC 3172, stating
a preference toward .arpa (now “Address and Routing Parameter Area”) as an infrastructure
top-level domain, complicating a complete return to RFC 1886 and ip6.int. Subsequently, use
of ip6.int was “deprecated” in favor of ip6.arpa in Best Current Practice (BCP) document 49,
also known as RFC 3152. All of this culminated in RFC 3596 (2003), which standardizes the use
of AAAA records and the nibble method for reverse lookup under ip6.arpa.
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The Current Situation
After such turmoil, it’s not entirely surprising that implementations were all over the map.
Although the A6 record never gained much traction, all the different ways of looking up reverse
mapping can still be found “in the wild.” A few rather old IPv6 resolver implementations use
ip6.int exclusively. This isn’t a huge deal, as many people set up both ip6.int and ip6.arpa
(nibble method). And if the ip6.int lookup fails, it usually does so with a regular “no such
domain” error message, which doesn’t lead to additional problems. The IETF seems to want
to get rid of ip6.int in a hurry, after which ip6.int-only implementations won’t be able to
resolve IPv6 addresses into domain names.

A larger group of implementations (including many versions of Red Hat Linux) looks for bit-
labels under ip6.arpa first, and then falls back to the nibble method under ip6.int. Because
there is no evidence of there ever having been any bitlabel delegations, the first step will always
be unsuccessful, even if all the caching nameserver and the ip6.arpaTLD nameservers all under-
stand bitlabel queries. This may not be the case, however, as most of the available DNS server
software doesn’t support bitlabels. BIND gained support for bitlabels around version 9, but it was
removed again in version 9.3.

Then there are some resolver implementations that first look for ip6.arpa using the nibble
method, and if they don’t find anything, fall back on ip6.int, and finally, there are the imple-
mentations that only look for ip6.arpa. A similar spectrum of behavior is present in the DNS
utilities dig, host, and nslookup that are part of the BIND distribution. Because these contain
their own resolver code, their behavior may or may not match that of the rest of the system.

IPV6 AND THE ROOT SERVERS

For nameservers to resolve information over IPv6, it’s necessary that the root nameservers gain IPv6 support.
Nameservers find the root DNS server addresses in a local “hints” file, so it would appear that providing the
roots with IPv6 connectivity and updating the hints file would do the trick. Unfortunately, there are some com-
plications. Because hints files tend to get out of date, the first thing a nameserver does upon startup is ask
one of the nameservers listed in the hints file for the current list of root nameservers. So, for nameservers to
be able to communicate with the root nameservers over IPv6, the answer to this initial query must contain
IPv6 addresses for at least a subset of all root servers.

In theory, it’s fairly trivial to add IPv6 addresses for the root nameservers as “glue” records in the root
zone. The problem is that the original DNS specifications only allow for 512 byte DNS messages over UDP.
For the current list of 13 root servers, the initial response message is 436 bytes (and that’s after “label com-
pression” to avoid repeating the same domain name for different servers), so there is no room to add IPv6
addresses for all root servers without potentially going over the limit. When that happens, some addresses
must be dropped from the response, which often means the request must be repeated over TCP. Because
many people are unaware that regular DNS queries and not just zone transfers can happen over TCP, this is
often filtered in firewalls. RFC 2671 adds support for larger DNS messages through the “EDNS0” mechanism,
but a sizeable minority of all nameservers on the Internet don’t support EDNS0.

Since mid-2004, TLD registries may have IPv6 addresses included in the root zone as glue records, and
some TLDs allow end users to register IPv6 nameserver addresses for their domains. Many of the root name-
servers are already reachable over IPv6 (see http://www.root-servers.org/). ICANN and the root server
operators are proceeding very cautiously, but addition of IPv6 glue records to the root zone is expected in the
not too distant future.
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Installing and Configuring BIND
On most UNIX-like systems there is no need to install BIND, as there is generally a BIND 9.x
(often 9.2.x) included with the system. (FreeBSD 4.x comes with a recent release of BIND 8.x,
but BIND 9 is available in the ports collection.) BIND consists of a number of core programs
and supporting utilities. The main program is the named binary. This is the actual nameserver
daemon.

■Note Invoke named -v to determine the BIND version installed on the system. You can generally find out
the BIND version of a remote nameserver by asking for the TXT record in class “chaos” for the domain name
version.bind: host -c chaos -t txt version.bind <nameserver name/address>.

Installing BIND
Different versions of BIND are available from the Internet Systems Consortium (ISC, formerly
Internet Software Consortium) at http://www.isc.org/sw/bind/. For full IPv6 support, including
IPv6 transport (answering queries received over IPv6), you should choose one of the 9.x versions;
9.2.x for bitlabel and A6 support. However, all the latest releases of currently maintained versions
(including 4.9.x) support AAAA records, as do all other major DNS server implementations. A
binary distribution of BIND is available for Windows, which runs on Windows NT, 2000, XP, and
2003. This distribution doesn’t support IPv6 transport yet. If you want to install BIND on a Win-
dows machine anyway, read the readme1st.txt document carefully. Obviously, the locations of
the files discussed below will be different, but otherwise, BIND under Windows is pretty much
the same as BIND under a UNIX-like operating system.

Should you wish to install a different version of BIND than the one that came with your Linux
or FreeBSD system,4 just download the source and go through the customary ./configure, make,
make install sequence per the instructions in the README file. Execute the configure script
with the argument -h to list available options. Getting BIND to compile under MacOS requires
advanced UNIX hacking skills: BIND doesn’t get along very well with the changes that Apple
made to the UNIX/FreeBSD system core.

Starting BIND at Boot Time
Under Red Hat Linux, there is already a startup script for named, but it’s not activated by default.
This can be done by issuing (as root) the chkconfig named on command to create the necessary
symbolic links to the /etc/init.d/named script. Unsurprisingly, chkconfig named off removes
the links and stops named from being initiated at system startup. chkconfig --list shows which
startup scripts will be executed when changing run levels.

Under FreeBSD, starting named at boot time is done by adding two lines to /etc/rc.conf, as
shown in Listing 5-7. Obviously, it helps if the named daemon is indeed located in /usr/sbin/.

CHAPTER 5 ■ THE DNS106

4. If you’re upgrading from a 4.x version of BIND, install an 8.x version first, as the 8.x distribution con-
tains tools to convert 4.x configuration files to the format used by BIND 8.x and later.



Listing 5-7. Enabling named in /etc/rc.conf Under FreeBSD

named_program="/usr/sbin/named"
named_enable="YES"

Configuring BIND
All of BIND’s extensive configuration options are described in the BIND Administrator Refer-
ence Manual that comes with the source or binary distribution. BIND isn’t hard to run: just
typing named starts the daemon. Sending named the HUP signal will make it reload its configu-
ration and zone files. Because named needs access to TCP and UDP port 53, it must be run (at
least initially) as root. Sending the HUP signal must be done under the same user as the one
named runs under (or as root), which is often inconvenient. An alternate method to control the
nameserver is with the remote name daemon control program rndc. rndc connects to named
over TCP, so the command can also be used to control remote nameservers, as the name sug-
gests. By default, named listens for incoming connections from rndc on port 953 on the IPv4
and IPv6 localhost addresses only, but this can be changed with the controls configuration
command in the named configuration file. rndc expects a configuration file in /etc/rndc.conf,
but it’s much easier just to execute rndc-confgen -a to create an /etc/rndc.key file, which
both rndc and named will then use to authenticate the communication between them.

The nameserver files are often stored in /var/named, but there is no particular reason to
adhere to this convention. The named directory and other files must be readable and writable
as appropriate for the user that named ends up running under. Because named drops most spe-
cial root privileges, including the ability to access other user’s files, when it runs as root, the
files must be accessible to the actual user root itself in this case. The named directory must
contain a named.root file, which guides named toward the root servers at startup. This file
doesn’t change often,5 and as long as there is still a single correct root server address in it,
named will be able to get an up-to-date list of root server addresses from that server. However,
if your version is older than January 29, 2004, you may want to download the latest version
from ftp://ftp.internic.net/domain/named.root or http://www.iana.org/popular.htm. For
an IPv6-only nameserver to be able to reach the root servers, a new named.root needs to be
installed when AAAA records for the root servers are added to the root zone.

The location of the named directory and the named.root file must be listed in named’s con-
figuration file. Listing 5-8 shows a basic named.conf file.

Listing 5-8. The /etc/named.conf File

options {
directory "/var/named";
allow-recursion { 192.0.2.0/24; 2001:db8:1bff::/48; };
listen-on { 192.0.2.106; }
listen-on-v6 { any; };
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5. MacOS X Panther comes with a named.root (under the name “named.ca”) from 1997, but only two root
nameservers have changed addresses between the 1997 and 2004 versions.



# forward first;
# forwarders { 192.0.2.53; };
/* C-style comment */
// C++-style comment
};

zone "." {
type hint;
file "named.root";

};

zone "0.0.127.IN-ADDR.ARPA" {
type master;
file "localhost.rev";

};

zone "example.com" {
type slave;
file "example.com";
masters { 192.0.2.53; };

};

zone "0.0.0.0.f.f.b.1.8.b.d.0.1.0.0.2.ip6.arpa."
{
type master;
file "db.2001:db8:1bff:0";

};

The file starts with an options directive, followed by several options between braces. Semi-
colons terminate statements or items in a list. The first option specifies the directory where named
looks for files. The allow-recursion option defines for which clients named will perform recursive
queries. In this case, it’s clients with addresses in prefixes 192.0.2.0/24 and 2001:db8:1bff::/48.
Although there is no direct harm in allowing recursive queries for the whole Internet, and it allows
for easier debugging, it can cost extra bandwidth, processing overhead and memory if the rest of
the Internet starts using your server en masse. Many of the security problems found in BIND
over the years could only be exploited by people for whom the server would do recursive
queries. If you want to limit certain things to localhost-only, be aware that the keyword
localhost only means the IPv4 localhost address in the named.conf file. The IPv6 localhost
address must be listed explicitly as ::1, if desired.

The listen-on-v6 option directs named to listen for queries on IPv6 TCP and UDP sockets.
With BIND 9.2 and earlier, listen-on-v6 only takes “any” or “none” as arguments. So either the
server will listen for incoming queries on all IPv6 addresses, or it won’t listen on IPv6 at all. The
default is to not listen on IPv6 addresses. As of BIND 9.3, you can have named listen on specific
IPv6 addresses.
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■Note Specifying listen-on-v6 { none; } will not disable the use of IPv6 altogether. The server will still
perform queries of its own over IPv6 when it deems necessary. It’s also still possible on a server that acts as a
slave (secondary) server for a zone to specify IPv6 addresses for primary masters to load the slave zone from.

The next two lines are commented out. In addition to these shell-style comments, named
also accepts C and C++ style comments, but it doesn’t accept the semicolon as the start of a
comment, like in a zone file. The two initial commented-out lines would have instructed the
server to forward all its queries to the nameserver on address 192.0.2.53 and only try to resolve
the query on its own if the specified server doesn’t reply. After the comments, the closing brace
ends the options section. Next, there are four zone specifications:

1. The “dot” zone (the root) is a “hints” zone and points to the named.root file.

2. The 0.0.127.in-addr.arpa zone is the reverse zone for the localhost address, and,
being a primary zone, authoritative information is present in the localhost.rev file.

3. The example.com zone is a slave zone, and authoritative data is periodically transferred
from the nameserver at address 192.0.2.53 and stored in the example.com file.

4. The last zone is a nibble-style ip6.arpa zone for 2001:db8:1bff::/48.

■Tip In most service provider or larger enterprise environments, it’s generally a good idea to have differ-
ent authoritative and resolving DNS servers so that problems with one type of DNS server don’t impact the
other type.

BIND 9.2 supports an allow-v6-synthesis option, which will take A6 records and bitlabel reverse
mapping information and turn those into AAAA records and nibble-style ip6.int reverse map-
ping information. This option was introduced to ease the transition from RFC 1886 to RFC 2874,
but now that RFC 2874 has fallen out of grace, the option has been removed again from BIND
9.3. The argument to this option is a list of addresses for which this synthesis is performed.
Synthesis is only performed for recursive queries.

BIND 9.3 removes support for bitlabels. Zone files with bitlabel definitions are rejected.
Version 9.3 still supports A6 records to some degree; those may be present in zone files and will
be included in responses when appropriate. However, unlike BIND 9.2, BIND 9.3 never uses A6
records to find IPv6 address for other servers when following a delegation chain. New in BIND
9.3 is the dual-stack-servers option, which takes one or more names or addresses as its argu-
ment. When an IPv4-only named can’t resolve a query because it needs IPv6 connectivity, or
an IPv6-only named because it needs IPv4-connectivity, it will consult the server listed under
dual-stack-servers. This server is supposed to have dual stack IPv4+IPv6 connectivity, so it
should be able to perform all possible queries. This option helps BIND deal with a fragmented
namespace.
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NAMESPACE FRAGMENTATION

If a domain is served by nameservers that only have IPv6 addresses, names under that domain can’t be
resolved by nameservers that only have IPv4 connectivity. Conversely, IPv6-only nameservers can’t resolve
names that are only served by IPv4 nameservers. The situation where the domain namespace looks different
depending on the IP version used can lead to problems. For instance, suppose a mailserver is only reachable
over IPv6, and the nameserver pointing to this mailserver is also only reachable over IPv6. Someone in the
IPv4-world will never be able to deliver mail to this server, but worse, they wouldn’t even be able to see that
the (sub-) domain in question exists in the first place. So, rather than sending back a “message couldn’t be
delivered” error, the mailserver sends back “domain doesn’t exist,” which is much more destructive, espe-
cially when the lack of connectivity for an IP version is only temporary.

For this reason, it is highly recommended that, for the foreseeable future, all DNS zones be served by at
least one nameserver (preferably two) with an IPv4 address, even if the zone just contains IPv6-only information.

Choosing an Address for Your Nameserver
Specifying nameservers by name doesn’t usually work: if we knew which addresses went with
which names, we wouldn’t have to consult a nameserver in the first place. So nameserver
addresses tend to find their way to lots of different places:

• The address for a caching nameserver will be in lots of /etc/resolv.conf files (or the
equivalent on other operating systems).

• The address for primary and secondary DNS servers for a domain will be listed in the
TLD zone for that domain.

• The address for a primary DNS server will be in the named.conf of secondary servers.

• Often, the address for secondary DNS servers for local primary zones will be listed as
addresses the server will accept zone transfers from.

All of this means that it’s a good idea if nameserver addresses are as stable as they can be,
and it doesn’t hurt if they’re easy to remember, either. So using EUI-64-derived IPv6 addresses
for nameservers isn’t the best idea, as the address will change whenever a network interface card
is replaced or the DNS service is moved to another server. So a manually specified address is the
best choice. Additionally, it’s not a bad idea to put this address in a /64 of its own. This way, it’s
easy to move the DNS address around the network. It’s helpful to use the transfer-source-v6
and notify-source-v6 options to set the source address for outgoing zone transfer requests to
the appropriate address.

Adding IPv6 Information to Zone Files
Before you fire up your favorite text editor and start adding AAAA records to all your zone files,
you should first consider the implications. When a host’s IPv6 address is listed in the DNS,
IPv6-capable applications on other IPv6-capable hosts will generally prefer to connect over
IPv6 rather than IPv4. When connecting over IPv6 doesn’t work, the application may or may

CHAPTER 5 ■ THE DNS110



not fall back on IPv4. Unfortunately, IPv6 connectivity is still often slower and less reliable
than IPv4 connectivity. On the other hand, the only people who’ll suffer when IPv6 perform-
ance is worse than IPv4 performance are those who enabled IPv6 on their end in the first
place, so there is no need to be overly conservative. In most situations, there shouldn’t be too
many problems advertising an IPv6 address in the DNS, but for certain critical services, it can
be better to provide the service over IPv6 under a different name. This is especially true if the
applications used to access the service don’t automatically fall back on IPv4, or when the time-
out when this happens is unacceptable. It never hurts to have the service available under a
different name that only has an IPv4 address. For file downloads over HTTP or FTP, it’s a good
idea to explicitly list IPv4 and IPv6 addresses, so people can choose, as file transfer is one of
the applications that is most vulnerable to bandwidth limitations.

When adding AAAA records for popular services to your DNS zone, make sure that you
can handle the additional IPv6 traffic. For services that are mostly used over the Internet,
the amount of IPv6 traffic relative to IPv4 traffic isn’t likely to be a problem. However, if
you’re upgrading an internal network, it’s possible that all the internal hosts that now have
IPv6 connectivity connect to the servers that now have an AAAA record over IPv6, effectively
moving all traffic for the application in question from IPv4 to IPv6 over night. Most routers
can handle IPv4 and IPv6 equally well, but some can’t. For instance, when Cisco rolled out
IPv6 on its large Cisco 12000 routers, IPv6 forwarding was done on the CPU on the linecard.
Because those linecards had special IPv4 forwarding hardware on board, the CPUs on these
linecards weren’t designed to do forwarding at line rate. This meant that a Gigabit Ethernet
linecard could handle 1000 Mbps IPv4 traffic, but only some 100 Mbps of IPv6 traffic (or
900 Mbps IPv4 traffic plus 100 Mbps IPv6 traffic). Newer linecards also have IPv6 hardware
support so they can handle IPv6 at line rate, but you may still encounter hardware that doesn’t
handle IPv6 at the same speeds as IPv4. On Cisco routers with “smart” linecards, the linecard
that receives a packet is the one that must do the processing required to forward the packet,
and the capabilities of the outgoing card are less of an issue. Be sure to do your homework
before buying new routers or before making changes to your network that may create a lot
of IPv6 traffic.

If the existing servers can’t handle IPv6, it may be necessary to set up a different server or
cluster of servers to provide an existing service over IPv6. Then, you point one or more A records
to the IPv4 server or servers, and one or more AAAA records to the IPv6 server or servers. However,
be careful that you use service names and not machine names when you do this. So if the service
name www.example.com points to the machine zeus.example.com, which provides the IPv4 WWW
service, you should give the new IPv6 WWW server its own name, and not add an AAAA record to
zeus.example.com. That way, you won’t end up on poseidon.example.com when you type
ssh zeus.example.com because SSH prefers IPv6.

AAAA Records
Listing 5-9 shows a zone file with AAAA records used differently for different services.

Listing 5-9. A Zone with AAAA Records

;   20041215    IvB created
;   20050209    IvB added AAAA records

$TTL 86400
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@   IN  SOA ns1.example.com. root.example.com. (
2005020900      ; Serial
28800           ; Refresh (8 hours)
7200            ; Retry (2 hours)
604800          ; Expire (7 days)
86400 )         ; Minimum (1 day)

IN  NS      ns1.example.com.
IN  NS      ns2.beispiel.de.

IN  MX      100 smtp.example.com.
IN  MX      200 smtp.ipv4.example.com.

IN  A       192.0.2.80
IN  AAAA    2001:db8:31:1:201:2ff:fe29:2640

ns1         IN  A       192.0.2.80
IN  AAAA    2001:db8:31:53::53
IN  A6      0 2001:db8:31:53::53

www         IN  A       192.0.2.80
www         IN  AAAA    2001:db8:31:1:201:2ff:fe29:2640
www.ipv4    IN  A       192.0.2.80
www.ipv6    IN  AAAA    2001:db8:31:1:201:2ff:fe29:2640

smtp        IN  A       192.0.2.25
smtp        IN  AAAA    2001:db8:31:1:20a:95ff:fecd:987a
smtp.ipv4   IN  A       192.0.2.25

pop         IN  A       192.0.2.25
popv4v6     IN  A       192.0.2.25
popv4v6     IN  AAAA    2001:db8:31:1:20a:95ff:fecd:987a

The file starts with two lines of comments. The $TTL line defines a default time to live value
of 86400 seconds (one day), so all records that don’t have their TTL set explicitly are cached for
24 hours. The next line starts with an at sign, which means that the record that follows relates to
the zone itself rather than a name under that zone. The “start of authority” (SOA) record first lists
the name for the primary nameserver for this zone (ns1.example.com) and a contact email
address with the at sign replaced by a period (the email address root@example.com). The SOA
record continues on the next five lines until the closing parenthesis. The first of those lines con-
tains the serial number, which must be increased whenever a zone file is changed. It’s customary
to use a YYYYMMDDNN (year, month, day, number) format, where NN is set to zero when the
first change on a certain day happens and increased by one on subsequent changes. The other
lines define some timers that are best left unchanged.

There is no name in front of the NS records that follow, which means that they apply to the
same name as did the previous record, which in this case is the domain itself. The primary
nameserver for this domain is listed first, although ordering has no meaning within a zone file.
Next are the MX records, which define where the mail for this domain should go to. The value

CHAPTER 5 ■ THE DNS112



preceding the mailserver names indicates which mailserver is preferred. In this case,
smtp.example.com is preferred over smtp.ipv4.example.com because it has a lower preference
value. Both names point to the same IPv4 address, but smtp also has an IPv6 address. Should
a remote mailserver have trouble with smtp.example.com, it will automatically fall back on
smtp.ipv4.example.com. The next two lines supply A and AAAA records for the domain itself.
These are useful when someone tries to connect to the domain itself, for instance, with the
URL http://example.com/.

The next three lines define the addresses for ns1.example.com. Even though regular appli-
cations don’t look for A6 records, BIND versions 9.x prior to 9.3 (which are still in wide use) do,
so supplying the IPv6 address of the nameserver in this format could speed things up a bit.
The AAAA record is more important because it’s the official way to publish an IPv6 address.

The www name has both an IPv4 and an IPv6 address and is supplemented by IPv4- and
IPv6-only versions (www.ipv4 and www.ipv6, respectively). Having an IPv6-only name is useful
for quick IPv6 reachability tests: if the page loads, IPv6 is enabled and it works. If it doesn’t,
IPv6 either isn’t enabled, or there is no connectivity. The addresses for the smtp and smtp.ipv4
names reflect the earlier discussion. Finally, because the POP service is a critical one, and it’s
difficult for email users to temporarily change the address for their POP server when there is
an IPv6 connectivity problem, the name corresponding to this service only has an IPv4 address.
However, there is an alternate name popv4v6 with both an IPv4 and an IPv6 address for users
who prefer to use IPv6 when available, while maintaining the ability to fall back to IPv4.

Before the new domain can be used, it must be added to the named.conf file as in Listing 5-8.
It’s a good idea to check the syntax of the zone file and the configuration file before reloading the
nameserver, like in Listing 5-10.

Listing 5-10. Checking a Zone and Configuration Files and Reloading named

# named-checkzone example.com /var/named/example.com
zone example.com/IN: loaded serial 2005020900
OK
# named-checkconf
# rndc reload

Reverse Mapping
The reverse mapping zones are by and large the same as regular zones, except that they con-
tain only PTR records, except for the initial SOA and NS records. However, the nibble format is
somewhat abrasive. The easiest way to turn IPv6 addresses into nibble format is by using the
host command to look up the addresses in question. host will then echo back the nibble for-
mat query that it performs, which can then be copied and pasted into the zone file. Listing 5-11
shows the host command and Listing 5-12 the resulting reverse zone file.

Listing 5-11. The host Command

host 2001:db8:31:1:201:2ff:fe29:2640
Host 0.4.6.2.9.2.e.f.f.f.2.0.1.0.2.0.1.0.0.0.1.3.0.0.8.b.d.0.1.0.0.2.ip6.arpa not ➥

found: 3(NXDOMAIN)
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If the host command tries to perform a bitlabel query, the program came with a BIND
version 9.x prior to 9.3. Use host -n instead, and it will do an ip6.int query.

Listing 5-12. A Reverse Zone

;   20050209    IvB     created

$TTL 86400

@   IN  SOA ns1.example.com. root.example.com. ( 2005020900 28800 7200 604800 ➥

86400 )

IN  NS      ns1.example.com.
IN  NS      ns2.beispiel.de.

$ORIGIN 3.5.0.0.1.3.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
; ns1       IN  AAAA    2001:db8:31:53::53
3.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0  IN  PTR     ns1.example.com.

$ORIGIN 1.0.0.0.1.3.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
; www       IN  AAAA    2001:db8:31:1:201:2ff:fe29:2640
0.4.6.2.9.2.e.f.f.f.2.0.1.0.2.0  IN  PTR     www.example.com.

; smtp      IN  AAAA    2001:db8:31:1:20a:95ff:fecd:987a
a.7.8.9.d.c.e.f.f.f.5.9.a.0.2.0  IN  PTR     smtp.example.com.

$ORIGIN 1.3.0.0.8.b.d.0.1.0.0.2.ip6.arpa.
0.0.2.c     IN  NS      ns.research.example.com.

The $ORIGIN directive specifies which location in the DNS hierarchy the names that fol-
low are relative to. It’s easiest to specify the top 64 address bits in a $ORIGIN line and then
specify the remaining 64 bits on each individual line. This makes for one $ORIGIN per subnet
and keeps the lines from becoming overly long. It can also be useful to keep the $ORIGIN
statements out of the zone file and let all names in the file be relative, so the same zone file
can be used for both the ip6.arpa and ip6.int zones.

This file holds the zone for prefix 2001:db8:31::/48, which corresponds to the
1.3.0.0.8.b.d.0.1.0.0.2.ip6.arpa zone. Information for two /64s under this /48 is avail-
able in this zone file itself, but 2001:db8:31:c200::/64 is delegated to the nameserver
ns.research.example.com in the last line.

■Note Remember that there are 32 nibbles in an IPv6 address, so there should be 32 hexadecimal digits
separated by dots in a full PTR record, 16 in a /64, and 12 in a /48 $ORIGIN, respectively.
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RFC 1886 and 2874 Reverse Mapping Hacks
Some resolver libraries fail in ugly ways because the bitlabel ip6.arpa information that they’re
looking for doesn’t exist. To avoid these problems, you may want to set up fake reverse mapping
information for them. This is done in Listings 5-13 (the bitlabel zone) and 5-14 (the relevant
part from the named.conf).

Listing 5-13. Fake RFC 2874 Reverse Mapping

$TTL 86400

@   IN  SOA ns1.example.com. root.example.com. ( 2005020900 28800 7200 604800 ➥

86400 )
IN  NS      ns1.example.com.

*.\[x2/3].ip6.arpa. IN  PTR     bit.label.ip6.arpa.

\[x20010db800310001020a95fffecd987a/128].ip6.arpa. IN CNAME a.7.8.9.d.c.e.f.f.f.5. ➥

9.a.0.2.0.1.0.0.0.1.3.0.0.8.b.d.0.1.0.0.2.ip6.arpa.

Listing 5-14. Fake RFC 1886 and 2874 Zones in named.conf

zone "\[x2/3].ip6.arpa." {
type master;
file "bitlabel.ip6.arpa";

};

zone "ip6.int." {
type master;
file "ip6.int";

};

The *.\[x2/3].ip6.arpa. is a wildcard that matches all domains (including bitlabels)
under the three-bit bitlabel for 2000::/3, the IPv6 global unicast address space. Using 2000::/3
rather than ::/0 is a bit of a hack, but it avoids conflicts with possible real delegations directly
under ip6.arpa, because the ::/0 bitlabel delegation would also have to be directly under
ip6.arpa. Because the bitlabel space isn’t delegated, there is no risk of this there. The other bit-
label at the end of the zone file matches only a single address and redirects the bitlabel version
of this address to the nibble version with a CNAME record. This is useful to have the actual reverse
mapping information show up for a limited set of addresses (which must all be listed individu-
ally). The wildcard record matches all addresses but has the disadvantage that the same reverse
mapping information (bit.label.ip6.arpa in this case) is returned for all possible IPv6
addresses, except the ones that have an individual listing.

Listing 5-14 also has a delegation for the ip6.int domain, which can be useful when the
real ip6.int zone is taken out of commission. The DNAME record in Listing 5-15 can then be used
to redirect ip6.int queries to ip6.arpa. But as long as ip6.int is still active, it’s better to do noth-
ing and have the real ip6.int information show up.
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Listing 5-15. Remapping ip6.int to ip6.arpa Using a DNAME Record

$TTL 86400

@   IN  SOA ns1.example.com. root.example.com. ( 2005020900 28800 7200 604800 ➥

86400 )
IN  NS      ns1.example.com.

@       IN  DNAME   ip6.arpa.

Dynamic DNS Updates
RFC 2136 introduced the concept of “dynamic DNS updates.” This mechanism allows a client to
ask an authoritative server to add information to a zone or delete existing information from the
zone. The dynamic update mechanism allows hosts that receive a new address through DHCP or
stateless autoconfiguration to update their own DNS records so they remain reachable by their
name, despite address changes. However, this capability isn’t yet widely implemented in host
operating systems, at least not for IPv6.

For obvious reasons, it’s not possible for just any client to modify any and all zones. BIND
9.x accepts a zone file configuration option allow-update that lists who may update the zone.
The list of authorized users may be in the form of IP address ranges, or it may specify one or
more keys that protect the updates. See the BIND documentation for more information. When
a zone is set up for dynamic updates, named takes control of the zone file and it’s no longer
possible to edit the file without first shutting down the named daemon.
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Applications

“I set up my new computer and turned it on. It now displays C:\> and a small blinking

line. What should I do now?”
—Anonymous help desk caller, 1994

Ideally, it shouldn’t matter to an application whether it runs over IPv4 or IPv6. Unfortunately,
for many applications, it does matter. There are two possible reasons for this. Some of the
Application Programmer Interfaces (APIs) that applications use to interact with the network
had to be changed to support IPv6. Another group of applications needs to look more closely at
IP addresses. For instance, some applications use access restrictions based on the IP address.
Other applications, such as peer-to-peer applications, require hosts to refer to either them-
selves, their communication partner, or a third party. Often the size of an IPv4 address is hard
coded in the communication protocol, so the protocol must be changed and applications must
be updated before IPv6 can be used. Despite these difficulties, lots of applications run over
IPv6, but in many instances, this isn’t readily apparent. Often, an application’s IPv6 prowess
is only advertised in a throwaway line in the release notes, if at all.

After looking at API issues, I will focus in this chapter on IPv6-enabled applications. It’s
impossible to discuss them all, or even discuss examples of each type of application, so if a
specific application or application type isn’t mentioned, this doesn’t mean there is no IPv6-
enabled version. This is especially true for open source software, because even if the primary
developers didn’t include IPv6 support, there is often an IPv6 patch available elsewhere. The
purpose of this chapter is merely to provide some examples of popular software or protocols
that are compatible with IPv6.

API Issues
Modern operating systems and programming languages come with a wealth of APIs and built-
in functions and frameworks, so when an application programmer wants her application to
communicate over the network, there are often many ways in which she can add this func-
tionality. The possibilities range from opening an URL to transmitting a handcrafted packet
over a network interface. However, a very large (and heavily used) part of all network-related
APIs consists of variations of the BSD socket API that first appeared in the 1983 release of
4.2BSD UNIX.

The socket API doesn’t support setting up TCP sessions toward hostnames directly, so
applications need to convert an ASCII name to an IP address in binary form. Under UNIX, it
turned out to be impossible to change those binary IP address representations so they could
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contain an IPv6 address without breaking existing programs. For this reason, and because of
new features in IPv6, such as the flow label and address scoping, the IETF decided create new
socket API calls to support IPv6 rather than modify the existing ones (RFC 3493). Note that the
changes are relatively minor: only some initialization and name/address conversions are done
differently. The actual reading and writing of information to/from the socket isn’t different in
IPv6.

IPv4-Mapped IPv6 Addresses
The socket API changes require that in order to support IPv6, small parts of an application must
be updated to use the new API calls. For obvious reasons, turning an IPv4-only application into
an IPv6-only application isn’t all that useful, so RFC 3493 makes it possible for an application
that uses the new mechanisms to communicate over IPv4 by using IPv4-mapped IPv6 addresses.
An IPv4-mapped address is an IPv6 address that consists of the prefix 0:0:0:0:0:ffff::/96 (or
::ffff:0:0/96) followed by the IPv4 address in question. So the IPv4-mapped address for local-
host would be ::ffff:7f00:1. These addresses are often expressed in the more convenient form,
::ffff:127.0.0.1. Even though to the application, an IPv4-mapped address looks like any other
IPv6 address, using these addresses results in IPv4 packets on the wire (network), not IPv6 pack-
ets. IPv6 packets with IPv4-mapped addresses as their source or destination are best filtered out
because they could be used to bypass IPv4 filters. In 2002, IPv4-mapped addresses got some bad
press when Jun-ichiro itojun Hagino wrote an Internet Draft for the IETF community under the
title “IPv4 mapped address considered harmful.” The document goes on to explain that IPv4-
mapped addresses are dangerous only on the wire and not in the API, but the title of the first
version didn’t capture that nuance. (The title was changed in the next version.)

IPv4-mapped addresses are a good example of how a clear and simple concept can lead
to unexpected complications. Daemon applications that listen for incoming connections
must tell the system they are interested in incoming TCP sessions or UDP packets on a certain
address and a certain port number by “binding” to an address and port. Most daemons specify
they are interested in incoming sessions or packets on any address. The trouble starts when an
application binds to “any” in IPv6, and also to “any” in IPv4. Because “any” in IPv6 includes
IPv4-mapped addresses, the “any” IPv4 binding clashes with the IPv6 one. On some systems,
this doesn’t lead to problems, but on others, the binding fails. The solution would be to bind
to the IPv6 “any” address only, but some systems (such as Windows) never supported IPv4-
mapped addresses, and some systems, such as NetBSD, dropped IPv4-mapped address support
somewhere along the way or only support them when explicitly enabled (FreeBSD 5 and later).
The end result is that whatever an application writer does, there will be trouble on some oper-
ating system. Some argue that the correct way for a daemon application to support both IPv4
and IPv6 is to request a list of the system’s addresses and then bind to each address explicitly
rather than to “any” addresses. However, this adds overhead to the system and the application
because there are now more sockets that need attention periodically, and, worse, the list of
addresses may change over time, requiring additional complexity.

The inconsistent handling of IPv4-mapped IPv6 addresses across different operating
systems is probably the reason why BIND 9.2 only supports listening to the IPv6 “any”
address: on most systems, the specific bindings for individual IPv4 addresses preempt the
IPv6 “any” binding so there aren’t any problems. RFC 3493 solves this problem by introducing
the IPV6_V6ONLY socket option. By setting this option, an application indicates that it doesn’t
want to use IPv4-mapped addresses so that IPv4 and IPv6 bindings no longer clash. As the
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option is implemented in operating systems, applications can start to expect consistent
behavior when using IPv4 and IPv6 bindings side by side. The IPV6_V6ONLY option was imple-
mented in the Linux kernel in version 2.4.21 and in FreeBSD in version 4.4. You can enable or
disable IPv4-mapped addresses under FreeBSD with a 

ipv6_ipv4mapping="YES"

line in the /etc/rc.conf file. The default is for IPv4-mapped addresses to be disabled, which is
the opposite of the 4.x behavior. In both versions, it’s possible to toggle the availability of IPv4-
mapped addresses with the net.inet6.ip6.v6only sysctl. 0 means disabled, 1 means enabled.
It’s best to stick to the default unless you really need a different setting, in order to avoid con-
fusing applications that take their cue regarding IPv4-mapped address availability from the
OS version at compile time rather than the current state of the kernel at runtime.

Handling Multiple Addresses
Even when IPv4-mapped addresses are supported, it isn’t always enough to replace the tradi-
tional socket API calls with the ones that support IPv6 to make an application completely
IPv6-compatible. Some protocols embed IP addresses inside the protocol. For instance, peer-
to-peer applications need to tell one peer about another, and they nearly always use IP(v4)
addresses for this. These protocols must be changed to support IPv6, as do the applications
that implement them. The tragedy here is that applications that don’t need any changes,
except using the new API, are exactly those that work well with Network Address Translation
(NAT) in the first place, and one of the big advantages of IPv6 is that it eliminates the need for
NAT. So this lands us in the position where most of the applications that support IPv6 are the
ones that need it the least. A good example is the Web.

Because an IPv6 system with a single IPv6 address more often than not also has an IPv4
address, it’s a very good idea for IPv6 applications to cycle through all the addresses that they
find in the DNS when looking up the name for a remote system. This way, when the first (IPv6)
address doesn’t work, the application still gets to connect to a subsequent (IPv4) address.
Although it’s possible for a single host to have more than one address in IPv4, most IPv4 appli-
cations don’t try the extra addresses when connecting to the first one fails, so this functionality
must be added when IPv6-enabling an application.

Higher-level APIs can generally be modified to support IPv6 without breaking existing
applications. For instance, the Java java.net package has an InetAddress class, which always
represented an IPv4 address. When Sun added IPv6 support in the J2SDK/JRE 1.4 release, the
InetAddress class was summarily changed to encompass both IPv4 and IPv6 addresses, mak-
ing all Java applications IPv6-capable in the process. That is, as long as both the Java Runtime
Environment and the system support IPv6. This is a mixed blessing, because in addition to
allowing a large number of Java programs to work over IPv6 without changes, it may also
break some applications that make assumptions about the IP address length.
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Old School: FTP, Telnet, and SSH
FTP and Telnet are the oldest applications found on the Internet. They even date back to
before the introduction of IPv4 in the early 1980s. It’s only fitting that these applications are
the first to gain IPv6 support. Linux, FreeBSD, MacOS, and Windows all have command line
ftp and telnet programs, and they all support IPv6. Except for the Windows incarnation, they
all try all addresses for a host, so they should fall back to IPv4 if IPv6 connectivity is broken.

The telnet and ftp programs aren’t the workhorses they used to be. The Telnet protocol
has been largely replaced by SSH because SSH supports encryption. Even though a lot of
downloading happens over HTTP these days, the FTP protocol is still going strong, but users
prefer more user-friendly graphical FTP clients. However, the original telnet and ftp are great
for debugging. With telnet, it’s possible to connect to arbitrary TCP services to see if the ser-
vice in question is running, and ftp is very useful for measuring available bandwidth, because
it displays an accurate kilobyte per second value after transferring a file. Under FreeBSD and
MacOS, ftp accepts HTTP and FTP URLs as arguments, which is great for downloading files
from within a script.

The FTP server daemons on FreeBSD and MacOS both support IPv6. The Telnet daemon
does as well, but it’s disabled on both systems. Under Red Hat Linux, there is no FTP or Telnet
daemon installed by default.

The SSH client and server programs that come with Linux, FreeBSD, and MacOS all sup-
port IPv6. Like most IPv6-enabled applications, the ssh program prefers IPv6 addresses over
IPv4 ones if there is IPv6 connectivity. On all three systems, ssh will fall back on additional
(IPv4 or IPv6) addresses when it can’t connect to the first address. VanDyke Software has a
commercial SecureCRT SSH (and more) client for Windows that supports IPv6 in version 5.
SecureCRT 5 can be downloaded for a free 30-day trial from http://www.vandyke.com/. There
is also Putty, a free multi-OS SSH client that is popular under Windows and supports IPv6.
Putty is available at http://www.chiark.greenend.org.uk/~sgtatham/putty/.

The FTP and SSH services are disabled by default under MacOS. They can be enabled in
the System Preferences under Sharing, on the Services tab, as shown in Figure 6-1. The SSH
service is called “Remote Login” in the System Preferences.
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Browsing the Web
Web browsing is a very good example of an application that doesn’t really need IPv6 support,
because the HTTP protocol isn’t bothered by network address translation. On the other hand,
the Web is the most visible part of the Internet experience, so it’s a good place the gain some
real-world IPv6 exposure. And good luck finding a dancing turtle anywhere else than on the
IPv6-version of the http://www.kame.net/ website! The IPv6 status of the leading browsers is
as follows:

Internet Explorer supports IPv6 under Windows. It doesn’t support the
[2001:db8:31:1::2] literal IPv6 address format in URLs (RFC 2732). Internet Explorer for
the Mac doesn’t support IPv6.

Netscape has a few IPv6-enabled versions (Linux), but they’re not always easy to find.

Mozilla, on the other hand, has more extensive IPv6 support, but it’s still common to find
IPv4-only binaries, especially for the Mac.

Firefox, the newest member of the Netscape/Mozilla family, supports IPv6 in all distribu-
tions, although it’s disabled by default on the Mac (see Figure 6-2).
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Safari, Apple’s browser, supports IPv6 in version 1.3 under MacOS 10.3 Panther, but you
wouldn’t know it: Safari 1.3 prefers IPv4 over IPv6, without even falling back on IPv6 when
IPv4 doesn’t work. Older versions of Safari support literal IPv6 URLs, but newer ones only
do this when the trick mentioned below is in effect. As of Safari 2.0 that comes with
MacOS 10.4 Tiger, the program has full IPv6 support: it tries IPv6 first and falls back on
IPv4 if IPv6 doesn’t work.

Konqueror will load pages over IPv6, but it doesn’t fall back on IPv4. Konqueror is the
browser application that’s part of the K Desktop Environment (KDE), a graphical desktop
environment for (mostly) Linux.

Lynx, the text-only browser, suffers from the “it’s in the source, but good luck finding a
binary that supports it” syndrome, so you may have to hunt down an IPv6-enabled binary
distribution or build it from source yourself.

As a rule, Web browsers will try available additional addresses when they can’t connect to
the first address chosen.

It’s possible to tweak Safari 1.x to gain “real” IPv6 support. To do this, execute the follow-
ing command in the Terminal:

defaults write com.apple.Safari IncludeDebugMenu 1

This enables Safari’s Debug menu, which can then be used to deselect the “HTTP (Simple
Loader)” under Debug ➤ Supported Protocols. The Debug menu can be turned off again with
the same Terminal command, but now with 0 as the final argument. Apparently, the Simple
Loader isn’t used for HTTPS URLs, so Safari always prefers IPv6 over IPv4 for HTTPS. To enable
IPv6 in the MacOS Firefox, type about:config in the URL bar. Firefox will then display a stag-
gering number of variables. Scroll down to network.dns.disableIPv6 and click the value “true”
on the same line, so it changes to “false,” as in Figure 6-2.
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Mail Clients
Unlike its cousin Internet Explorer, Microsoft Outlook Express doesn’t support IPv6. Many of
the UNIX/Linux mail clients, such as Thunderbird under Linux, are fully IPv6-enabled. Like
Firefox, Thunderbird supports IPv6 under Windows, too, but not on the Mac. But unlike Fire-
fox, there doesn’t seem to be a way to enable IPv6 when it’s disabled or disable it when it’s
enabled. However, Apple’s Mail application has IPv6 on board and prefers the new protocol
over IPv4.1 But despite the fact that Mail will happily work over IPv6, it won’t function when
the system doesn’t have an IPv4 nameserver configured. Actual IPv4 connectivity to the mail
server or the rest of the world isn’t required, but without an IPv4 DNS address, Mail won’t con-
nect to the mail server. If you want to run Apple Mail in an IPv6-only network, add 127.0.0.1
as an additional DNS server in your network settings, and Mail will work without trouble.

CHAPTER 6 ■ APPLICATIONS 123

Figure 6-2. Enabling IPv6 in Firefox under MacOS

1. You may run into problems sending email over IPv6 with Mail 2.0, the version that comes with
MacOS 10.4 Tiger. The easiest way to work around this is to configure Mail with an SMTP hostname
that only has an A record in the DNS.



Media Players
After the inconsistencies between Web and mail behavior under Windows and MacOS, the
trend of there being no discernable trend continues with Microsoft’s and Apple’s respective
media player applications. Windows Media Player will happily play content that it down-
loads with HTTP over IPv6, under Windows, at least. So will Apple’s iTunes, both under
MacOS and Windows. Apple’s other flagship audio/video product, the QuickTime Player,
also recently gained IPv6 support in some configurations. I was unable to test whether the
QuickTime Player, Windows Media Player, and iTunes support streaming over IPv6 with
the Real-Time Streaming Protocol (RTSP).

Video LAN Client (VLC), on the other hand, takes IPv6 support to a whole new level. VLC
plays nearly all audio and video formats in existence, such as MPEG 1, 2, and 4 and DIVX, either
directly from a file or CD/DVD or over the network. It’s available from http://www.videolan.org/
for Windows, MacOS, many Linux dialects, the BSD family, and some other operating systems.
In addition to being able to play audio and video received over IPv6 HTTP connections, VLC can
play streams that come in over UDP with IPv6, both unicast and multicast. VLC can also stream
content over IPv6. This is done by opening (for instance) a DVD with File ➤ Open Disc. This
opens the dialog shown in Figure 6-3.

It’s best to disable DVD menus for streaming by selecting DVD rather than DVD (menus).
After selecting the Stream output checkbox, you can click the Settings button to enter the Stream
output dialog in Figure 6-4, where you get to select (among others) the streaming protocol and
the encapsulation method. Select UDP and provide an IPv6 destination address. This can be the
unicast address of the host receiving the stream, or it can be a multicast address, such as ff15::1,
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Figure 6-3. Opening a DVD in VLC (Windows)



so that multiple hosts can receive the same stream. The IPv6 address must be between brackets.
(See Chapter 2 for information on the different multicast address types.)

Selecting SAP announce and filling in a channel name makes VLC send out an announce-
ment about the stream, which some clients can detect and present to the user in lieu of manually
selecting the multicast address for a stream. However, manually entering a multicast address is
more reliable. Do this by selecting File ➤ Open Network in VLC. This opens the dialog shown in
Figure 6-5.
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Figure 6-4. Enabling multicast streaming output in VLC (Windows)



The first option in this dialog is UDP/RTP. Unicast is implied in this case. RTP is the Real-
Time Transport Protocol that sits on top of UDP. With this option, VLC simply starts listening
for packets on the selected port, regardless of where they come from. When it receives packets,
it decodes and displays the embedded stream. Some systems need to know whether you want
to receive the unicast stream over IPv4 or IPv6. In that case, there is a Force IPv6 checkbox that
selects IPv6.

UDP/RTP multicast does the same thing as UDP/RTP, except that VLC now listens on a
specific multicast address. Some operating systems (such as MacOS) are unable to decide
which interface should be used to receive the stream, so an interface name (or number) must
be tacked onto the address, preceded by a percent sign. In this case, it’s %en0 for the built-in
Ethernet interface on a MacOS system. Under Windows, adding an interface generally isn’t
necessary, but if it is, it’s in the form of an interface index number. Use the netsh interface
ipv6 show interface command to determine the index number. Don’t forget to enter the
same port number that’s used to source the stream, if this is different from VLC’s default port
1234. The HTTP/FTP/MMS/RTSP option retrieves a stream or file referenced with an URL
from a server.

■Note IEEE 802.11, 11b, and 11g wireless networks aren’t suitable for transporting audio and especially
video streams over multicast because of limitations on how 802.11 and its successors handle multicasts.
See the section about IPv6 over Wi-Fi in Chapter 8 for more information.
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The Apache 2 Web Server
Apache, the most popular Web server software, gained IPv6 support in version 2. Although
Apache 2 was released in 2002, version 1.3 is still in wide use. For instance, MacOS X Panther
still comes with Apache 1.3, although MacOS X Server has Apache 2 on board. Red Hat 9, on the
other hand, comes with Apache 2. Use httpd -v to determine the Apache version installed.
(You may have to hunt down the location of the httpd; the Apache binaries are usually installed
under an Apache directory rather than one of the usual directories for binaries.) On most sys-
tems, it’s pretty straightforward to install Apache 2 from the source (http://www.apache.org/)
with the usual ./configure, make, make install sequence.2 However, be careful when upgrading
from 1.3 to 2, as the interface to external modules such as PHP has changed, making it neces-
sary to install new versions of all modules in use. A binary distribution for Windows is also
available on the Apache Web site. As always, Apache is a complex piece of software, and the
information here alone isn’t enough to be able to set it up, so consult additional documentation.
Hint: when running Apache out of the box, point a browser to the newly installed server to read
the documentation. The documentation is, of course, also available on the Apache Web site.

■Note It’s not a problem to run Apache versions 1.3 and 2 concurrently, as long as they’re installed in dif-
ferent places and they bind to different IP addresses and/or ports. For instance, Apache 1.3 can handle IPv4
while Apache 2 handles IPv6.

Listening
On most systems, Apache takes advantage of IPv4-mapped addresses so that IPv4 and IPv6
sessions can be handled on a single socket. The exact behavior of Apache’s address binding is
determined in the configuration file with the Listen directive. The Listen keyword takes either
an IP address with a port number or just a port number as an argument. IPv6 addresses must
be between brackets. You can specify more than one address or port for Apache to listen on by
issuing additional Listen lines. In most cases, one or two Listen lines, like in Listing 6-1 ,are
sufficient.

Listing 6-1. The Listen Statement in the Apache Configuration

# Standard HTTP port:
Listen 80
# HTTPS HTTP over SSL port:
Listen 443

The Apache documentation claims that IPv4-mapped addresses are automatically disabled
by the configure script on FreeBSD, OpenBSD, and NetBSD to comply with system policy. This is
probably true as of FreeBSD 5.0, because on FreeBSD 4.9, IPv4-mapped addresses are still used.
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You can force the use of IPv4-mapped addresses with the --disable-v4-mapped or
--enable-v4-mapped arguments to configure. When IPv4-mapped addresses are disabled, the
address-less Listen directive in Listing 6-1 results in an IPv6-only Web server. To overcome
this problem, Apache must be configured to listen for IPv4 and IPv6 sessions on separate
sockets. This is what Listing 6-2 does.

Listing 6-2. Making Apache Listen on Separate IPv4 and IPv6 Sockets

Listen 0.0.0.0:80
Listen [::]:80
Listen 0.0.0.0:443
Listen [::]:443

Be sure to check whether Apache actually starts correctly with separate Listen directives
for IPv4 and IPv6, because if inadvertently IPv4-mapped addresses aren’t disabled, the IPv4
and IPv6 bindings may clash on some systems (such as Linux with kernel 2.4.20 or earlier).
When this happens, Apache can’t bind to the IPv4 and IPv6 sockets as configured, and it will
refuse to start. It is, of course, also possible to specify the actual IPv4 and IPv6 addresses of the
server, rather than the wildcard addresses for IPv4 and IPv6. However, this is inconvenient when
these addresses change. The difference between configuring Apache per Listing 6-1 or 6-2 is
readily visible with the FreeBSD and MacOS netstat command, as shown in Listing 6-3.

Listing 6-3. Showing Listening Sockets

> netstat -a
Active Internet connections (including servers)
Proto Recv-Q Send-Q  Local Address  Foreign Address  (state)
tcp46      0      0  *.https        *.*              LISTEN
tcp46      0      0  *.http         *.*              LISTEN
tcp6       0      0  *.pop3         *.*              LISTEN
tcp4       0      0  *.pop3         *.*              LISTEN

In this example, the HTTP and HTTPS services are bound to the tcp46 protocol or, in other
words, TCP over both IPv4 and IPv6. The POP3 service, on the other hand, is bound to an IPv4
socket and an IPv6 socket separately.

Virtual Hosting
It turns out that hosting Web content is addictive: once you start with a single Web site, you
soon find yourself wanting to host more. Much to the dismay of hardware vendors around the
world, Apache (and other Web server software) will happily run multiple virtual Web servers
on a single physical machine. In the early days of the Web, this was done by adding additional
IP addresses to the server and serving up different content based on the IP address clients
connected to. However, this IP-based virtual hosting uses up a lot of addresses and requires a
lot of configuration work. As of HTTP 1.1, it became possible for the client (browser) to tell the
server which domain name it tried to connect to, so it became possible to run different virtual
hosts on a single IP address. This capability was also added to Web browsers that otherwise
use HTTP 1.0, so today, all browser applications support name-based virtual hosts. Listing 6-4
shows a simple name-based virtual host configuration for Apache 2. Note that this is only a
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small part of a working Apache httpd.conf file. Consult the example httpd.conf and the
Apache documentation for more details. If you only want to run a single Web site at this point
in time, it’s not necessary to configure a virtual host, but it isn’t any harder, and it makes
adding additional servers later easier.

Listing 6-4. Name-Based Virtual Hosts with Apache

NameVirtualHost *

<VirtualHost *>
ServerName www.example.com
ServerAlias www.ipv4.example.com www.ipv6.example.com
DocumentRoot /usr/local/www/data/
</VirtualHost>

<VirtualHost *>
ServerName www.beispiel.de
ServerAlias *.beispiel.de *.beispiel.au
DocumentRoot /usr/local/www/data/beispiel/
</VirtualHost>

The NameVirtualHost * line tells Apache that we’ll be using name-based virtual hosts on all
addresses that Apache is configured to Listen to. When mixing real IP-based virtual hosts with
name-based virtual hosts, this command is used to separate the addresses used for IP-based
virtual hosts from the ones used for name-based virtual hosts. The virtual host configuration
for www.example.com follows after this. The asterisk in the <VirtualHost *> line works in con-
junction with the one in the NameVirtualHost command to match any address. It’s also possible
to list one or more IP addresses or domain names (that will be resolved into IP addresses when
reading the configuration) here, separated by spaces. Everything between <VirtualHost *> and
</VirtualHost> only applies to the virtual host in question. The ServerName is matched against
the domain name supplied by the Web client. So if the browser tells the server that it’s trying to
contact www.example.com, the settings for the virtual host with ServerName www.example.com will
be used. The names following ServerAlias are additional domain names that are equivalent
to the name listed in ServerName. In this case, a client asking for www.ipv4.example.com or
www.ipv6.example.com will see the same content as one asking for www.example.com. Of course,
this works only if the DNS records also point to the same address. The second virtual host has
wildcard records in ServerAlias that match all domain names ending in beispiel.de and
beispiel.au. The DocumentRoot points to the directory that is the root directory for the virtual
server.

Because IP addresses aren’t exactly scarce in IPv6, you may decide to go with IP-based
virtual hosts. In this case, it’s probably still a good idea to configure the virtual hosts as name-
based, because this keeps the Apache configuration file free of IP addresses. In theory, a client
can then connect to an address that belongs to one domain and issue a request for another
domain. In practice, this won’t happen unless there is a reason for people to go out of their
way to make their system do this. An additional reason to avoid configuring IP-based virtual
hosts as such is to keep Apache from having to perform DNS lookups when it parses its con-
figuration. Failure to complete these lookups can keep Apache from starting or make virtual
hosts unavailable.
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■Tip You can check the virtual host configuration in the httpd.conf file with httpd -S. This reports errors
and provides some information on the configured virtual hosts, but this information isn’t very complete.

There is one case where name-based virtual hosts can’t be used: with SSL/HTTPS. The
SSL protocol needs to know the hostname a client is connecting to for its security negotiations
before the HTTP protocol becomes active. Because the SSL configuration needs a lot of set-
tings, it’s impractical to provide an example. Have a look at the sample httpd.conf and
ssl.conf file that come with Apache. Skip over the SSL documentation at your peril.

■Note If you use scripts on your Web server, those scripts may now receive an IPv6 address from Apache
in the variable REMOTE_ADDRESS.

The Sendmail Mail Transfer Agent
Ten years of experience as a sendmail user has taught me that trying to understand the
sendmail configuration process in terms of system administration leads to madness. As black
magic, however, it makes a lot of sense. So I’m not in the best position to tell others how to do
this. I wouldn’t recommend installing sendmail on a system that doesn’t come with it, unless
you really know what you’re doing. Still, I got the sendmail that came with FreeBSD 4.9 to use
IPv6, so I can at least share how that’s done. In FreeBSD 5.4, sendmail is configured to use IPv6
by default. Listing 6-5 shows the relevant lines in a .mc file. Under FreeBSD, that would be the
/etc/mail/<host.name.tld>.mc file.

Listing 6-5. sendmail IPv6-relevant .mc Configuration

DAEMON_OPTIONS(`Name=MTA-IPv4, Family=inet')
DAEMON_OPTIONS(`Name=MTA-IPv6, Family=inet6')
define(`confBIND_OPTS', `WorkAroundBrokenAAAA')

The third line makes sendmail work around DNS servers that respond incorrectly to AAAA
queries. After adding the IPv6 lines to the .mc file, you should use the m4 utility to create a .cf
sendmail configuration file. FreeBSD has a Makefile in /etc/mail that will do this when you
type make in that directory.

Under Red Hat ES Linux, this mostly works the same way, except that the .mc file may be
named sendmail.mc, and you need the sendmail-cf package to generate the .cf file from the
.mc file. However, Linux suffers from IPv4-mapped problems, so you should only enable the
IPv6 MTA, which will also accept connections over IPv4. If you enable both IPv4 and IPv6,
sendmail will complain about a “wedged” socket in /var/log/maillog and quit.

If you are brave enough to edit the .cf file by hand, you can add lines like the ones in
Listing 6-6 to the appropriate .cf file to make sendmail IPv6-aware.
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Listing 6-6. sendmail IPv6-relevant .cf Configuration

# SMTP daemon options
O DaemonPortOptions=Name=MTA-IPv4, Family=inet
O DaemonPortOptions=Name=MTA-IPv6, Family=inet6

# name resolver options
O ResolverOptions=WorkAroundBrokenAAAA

After editing the configuration file, you must restart sendmail. FreeBSD will do this for you
with a make restart, but a good old-fashioned killall -HUP sendmail works, too. Note that
within the context of SMTP (and thus sendmail configuration files, including the access file),
literal IPv6 addresses are represented as IPv6:address, such as IPv6:2001:db8:31:1::2 (RFC
2821). This means that the localhost address becomes IPv6:::1. However, sendmail versions
older than 8.12 use the [2001:db8:31:1::2] format.

■Note See the sendmail installation instructions on how to compile a binary with IPv6 support, if the
sendmail that came with your system is IPv4-only.

The UW POP and IMAP Servers
With an IPv6-enabled email client and an IPv6-enabled MTA, the only missing piece of the
puzzle is a way of getting messages from the server to the client over IPv6. Two protocols
accomplish this: POP3 and IMAP. IMAP is superior to POP in almost every way, so if you have
the choice, install IMAP on your server. Better yet, install both POP3 and IMAP.3 The University
of Washington has POP3 and IMAP (with the obsolete POP2 protocol thrown in for good
measure) server implementations to go along with their Pine email client. Even though the
unpatched Pine distributed by UW doesn’t support IPv6, the UW POP3 and IMAP servers do.
The software is available from http://www.washington.edu/imap/. Although the distribution
is called “imap,” it contains both the POP and IMAP daemons. Installation is a bit different
than usual; see the instructions. You need to edit the Makefile and change “IP=4” to “IP=6”
to enable IPv6 support. If you have trouble building the software, this is generally because the
OpenSSL headers or library can’t be found. Building without SSL is tempting, because this will
generally work without problems. However, this isn’t a very good idea because then the POP3
and IMAP protocols aren’t encrypted, so email will flow over the network in the clear. It’s pos-
sible to protect passwords without SSL by using more advanced authentication protocols, but
this isn’t really worth the trouble: hunt down the right include and library paths, and build
SSL-capable versions of the daemons.

The UW POP3 and IMAP daemons start from the inetd. Listing 6-7 shows the relevant
lines from a FreeBSD /etc/inetd.conf file.
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Listing 6-7. Enabling POP3 and IMAP in /etc/inetd.conf

pop3   stream  tcp    nowait  root  /usr/local/libexec/ipop3d  ipop3d
pop3   stream  tcp6   nowait  root  /usr/local/libexec/ipop3d  ipop3d
imap4  stream  tcp    nowait  root  /usr/local/libexec/imapd   imapd
imaps  stream  tcp46  nowait  root  /usr/local/libexec/imapd   imapd

Don’t forget to issue a killall -HUP inetd or similar after editing the inetd.conf. The
(non-SSL) POP3 service is provided on two different sockets for IPv4 and IPv6, but the config-
uration is otherwise the same. The non-SSL IMAP service (imap4, port 143) is only available
over IPv4, but the SSL-protected version (imaps, port 993) is accessible over both IPv4 and
IPv6 through a single socket. This only works if the system supports IPv4-mapped addresses.
Note that neither the ipop3d nor the imapd requires a configuration file.
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The Transition

flag day: n.

A software change that is neither forward- nor backward-compatible, and which is

costly to make and costly to reverse.
The Online Hacker Jargon File, version 4.4.7

Although IPv6 is by no means a simple protocol in and of itself (this will become very clear
in Chapter 8), most of the complexities related to running IPv6 stem from the transition from
IPv4 to IPv6, and the coexistence of the two protocols. From the start, the IETF realized that it
would be impossible for the entire Internet to switch from IPv4 to IPv6 on a predetermined
“flag day.” This realization led to the development of several transition mechanisms (see RFC
2893), which can roughly be grouped into three categories:

1. Dual stack (also called “dual layer” or “Dual Stack Transition Mechanism,” DSTM)

2. Tunnels

3. Translation and proxying

So far, we’ve implicitly assumed that IPv6 capability would be an addition to existing
IPv4 capability. Obviously, at some point, IPv4 will have to be turned off, as running dual stack
indefinitely doesn’t solve any problems. Rather, it makes everything (slightly) harder, as it’s still
necessary to do everything that must be done to support IPv4 as before and add IPv6 on top of
that. On the other hand, it’s very attractive to run dual stack, as this only adds new capabilities
without taking existing ones away. A dual stack host can talk to anyone: other dual stack hosts,
IPv4-only hosts, and IPv6-only hosts.

Tunneling is a very powerful transition mechanism, as it allows existing IPv4 infrastruc-
ture to be leveraged for IPv6 communication. Tunnels can be removed one at a time as native
IPv6 connectivity becomes available, so the use of tunnels as a transition mechanism doesn’t
add transition difficulties.

Translation between IPv4 and IPv6 is the most controversial of the transition mecha-
nisms, as translation between IP versions has many of the same limitations of the dreaded
Network Address Translation now common in IPv4 that IPv6 is supposed to get rid of in the
first place. On the other hand, without any form of translation, there are only two options:
upgrade all IPv4 hosts to dual stack before the first host can start running IPv6-only, or live
with a fragmented Internet where IPv4-only hosts can’t talk to IPv6-only hosts during the
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transition. Proxying is less controversial but not as generally applicable as translation because
the application must explicitly support the use of a proxy.

Planning the Transition
The first question that requires an answer when contemplating IPv4-to-IPv6 transition plans
is: should we bother at all? Isn’t IPv6 going to be a huge failure?

Well, Nils Bohr said it:

“Prediction is very difficult, especially if it’s about the future.”

With that caveat out of the way, I see no way in which we could still be running IPv4 30
years from now similar to the way we do today. On the other hand, I don’t see how we can
switch to IPv6 in three months. On a warm and sunny August day, it’s very likely that the next
day will also be warm and sunny. And the day after that. But it’s unlikely that it’s still warm and
sunny by January. Something will have change between three months and 30 years from now.

IPv4 Address Depletion and the HD Ratio
Everyone knows that a tube can only hold a finite amount of toothpaste. So, considering the
amount of toothpaste used every day, it should be easy to figure out when the tube will be
empty. In practice, the tube is never really “empty”—it just gets harder and harder to get at the
remaining toothpaste hiding in the corners of the tube. At some point, it’s just easier to throw
away the tube and open a new one. Address space is exactly like that: at some point, the effort
required to manage the increasingly used-up address space becomes too great, so it’s easier
to expand it. In RFC 3194, Alain Durand and Christian Huitema came up with a number that
expresses address utilization in a way that makes it possible to draw conclusions on past
experience. This number is the “HD ratio,” which is calculated as

So if an organization has an old class B network with 65,536 addresses in it, and 4096 of
those addresses are in use, the HD ratio would be log(4096) / log(65536) = 12 / 16 = 0.75 or 75%.
In this example, the base for the logarithm is two, but any base can be used because it’s the
ratio between the logarithms that’s important, not the absolute value. After looking at various
address types such as French and North American phone numbers and a worldwide DECnet
network, Durand and Huitema concluded that an HD ratio of 80% or lower corresponds to a
comfortable level, and at 87% or higher, the address space becomes so hard to manage that
the address length is expanded, or techniques to reduce address use are deployed.

The reason it’s impossible to attain an HD ratio of close to 100% is that address space is
lost whenever there is an administrative delegation boundary. For instance, when there are
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lots of unused phone numbers in area code 401, that really doesn’t help against a shortage in
area code 213. Or when there are two /24 IPv4 subnets and both have only 150 addresses in
them, that’s 300 addresses used and 200 that remain unused but that can’t be used elsewhere.

■Note Out of the 256 /8 blocks, 32 are class D (224–239, multicast) and class E (240–255, reserved) and
three others are also unusable: 0, 10, and 127. Of the 221 usable /8s, 72 were unused as of March 2005.
See http://www.iana.org/assignments/ipv4-address-space for the most recent information.

According to the ISC Domain Survey at http://www.isc.org/ds/, 317 million IPv4 hosts had a domain
name in January 2005.

For the IPv4 address space with 317 million out of 3.7 billion addresses used, the HD ratio
is 88.9%. But 1.2 billion addresses still have the shrink-wrap on them in the IANA warehouses.
The HD ratio for the 2.5 billion addresses that are delegated to the Regional Internet Registries
(or sometimes directly to users) would be 90.5%. Assuming we can reach a similar HD ratio for
the remaining 1.2 billion addresses, there is enough room to number 163 million more hosts,
for a total of 480 million IPv4 hosts.

Obviously, the HD ratio replaces information about actual delegation boundary losses
with a rule of thumb, so this isn’t a hard limit, but it does show that the IPv4 address space is
more limited than it would seem at first glance.

IPv6 vs. Network Address Translation
I suppose it’s possible to ignore IPv6 and solve address scarcity problems by large-scale adoption
of NAT. NAT is already in wide use today, and it works very well for client/server applications,
such as the Web and email, where the client is behind a NAT device. But NAT doesn’t work so
well for peer-to-peer applications such as Voice over IP and client/server applications, where
more than one server is behind the NAT device, and it severely restricts possible new applica-
tions, such as home automation or ubiquitous computing. To make NAT really useful as an
address conservation technique, it would have to allow multiple servers/peers to share a single
IP address. Because obviously two different server or peer-to-peer applications on the same IP
address can’t share a single port number, this means the end of the “well-known port” concept.
In essence, the TCP or UDP port number would become part of the address. The changes required
to make this work are probably similar in scale to the ones needed to make IPv6 work. However,
a lot of the work required to get IPv6 off the ground has already been done, so I don’t think we’ll
see NAT as a permanent replacement for IPv6. Still, with NAT in place, it’s going to take a little
more time to burn up the remaining unused IPv4 address space.

Making a Plan
With the HD ratio and NAT limitations in mind, we can reasonably assume that adoption of
IPv6 at some point in the future may not be inevitable but is certainly likely. This answers the
“if” question, bringing us to the “when” and “how” questions. The way I see it, there are four
major phases in the move from IPv4 to IPv6:
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1. Gaining some basic IPv6 experience. This phase entails turning on IPv6 on a small
number of systems, seeing what happens, and doing some tests. All that’s required
here is an IPv6 tunnel and some hardware that isn’t used for anything important. At
this point, it’s entirely possible to jettison IPv6 and keep running just IPv4.

2. Adding limited IPv6 support. At this point, it’s possible to do certain things over IPv6,
but other things may still require IPv4 connectivity. There are some risks here, as IPv6 is
used on production systems for production traffic, but going back to IPv4 is still possi-
ble (with some loss of face as the worst consequence).

3. Promoting IPv6 to a full equivalent of IPv4. This means retiring IPv4-only hardware
and software or using transition techniques to make IPv4-only services available over
IPv6 (and/or the other way around). It’s hard turn back to IPv4 after reaching this point
because users may now depend on the IPv6 capability.

4. Turning off IPv4. Turning off IPv4 completely won’t be possible for a long time, but
running IPv6-only in parts of a network may happen relatively soon, especially with
the aid of transition techniques so that IPv4-only services elsewhere can still be used.

At this point, I recommend for everyone to enter phase one and get familiar with IPv6. For
some people moving into phase two will be easy and painless, but for others, there may be obsta-
cles: hardware or tools that don’t support IPv6 (even if the application software does), lack of a
multihoming1 solution, and so on. However, if customers are asking for IPv6, you may not have
much of a choice. If a service provider wants to make its services available over IPv6, this means
that the software used to provide the service must be IPv6-capable. It also means that the service
provider’s ISP needs to provide IPv6 connectivity, and, if the software vendor takes testing seri-
ously, the software vendor’s ISP must do so as well. This can lead to a low-key snowball effect.

If you decide to wait with phase two at this point, revisit the issue periodically. This is
especially important when planning the acquisition of new hardware or software. Buying
products that aren’t IPv6-ready and can’t be upgraded to IPv6 could be a big problem if IPv6
suddenly takes off. For instance, if you’re an ISP, you should be very careful with investing in
high-speed hardware (ASIC) forwarding-based routers that can only support IPv6 in software.
Usually, new network services don’t take off overnight. However, IPv6 has the potential to be
different as users move traffic flows from IPv4 to IPv6. If two organizations exchange lots of big
files by using FTP, all this traffic can move from IPv4 to IPv6 overnight. That would be a bad
morning indeed for a router linecard that can do gigabit at linespeed for IPv4 but only 10% of
linespeed at IPv6.

For most organizations, going to phase three is probably not a good idea yet. However, for
software vendors, it could make sense to remove any IPv4 dependencies, effectively moving
them to phase three. Organizations that mostly communicate internally may want to move to
phase three and even phase four because removing IPv4 from parts of the network makes for
easier network design.

A good way to plan for the transition to IPv6 would be to create a plan that lands you in
phase three after three years, with deliverables or milestones for important steps. See Listing 7-1.
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Listing 7-1. An IPv6 Deployment Plan for an ISP

Phase Month Milestone
1     1     Get IPv6 tunnel

Enable IPv6 on spare Windows XP office PC and test FreeBSD server
3     Set up OSPFv3 routing in the lab

2     6     Obtain IPv6 allocation from Regional Internet Registry
Set up IPv6 BGP session with transit ISP A
Enable IPv6 on NOC workstations and NS2 nameserver

9     Register NS2 IPv6 address with TLD registries
Set up IPv6 BGP session with transit ISP B
Set up IPv6 BGP sessions with internet exchange peers
IPv6 training for NOC personnel

12    Set up experimental tunnel server for customers
15    Upgrade all routers to IPv6, install OSPFv3 and IPv6 over iBGP
18    Enable IPv6 on proxy server, make proxy software IPv6-aware

3     21    Add support for native IPv6 to DSL infrastructure
24    Add IPv6 support to provisioning system
27    Evaluate possibilities for IPv6 load balancing on WWW cluster
30    Enable IPv6 on all servers

Make SMTP, POP, and IMAP servers IPv6-aware
33    Implement IPv6 WWW cluster load balancing

IPv6 training for support personnel

Then, put the plan in the back of a filing cabinet and take it out once or twice a year and
determine if it’s necessary to implement the next milestone. So if IPv6 gains popularity quickly,
you’ll just execute the plan as intended, and you’re at full IPv6 support fairly soon. On the other
hand, if IPv6 uptake is slow, you’ll end up waiting relatively long between the successive steps,
so the time and money required to implement the plan are limited. If it turns out there is no
reason to proceed with IPv6 at all, the only thing you’ve done is waste a few hours drawing up
a plan. So whatever happens, your bases are covered.

Obviously, there are circumstances when it makes sense to go about IPv6 adoption very
differently. For instance, in some cases, it may be useful to start with an IPv6-only network
and use transition mechanisms to use IPv4, rather than the other way around. An interesting
aspect here is that tunneling individual IPv4 addresses to systems that need them over IPv6
makes it possible to utilize 100% of the available IPv4 addresses, while a traditional IPv4 net-
work always wastes some part of its addresses due to the limited flexibility of subnet sizes and
so on.

Turning Off IPv4?
It seems premature to talk about running IPv6-only hosts or even an IPv6-only network at this
point, but disabling IPv4 on a test system once in a while is extremely useful to flush out hid-
den assumptions about the availability of IPv4 in the system or applications. I’ve tried it a few
times, generally with limited success. Many operating systems assume the presence of IPv4.
Windows is especially bad in this area, as it doesn’t support looking up domain names over
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IPv6 transport. MacOS is more advanced: the graphical user interface even allows IPv4 to be
turned off, but it soon turns out that applications such as Mail, which are otherwise IPv6-
aware, won’t function without an IPv4 address present.2 In my opinion, ignoring the future
need to run IPv6-only with the argument that we’re not there yet leads to problems such as the
IETF failing to come up with a good way to find DNS resolvers that are reachable over IPv6
after almost a decade of IPv6 standardization work.

Application Transition Scenarios
When considering the implementation of transition mechanisms such as translation and
proxying, it’s important to keep in mind the different communication models used by differ-
ent applications. For instance, email clients only communicate with a specific server, and the
servers communicate among each other, as depicted in Figure 7-1. Let’s call this the “email
model.”

In the email model, it’s very easy for clients to migrate from IPv4 to IPv6; as long as the
specific server the client uses is dual stack, there won’t be any problems. However, because
any server potentially needs to communicate with any other server, the last server must
become dual stack before the first server can move to IPv6-only.

The communication model for the Web is very different. As a rule, Web servers don’t
communicate with each other; all communication is between clients and servers. Unlike
email, a client doesn’t communicate with a specific server, but with any server. See Figure 7-2
for the “Web model.”
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Figure 7-1. The email communication model

2. You can trick Mail into working on an IPv6-only Mac by adding an extra (fake) IPv4 nameserver
address in the network settings. 127.0.0.1 is a good choice.



In the Web model, all servers that are part of the World Wide Web must be dual stack
before the first clients can move to IPv6-only. Of course, a dual stack client can still communi-
cate over IPv6 with a dual stack server, and private networks can move to IPv6-only without
waiting for the Web at large to do the same.

A third model is the peer-to-peer model. There are many peer-to-peer applications, and
they don’t all communicate in the same way. But in most cases, there are servers of some kind
that communicate with other servers. Clients communicate with the servers but also with
other clients, hence the peer-to-peer moniker for this group of applications. Figure 7-3 shows
a general peer-to-peer communication model.

Even though different peer-to-peer applications use a similar communication model,
there is a very important difference between different types of peer-to-peer applications. One
type, which includes Voice over IP (VoIP), requires a given peer to communicate with a specific
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Figure 7-3. Peer-to-peer communciation



other peer. When making calls over the Internet, we’re only interested in talking with the person
we called, no substitutions. With file sharing applications, such as BitTorrent, on the other hand,
there is no requirement to be able to communicate with any particular peer: any reasonable
subset of all available peers will do, as they all have pieces of the same file. Obviously, the tracker
(BitTorrent jargon for the server that coordinates the initial communication between peers) and
a number of peers must be dual stack, or either the IPv4-only or the IPv6-only peers can’t join
the “swarm” successfully.

■Note The BitTorrent specification allows peers to identify themselves with either an IPv4 or IPv6
address or a hostname. However, trackers generally ignore the identification supplied by the peer in favor
of the remote address they see to avoid problems with peers identifying themselves with private IPv4
addresses. And of course, just like so many other applications, most BitTorrent clients don’t know how to
work with IPv6 even though the protocol supports it.

With the two different peer-to-peer communication models, the total number of applica-
tion communication models comes to four, as listed in Table 7-1.

Table 7-1. Communication Models

Model Client-to-Client Client-to-Server Server-to-Server

Email model no one-to-one yes

Web model no one-to-many no

VoIP model specific peer one-to-one yes

BitTorrent model any peer one-to-one no

By now, it should be clear that the transition to IPv6 is the easiest for applications that con-
form to the email or BitTorrent models. In the email model, an IPv6-only client only has to be
able to communicate with a single (dual stack) server, and in the BitTorrent model, an IPv6-
only peer can communicate with a dual stack server and IPv6-only or dual stack peers. The Web
and VoIP models are hampered by a chicken-and-egg problem: there aren’t any advantages to
upgrading until everyone has upgraded. This is where translation and proxy mechanisms come
in: they “upgrade” Web and VoIP model applications to email model applications. In essence,
the translator or proxy becomes the dual stack server.

Proxying
Although many more applications lend themselves to being proxied, proxies are mostly used
for HTTP and FTP. For most other applications or protocols, the availability of proxy support
in the application and IPv6-aware proxy software is such that proxying is either impossible or
not worth the trouble. The most popular Web and FTP proxy is Squid, but unfortunately, Squid
doesn’t have built-in IPv6 support (although there is ongoing work and there are third-party
patches). A good alternative is Apache, which we already installed in the previous chapter.
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A very nice feature of a dual stack HTTP/HTTPS/FTP proxy is that it both allows IPv6-only
clients to connect to the IPv4 Web and also IPv4-only clients to connect to IPv6-only sites.

Apache as a Proxy
To be able to proxy, it’s necessary to compile Apache 2 with support for several additional
modules. Listing 7-2, when executed in Apache’s source directory, builds Apache with SSL sup-
port and several proxy options. The SSL support isn’t required for proxying, though.

Listing 7-2. Building Apache with Proxy Support

make clean
./configure --enable-so --enable-ssl --enable-mods-shared="proxy proxy_http proxy_➥

ftp proxy_connect auth_digest"
make
make install

The make clean line removes files left over from a previous build. Note that this particular
./configure line enables shared object support. The different (shared) modules respectively
allow proxying in general: the HTTP, FTP, and HTTPS proxies and digest authentication. If your
existing Apache didn’t include SSL support, you should probably leave out the --enable-ssl
options. If Apache is already running, stop it with apachectl stop before issuing make install
and start the newly built Apache with apachectl start. Listing 7-3 shows the lines that must be
added to the Apache configuration file to enable proxying.

Listing 7-3. Configuring Apache to Be a Proxy

LoadModule  proxy_module          modules/mod_proxy.so
LoadModule  proxy_http_module     modules/mod_proxy_http.so
LoadModule  proxy_ftp_module      modules/mod_proxy_ftp.so
LoadModule  proxy_connect_module  modules/mod_proxy_connect.so
LoadModule  auth_digest_module    modules/mod_auth_digest.so

ProxyRequests On

<Proxy *>
Order allow,deny
Allow from 2001:db8::/32 192.0.2.0/24 example.com

</Proxy>

The ProxyRequests On line enables proxying, but before that can happen, the necessary
shared objects must be loaded. Also, it’s a very bad idea to run a proxy without any kind of access
control. Spammers just love “open” proxies because those allow them to spill their sewage all over
the Net with impunity because the proxy hides their address. For the same reason, anti-spam
groups hate open proxies, so they hunt them down and put them in blacklists. Many people use
these blacklists to block incoming mail from hosts that run an open proxy, so you really don’t
want your server to end up on such a list.

When I set up Apache 2 for the first time, I wanted to run it side by side with Apache 1.3
to see if everything worked as it should. So I configured Apache 2 to listen on IPv6 and also on
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IPv4 on port 8080, which is a traditional proxy port. Within minutes, the “proxy” was discov-
ered. To avoid unnecessary prodding by both sides in the spam war, it’s easier to run the proxy
on port 80 along with any regular Web sites that Apache serves. It also saves one or two lines of
configuration. On the other hand, there is something to be said for running a completely sep-
arate Apache instance for proxying. This way, you can take the proxy offline without disturbing
regular Web service.

Anyway, the <Proxy *> line tells Apache that the configuration statements that follow
(until </Proxy>) are about proxy requests. The asterisk means that we’re talking about all proxy
requests. The Order allow,deny line looks rather strange to the untrained eye. Its purpose is to
indicate that we’re explicitly going to allow certain things and that everything else should be
denied. With order deny,allow, on the other hand, the reverse would happen: everything that
wasn’t explicitly denied would be allowed. The Allow line tells Apache that proxy requests from
listed IPv6 and IPv4 address ranges and all hosts within the domain example.com are allowed.

Another way to set up proxy access restrictions is to limit access to the proxy based on a
login and a password rather than on address ranges or domain names. This makes it much
easier for “road warriors” to connect to the Internet wherever they happen to find themselves
and still use the proxy. Unfortunately, it doesn’t seem to be possible to allow unauthenticated
users in certain address ranges or domains while forcing users outside those trusted parts of
the network to authenticate themselves with a password. The Apache module needed to per-
form user authentication was already loaded in Listing 7-3, and Listing 7-4 provides the
finishing touches, which should replace the <Proxy *> to </Proxy> lines in Listing 7-3.

Listing 7-4. Limiting Proxy Access with a Login and Password

<Proxy *>
order allow,deny
allow from all
authname proxy
authdigestfile /etc/proxypasswd.digest
authtype digest
require valid-user

</Proxy>

This configuration allows access to the proxy from everywhere (allow from all) but also
requires a valid user. It is, of course, also possible to require one or more named users instead.
Apache reads user information from the file that authdigestfile points to. Users can be added
to such a file with Apache’s htdigest utility. Listing 7-5 uses htdigest to create a user/password
combination.

Listing 7-5. Creating Users for Digest Authentication

# /usr/local/apache2/bin/htdigest /etc/proxypasswd.digest proxy iljitsch
Adding user iljitsch in realm proxy
New password: 
Re-type new password: 
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Listings 7-4 (the authname line) and 7-5 both use a “realm” called proxy. Realms can be
used to keep authentication for different Web sites or parts of Web sites served by the same
Apache apart. Many browsers display the realm when prompting the user for a login and a
password. Apache supports several authentication methods. The simplest is “basic,” which
doesn’t encrypt the password, so it’s very insecure. The newer variation of the “digest” method
implemented in the mod_auth_digest module (as opposed to the older mod_digest module)
uses fairly strong security, but only for the password: the HTTP requests and their results pass
over the network in clear text. However, Apache also supports HTTPS proxying, where the data
is of course fully encrypted, even as it passes through the innards of the proxy. HTTPS requests
are proxied differently from regular HTTP requests. When the client wants to do an HTTPS
request through a proxy, it first connects to the proxy, asks the proxy to connect to the destina-
tion server, and then sets up a secure sockets layer (SSL) connection directly with the destination
server. The proxy only copies the encrypted data to and from the client and doesn’t get to see
the unencrypted request or response data.

■Caution Although the digest user/password file stores MD5 hashes of the passwords rather than the
clear-text passwords that go in the htaccess files used for “basic” authentication, it’s still a good idea to
keep the file outside the view of prying eyes. Never put password files in the HTTP document tree.

Last but not least, Apache supports FTP proxying. However, because the proxy requests
are done over HTTP and the HTTP and FTP protocols are very different, there are many limita-
tions to using FTP through a proxy. That said, it generally works well for the type of FTP
requests that browsers make.

■Note When testing digest authentication, I had problems with Internet Explorer 6 and Safari 1.2.4.
Requests for URLs with a question mark in them (such as Web searches) weren’t understood by the proxy.
With address- or domain-based rather than password-based access control, these URLs would load just
fine. Firefox didn’t have any problems with digest authentication.

Caching
Although bandwidth is cheap and plentiful these days, it makes sense to have the proxy cache
the HTML pages and files that flow through it. Apache 2 does provide caching functionality, but
at the time of this writing, most of the caching options were still marked as “experimental,” and
with good reason: caching of remote Web resources on disk didn’t work to any useful degree.

■Tip There is much more to proxying with Apache. Read its documentation for more options.
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Using a Proxy
In Internet Explorer under Windows, you can enable a proxy by choosing Tools ➤ Internet
Options ➤ Connections ➤ LAN Settings, selecting the Use a Proxy Server for Your LAN check-
box, and filling in the proxy particulars, as shown in Figure 7-4.

In Firefox, use Tools ➤ Options ➤ Connection Settings, as shown in Figure 7-5.
MacOS takes a slightly different approach: proxies are configured as part of the network set-

tings. This means that you can have different proxy settings for different “network locations.” To
change the proxy settings, open System Preferences and select Network and optionally choose a
location. After that, you have to select a network interface under “Show.” The proxy settings will
be used only if you’re connected to the Internet through the interface for which the proxy is con-
figured. Set up proxies under the “Proxies” tab, as shown in Figure 7-6.

Setting up the proxy password in System Preferences often doesn’t work all that well, but
that shouldn’t be a problem, as the system will ask for the proxy login and password when
accessing the proxy for the first time.

■Tip Firefox under MacOS doesn’t use the system proxy settings, so you should set up a proxy for Firefox
the same way as for other operating systems.

■Note None of these systems accepts an IPv6 address in the proxy configuration, but they will use IPv6 to
connect to the proxy if the proxy’s name has an AAAA record.
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Figure 7-4. Setting up a proxy in Internet Explorer
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Figure 7-5. Setting up a proxy in Firefox

Figure 7-6. Setting up a proxy under MacOS



Transport Protocol Translation
A disadvantage of proxying is that it requires a lot of knowledge of the application layer proto-
cols such as HTTP and FTP. This knowledge allows for extra features such as caching, but most
of the time, these extra features aren’t needed anyway, so a much simpler form of translation
between IPv6 and IPv4 can be used: Transport Relay Translation (TRT, RFC 3142). A TRT imple-
mentation listens for incoming TCP (and sometimes UDP) sessions on the IPv6 side. When a
session comes in, the TRT device sets up a TCP connection to the IPv4 address encoded in the
bottom 32 bits of the IPv6 destination address and then proceeds to relay data between the two
TCP sessions. This works very well for all parties involved: the IPv6 host that originated the first
session only speaks IPv6, the IPv4 destination host only speaks IPv4, and the TRT device doesn’t
have to know about the particulars of the communication; it just copies data between both TCP
sessions. There are only two slight downsides. First, application protocols that put IP addresses
in the data stream (such as FTP, SIP, and RTSP) don’t work without additional “application layer
gateway” (ALG) glue. Second, IPsec doesn’t work with TRT, as IPsec lives below the TCP level
and is therefore not translated or forwarded.

■Note Don’t forget that in order to use TRT (or NAT-PT), the application on the IPv6 host must communi-
cate over IPv6. If the application tries to communicate over IPv4 instead, TRT or NAT-PT won’t be of any use.

DNS ALG: Trick-or-Treat Daemon
In small installations where only a few specific IPv4 addresses must be made available over
IPv6, it’s easiest to add the “magic” IPv6 addresses that connect to IPv4 destinations through
TRT to a DNS zone. For instance, suppose the entire network is IPv6-capable except for a
legacy device that must be managed with SSH. The legacy device has address 192.0.2.25,
and the magic prefix is 2001:db8:31:6464::/96. The TRT address for the device in question
would then become 2001:db8:31:6464::192.0.2.25 or 2001:db8:31:6464::c000:219, and this
address can be put in the DNS under an appropriate domain name. However, this doesn’t
work well as a general mechanism where IPv6-only hosts use TRT to communicate with any
IPv4-only host.

This is where a DNS application layer gateway comes in. The DNS ALG intercepts DNS
lookups by the IPv6-only hosts. When a request for an AAAA record can’t be satisfied because there
simply isn’t an AAAA record, the DNS ALG looks up the A record instead and creates a fake AAAA
record by combining the A record with the TRT prefix. The “trick-or-treat daemon” (totd) imple-
ments such a TRT DNS ALG. totd is available from http://www.vermicelli.pasta.cs.uit.no/
ipv6/software.html and is easily compiled with the ./configure, make depend, make, make install
sequence on the BSD family, Linux, and Solaris. On MacOS, the software is built without incident,
but the installation fails, so it’s necessary to copy the files and set the owner and permissions
manually. totd needs a simple configuration file that it expects at /etc/totd.conf or /usr/local/
etc/totd.conf (may be overwritten with a ./configure option). Listing 7-6 shows the contents
of this file.
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Listing 7-6. The totd.conf File

forwarder 2001:db8:31::53
prefix 2001:db8:31:6464::

The forwarder line points toward a resolving DNS server, and the prefix line supplies the
TRT magic prefix.

■Caution It’s important to keep totd well isolated from the normal DNS service to avoid the fake AAAA
records from polluting the DNS namespace. A good way to do this when the DNS ALG is only required on a
limited number of systems is to run totd locally on each system.

Faith on FreeBSD
Probably the first implementation of TRT is faith in the KAME IPv6 stack, which is the basis
of the IPv6 implementation in FreeBSD and other members of the BSD family. The faith TRT
consists of two parts: a faith network interface, and the faithd daemon. FreeBSD normally
has a faith0 interface, and new faith interfaces can be created with ifconfig faith create.
For the interface to do any useful work, it’s necessary to enable it by using a sysctl setting,
and the TRT prefix must be routed to the interface. This is accomplished in Listing 7-7.

Listing 7-7. Enabling the faith Interface

# sysctl -w net.inet6.ip6.keepfaith=1
# ifconfig faith0 inet6 2001:db8:31:6464::127.0.0.1/96

Because FreeBSD lacks a more direct way to route a prefix toward an interface, it’s easiest
to configure an address in the TRT prefix on the faith interface. The localhost address is a
good choice, as it’s unlikely that this will get in the way of anything. The next step is running
the faithd daemon. Before starting the daemon, it’s important to set up access restrictions to
keep the rest of the IPv6 Internet from using your relay. This is done in the /etc/faithd.conf
file, as shown in Listing 7-8.

Listing 7-8. Restricting Access to faithd

2001:db8:31::/48 permit 0.0.0.0/0

This line instructs faithd to allow relaying from any address in 2001:db8:31::/48 toward
any IPv4 address. See the faithd man page for more details. The easiest way to run faithd is to
start it with the port number that will be relayed as an argument. (The daemon can also be
run from inetd, but this is more complex.) Each TCP port that must be relayed requires a sep-
arate instance of faithd, and it’s not possible to relay a port with TRT if there is service running
locally on that port. As a result, faithd has only limited usability as a general-purpose transi-
tion mechanism.

CHAPTER 7 ■ THE TRANSITION 147



pTRTd on Linux
Because the Linux IPv6 stack doesn’t have any KAME ancestry, it doesn’t have faith. However,
for Linux, there is the Portable Transport Relay Translator Daemon (pTRTd),3 which is even
better. pTRTd supports UDP, doesn’t clash with local services, and a single daemon handles all
ports. pTRTd is available at http://www.litech.org/ptrtd/ and is installed using the custom-
ary ./configure, make, make install sequence. pTRTd depends the ip package (see Chapter 3)
and the tuntap network driver. Both are included in the Red Hat 9 distribution.

If started without arguments, the ptrtd daemon will use site local fec0:0:0:ffff::/96
prefix as the magic TRT prefix. Because pTRTd doesn’t include any access restrictions, it would
be a good idea to have the TRT prefix in site local space. Unfortunately, this doesn’t work: the
system keeps complaining that it “cannot assign” addresses. Specifying a prefix in global uni-
cast space with (for instance) ptrtd -p 2001:db8:31:6464:: works much better. To make sure
that others won’t abuse the relay, it’s important to set up firewall rules or a router access list to
limit access to the relay. See Chapter 9 for this.

■Caution I was unable to use pTRTd to connect from other IPv6 hosts to the IPv4 Internet on Red Hat ES4
Linux, even though the Red Hat machine itself was capable of going through pTRTd. But because this host
must be dual stack anyway, that doesn’t do much good.

Network Address Translation–
Protocol Translation
An even more general mechanism than transport layer translation is Stateless IP/ICMP
Translation (SIIT) as specified in RFC 2765. As the name indicates, SIIT doesn’t require an
implementation to keep around information about what kind of communication is going on.
However, it does need to know which IPv4 address is to be translated to which IPv6 address
and vice versa. This means that SIIT on its own is useful in a very limited number of situa-
tions, so it’s generally used as the “PT” part in NAT-PT: Network Address Translation–Protocol
Translation. NAT-PT adds IPv4 NAT behavior on top of SIIT so that an IPv6 host can simply
connect to a synthetic IPv6 address generated by a DNS ALG. The NAT part will then keep
track of which address and port number combinations go together so the PT or SIIT part can
do the actual translation. Because NAT-PT works at the IP layer, it’s at least theoretically pos-
sible to keep IPsec ESP intact when translating. Other than that, it provides pretty much the
same service as TRT.
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There are no NAT-PT implementations for Linux, FreeBSD, MacOS, or Windows, except
ones that are too experimental to be useful. Apparently, Cisco has a good NAT-PT implemen-
tation, but, unfortunately, this feature is only available in a small number of software images
for a small number of hardware platforms, so I haven’t been able to test this myself.

■Tip To my surprise, TRT/NAT-PT turned out a lot less useful than I thought it would be, because there are
very few applications that support IPv6, but for which it’s not possible to run an IPv6 server or proxy yourself.
So even though in theory, a pTRTd/NAT-PT setup allows for much broader connectivity to the IPv6 world, in
practice, having a dual stack proxy and mail server provide much the same benefits.
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IPv6 Internals

“What of, let us say, his inner organs?”

“In the overworld, such parts are considered unnecessary and even somewhat vulgar.

In short, there are no inner parts.”
Cugel’s Saga, Jack Vance

This chapter will look at IPv6 internals. A lot of this is pretty dry stuff: options, headers, more
options, lifetimes. But along the line, you’ll learn more about some of IPv6’s idiosyncrasies,
which is very helpful in troubleshooting the protocol (see more in Chapter 10). In some cases,
such as with renumbering and multicast group membership management issues, it’s neces-
sary to learn a good deal of background information before it’s possible to understand the
issue well. For this reason, several subjects that aren’t strictly internal to IPv6 are somewhat
“buried” in this chapter.

Differences Between IPv4 and IPv6
All knowledge about IPv6 begins with studying the IPv6 header format and the ways in which
it is different from the IPv4 header format. Even though at the time the IPv6 specifications were
written, 64-bit CPUs were few and far between, the IPv6 designers elected to optimize the IPv6
header for 64-bit processing. For this reason, I’ve drawn the IPv6 header “64-bit wide” in Fig-
ure 8-1, which is a little different from the way it’s usually depicted. Because 64-bit CPUs can
read 64-bit wide memory words at a time, it’s helpful that fields that are 64 bits (or a multiple
of 64 bits) wide start at an even 64-bit boundary. Because every 64-bit boundary is also a 32-bit
boundary, this doesn’t get in the way of 32-bit CPUs. The IPv4 header is presented in the usual
form that highlights its 32-bit background.
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The fields in the IPv4 header that aren’t present in the IPv6 header have gray text; the field
that’s present in IPv6 but not in IPv4 is shown in bold. The changes from IPv4 to IPv6 are

Version now always contains 6 rather than 4.

The Internet Header Length (IHL) field that indicates the length of the IPv4 header is
no longer needed because the IPv6 header is always 40 bytes long.

Type of Service is now Traffic Class. The original semantics of the IPv4 Type of Service
field have been superseded by the diffserv semantics per RFC 2474. However, in IPv4,
both interpretations of the field are in use (although most routers aren’t able or config-
ured to look at the field anyway). The IPv6 RFCs don’t mandate a specific way to use the
Traffic Class field, but generally the RFC 2474 diffserv interpretation is assumed.
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The Flow Label is new in IPv6. The idea is that packets belonging to the same stream,
session, or flow share a common flow label value, making the session easily recognizable
without having to look “deep” into the packet. Recognizing a stream or session is often
useful in Quality of Service mechanisms. Although few implementations actually look at
the flow label, most systems do set different flow labels for packets belonging to different
TCP sessions. A zero value in this field means that setting a flow label per session isn’t
supported or desired.

The Total Length is the length of the IPv4 packet including the header, but in IPv6, the
Payload Length doesn’t include the 40-byte IPv6 header. This saves the host or router
receiving a packet from having to check whether the packet is large enough to hold the
IP header in the first place, making for a small efficiency gain.

The Identification, Flags, and Fragment Offset fields are used when IPv4 packets must
be fragmented. Fragmentation in IPv6 works very differently (explained later this chap-
ter), so these fields are relegated to a header of their own.

Time to Live is now called Hop Limit. This field is initialized with a suitable value at a
packet’s origin and decremented by each router along the way. When field reaches zero,
the packet is destroyed. This way, packets can’t circle the network forever when there are
loops. Per RFC 791, the IPv4 Time to Live field should be decremented by the number of
seconds that a packet is buffered in a router, but this turned out to be too hard to imple-
ment, so each router lowers the contents of the field by one, regardless of buffering time.
The new name is a better description of what actually happens.

The Protocol field in IPv4 is replaced by Next Header in IPv6. In both cases, the field
indicates the type of header that follows the IPv4 or IPv6 header. In most cases, this
would be 6 for TCP or 17 for UDP. Because the IPv6 header has a fixed length, any
options such as source routing or fragmentation must be implemented as additional
headers that sit between the IPv6 header and the higher-layer protocol such as TCP,
forming a “protocol chain.”

The IPv4 Header Checksum was removed in IPv6.

The Source Address and Destination Address serve the same function in IPv6 as in IPv4,
except that they are now four times as long at 128 bits.

■Note Despite the name, the Payload Length field includes the length of any additional headers, not just
the length of the user data. The maximum value for this field is 65,535, so with the 40-byte IPv6 header, this
makes for a maximum IPv6 packet size of 65,575 bytes. However, RFC 2675 specifies a way to create even
larger IPv6 packets.

All IPv6 hosts and routers are required to support a maximum packet size of at least
1280 bytes. For lower-layer protocols that can’t support a Maximum Transfer Unit (MTU)
of 1280 bytes, the relevant “IPv6 over . . .” standard must have a mechanism to break up and
reassemble IPv6 packets so that the minimum of 1280 bytes can be accommodated. In IPv4,
the official minimum size is 68 bytes, which isn’t workable.
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THE IPV4, TCP, AND UDP CHECKSUM

The checksum algorithm for the IPv4 header, TCP, and UDP is “the 16-bit one’s complement of the one’s
complement sum of all 16-bit words in the header” (RFCs 791 (IP), 792 (ICMP), 793 (TCP), and 768 (UDP),
respectively). One’s complement math is slightly different from normal math. When adding the decimal values
32768 and 49152, the result is 81920. In hexadecimal, that would be 0x8000 + 0xC000 = 0x14000, or
0x4000 with a carry bit when using 16 bits. In one’s complement additions, the carry bit is added to the
result, making the 16-bit one’s complement addition of 0x8000 and 0xC000 equal to 0x4001.

As usual with checksums and CRCs, the value is computed at the source and transmitted along with the
data. The destination performs the same computation and compares the value found in the packet with the
new result. If they’re the same, presumably the packet didn’t change in transit.

An interesting property of one’s complement math is that the values 0x0000 and 0xFFFF are equiva-
lent: adding 0x0000 to a value has the same result as adding 0xFFFF to that value. For instance: 0x6201 +
0x0000 = 0x6201 (obviously). 0x6201 + 0xFFFF would normally be 0x16200, but with the special treat-
ment for the carry bit, this also becomes 0x6201. This means that the value 0x0000 can be inserted in the
UDP checksum field to indicate that a checksum wasn’t computed.

The TCP, UDP, and ICMPv6 checksums are computed over a “pseudo header” and the TCP, UDP, or
ICMPv6 header, and user data respectively. The pseudo header consists of the source and destination
addresses, the upper-layer packet length, and the protocol number. Including this information in the check-
sum calculation makes sure that TCP, UDP, or ICMPv6 don’t process packets that were delivered incorrectly,
for instance, because of a bit error in the IP header.

Checksums
In IPv4, the IP header is protected by a header checksum, and higher-layer protocols generally
also have a checksum. The checksum algorithm for the IPv4 header, ICMP, ICMPv6, TCP, and
UDP is the same (see sidebar), except that in IPv4, UDP packets may forego checksumming
and simply set the checksum field to zero. In IPv6, this is no longer allowed: UDP packets must
have a valid checksum.

IPv6 no longer has a header checksum to protect the IP header. This means that when a
packet header is corrupted by transmission errors, the packet will very likely be delivered incor-
rectly. However, higher-layer protocols should be able to detect these problems so they’re not
fatal. Also, lower layers almost always employ a CRC to detect errors. A Cyclic Redundancy Check
(CRC) is similar to a checksum but uses a more complex calculation than a simple one’s comple-
ment addition so it has much better error detection properties. Ethernet, for instance, uses a
32-bit CRC that is automatically computed by the Ethernet hardware.

Extension Headers
To allow special processing along the way, IPv4 allows the IP header to be extended with one
or more options. These options are rarely used today, both because they don’t really solve
common problems but also because packets with options can’t be processed in the “fast path,”
and many routers and firewalls block some or all options. Not unlike the checkout counters at
a grocery store, many routers have several “paths” that packets may follow: a fast one, imple-
mented in hardware or highly optimized software, that supports only the most common
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operations (“no checks”), and one or more slower paths that use more advanced but slower
software code that supports less common operations such as looking at IP options. However,
many modern routers only have a “fast path,” so using additional features doesn’t lead to a
performance penalty.

Because the header is fixed length in IPv6, options can’t be tagged onto the IP header as
in IPv4. Instead, they’re put in a header of their own that sits between the IPv6 header and the
TCP or UDP (or other higher level protocol) header. The most common extension headers are

Hop-by-Hop Options: See the section that follows.

Routing: Similar to the Source Route option in IPv4.

Fragment: Used for fragmentation; see later in this chapter.

Authentication: Authenticates the user data and most header fields.

Encapsulating Security Payload (ESP): Encrypts and/or authenticates user data. 

Destination Options: See the section that follows.

The Hop-by-Hop Options and Destination Options headers are container headers: they
have room for multiple suboptions. The Hop-by-Hop Options are processed by all routers
along the way. All other options are normally ignored by routers and processed only by the
destination. Obviously firewalls, or routers configured to perform filtering, may also look at
these options. The Hop-by-Hop Options, Routing, Fragment, and Destination Options exten-
sion headers are defined in RFC 2460. The Authentication and ESP extension headers are part
of IPsec, which you’ll learn about in Chapter 9.

■Note There is no standard extension header format. This means that when a host encounters a header
that it doesn’t recognize in the protocol chain, the only thing it can do is discard the packet. Worse, firewalls
and routers configured to filter IPv6 have the same problem: as soon as they encounter an unknown exten-
sion header, they must decide to allow or disallow the packet, even though another header deeper inside the
packet would possibly trigger the opposite behavior. In other words, an IPv6 packet with a TCP payload that
would normally be allowed through could be blocked if there is an unknown extension header between the
IPv6 and TCP headers.

ICMPv6
The IPv6 version of the Internet Control Message Protocol (ICMP) serves mostly the same
purposes as its IPv4 counterpart, but there are some changes.1 In IPv4, when a router or the
destination host can’t process the packet properly, it sends back an ICMP error message along
with the original IP header and the first eight bytes of the higher-layer header. For UDP and
TCP, this is enough for the source of the original host to see which TCP session or UDP asso-
ciation generated the offending packet. Because IPv6 supports an arbitrary number of
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extension headers between the IPv6 header and the higher-layer header, ICMPv6 returns as
much of the original packet as will fit in the minimum MTU size of 1280 bytes. In addition to
error messages, which are recognizable by an ICMP type of 127 or lower, there are also infor-
mational messages, with a type of 128 or higher. Because informational messages aren’t the
result of an error, they don’t include an original packet or part thereof. The most common
ICMPv6 message types are

1: Destination unreachable. The destination IP address, protocol, or port number is
unreachable, or communication is “administratively prohibited.”

2: Packet too big. The packet is too large to be transmitted to the next hop.

3: Time exceeded. The Hop Count field reached zero.

4: Parameter problem. This message is sent when a router or host encounters an invalid
value in a header field or an unknown extension header or option.

128: Echo request. These are the packets sent by the ping6 utility.

129: Echo reply. These are the ping replies.

130: Multicast listener query. Routers use this query to ask hosts for their multicast group
memberships.

131: Multicast listener report. Hosts use this message to report their multicast group
memberships.

132: Multicast listener done. Hosts use this message to report that it leaves a multicast
group.

133: Router solicitation. Hosts send this message to trigger a router advertisement.

134: Router advertisement. Routers send this message to allow hosts to perform stateless
autoconfiguration. 

135: Neighbor solicitation. Routers and hosts use this message to ask for a neighbor’s
MAC address.

136: Neighbor advertisement. Routers and hosts send this message in reply to a neighbor
solicitation.

137: Redirect message. Routers use these messages to tell hosts to use a different next hop
address for a certain destination.

ICMP and ICMPv6 messages also include a “code” that indicates the exact nature of the
ICMP message within a certain type. As with ICMP, ICMPv6 calculates a checksum over the con-
trol message, but unlike with ICMP, the ICMPv6 checksum calculation also includes a pseudo
header. Another departure from IPv4 is the fact that hosts and routers are required to limit the
number of ICMPv6 messages they send. So if a router receives 100 packets per second toward an
unreachable destination, it’s not supposed to send back ICMPv6 packets at the same rate of 100
per second.
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The ICMPv6 redirect message works slightly different from the ICMP redirect message in
IPv4. Like its IPv4 counterpart, the ICMPv6 redirect can be used by a router to inform a host
that it should use a different router to reach the destination in question. But routers can also
use the IPv6 Redirect to tell a host that the destination is reachable on the local subnet. So two
hosts that have addresses in different prefixes can communicate directly after receiving redi-
rects from a router.

■Tip See http://www.iana.org/numbers.html for ICMPv6 type and code numbers and other protocol
numbers.

Neighbor Discovery
When a system wants to send an IPv6 packet to another system connected to the same subnet
or link, it needs to know what MAC address (or “link address” in the new IPv6 terminology) it
should address the packet to, unless the interface in question is a point-to-point interface.
Neighbor discovery allows systems to discover each other’s MAC addresses, similar to ARP
on Ethernet with IPv4.

Each IPv6 system joins the “solicited node” multicast group that corresponds to 
each of its addresses. Because the solicited node group address consists of the prefix
ff02:0:0:0:0:1:ff00::/104 followed by the bottom 24 bits of the address in question,
addresses in different prefixes based on the same interface identifier (including the
link-local address) all map to the same solicited node address.

Whenever a system needs to find out the link address for another system residing on
the same link, it sends a neighbor solicitation to the solicited node address that the IPv6
address of the remote system maps to. For good measure, the source host includes its own
MAC address in the neighbor solicitation, so the neighbor knows where to send the reply.

Because multiple IPv6 addresses can map to the same single solicited node address, a sys-
tem receiving a neighbor solicitation message will first check whether the request is indeed for
one of its addresses. If so, the system sends back a neighbor advertisement with its link
address in it. At the same time, the system stores the IPv6/MAC address combination from
the request in its neighbor discovery mapping table, also called “neighbor cache.”

You can list and manipulate the system’s list of IPv6 neighbors with the ndp command
under FreeBSD and MacOS and show the neighbor list with show ipv6 neighbors under Cisco
IOS. See Chapter 10 for more information about using the ndp command.

■Note RFC 2461 requires IPv6 implementations to buffer at least one packet per neighbor while waiting
for neighbor discovery to complete. With IPv4, when a neighbor’s MAC address isn’t in the ARP table, many
implementations send out an ARP and then throw away the packet that triggered the ARP request.
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Neighbor Unreachability Detection
RFC 2461 also specifies a procedure for neighbor unreachability detection. IPv6 hosts and
routers actively track whether their neighbors are reachable. They do this by periodically
sending neighbor discovery messages directly to the neighbor. If the neighbor answers, it’s
reachable; if it doesn’t, there must be some kind of problem, and the system will discard the
neighbor’s MAC address and try a regular multicast neighbor discovery procedure. This allows
IPv6 systems to detect dead neighbors and neighbors that change their MAC address. But it’s
most useful to detect dead routers. On a subnet with more than one router, a host can simply
install a default route toward another router when the router that is has been using becomes
unreachable.

Windows XP, Linux, MacOS, and FreeBSD all take the situation where a router loses its
IPv6 address and no longer runs IPv6 in stride and switch over to another router without inci-
dent. However, turning off the active router has much more severe effects: at the very least,
ongoing downloads stall for a while, and in some cases, the session breaks. I have no expla-
nation for this difference in behavior.

Stateless Address Autoconfiguration
Hosts and routers always configure link-local addresses on every interface on which IPv6 is
enabled. The link-local address is nearly always derived from the interface’s MAC address, but
to guarantee uniqueness, it’s necessary to perform Duplicate Address Detection (DAD), as dis-
cussed later this chapter.

Once a host has a link-local address, it can proceed to obtain one or more global IPv6
addresses by using RFC 2462 stateless address autoconfiguration. As discussed in Chapter 2,
IPv6 routers send out router advertisement (RA) packets (ICMPv6 type 134) periodically and
in response to router solicitations. The information in RAs includes:

• An 8-bit “cur hop limit” field that tells hosts what value to use in the Hop Limit field 
of outgoing IPv6 packets.

• The “managed address configuration” (M) flag. This flag isn’t terribly well defined,
but the basic idea is that when it’s set, hosts use a stateful mechanism (presumably,
DHCPv6) to configure their addresses, and when the flag isn’t set, they use stateless
address autoconfiguration.

• The “other stateful configuration” (O) flag. This flag is similar to the M flag but indi-
cates that the host should use a stateful mechanism to discover for nonaddress
configuration.

• A 16-bit “router lifetime” value in seconds. This value tells hosts how long the default
route that was created as the result of this RA should remain valid.

• The 32-bit “reachable time” value in milliseconds. This value indicates how long a
neighbor should be considered reachable after receiving a “reachability confirmation,”
which is generally a neighbor advertisement but could be any packet.

• The 32-bit “retrans timer” value in milliseconds. The retrans timer tells hosts how
long they should wait before retransmitting neighbor solicitation messages when there
is no answer.
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When fields that determine a value are set to zero, this means the value isn’t specified in
the RA, so hosts must come up with that value through other means. In addition to the pre-
ceding, router advertisements may also contain one or more options, such as:

• “Source link-layer address,” the router’s MAC address.

• MTU, the maximum packet size that should be used on this subnet.

• Prefix information, which specifies the prefixes used on the subnet and their properties.

■Tip On some interface types, Cisco routers use the MTU option in their router advertisements to inform hosts
of the MTU the router itself uses, even if it’s the 1500 byte Ethernet default. Use show ipv6 interface ... to
list the MTU used with IPv6 for an interface and mtu ... in the interface context to set the MTU for all protocols
or ipv6 mtu ... to set the IPv6 MTU for an interface.

The “prefix information” option, in turn, has its own list of attributes. (Are you getting a
headache yet?)

• The address prefix itself and its length. For stateless address autoconfiguration to
work, the prefix must be 64 bits long.2

• The “on-link” flag. This flag tells hosts that the prefix is “on-link,” so systems with
addresses within this prefix are reachable on the subnet in question without help
from a router. 

• The “autonomous address configuration” flag. This flag tells hosts that they can create
an address for themselves by combining this prefix with an interface identifier.

• A 32-bit “valid lifetime” in seconds. This value indicates how long the prefix should
be considered on-link and how long autoconfigured addresses using the prefix may be
used.

• A 32-bit “preferred lifetime” in seconds. This flag tells hosts how long autoconfigured
addresses using this prefix are preferred.

Duplicate Address Detection
To avoid the situation where two IPv6 systems use the same address, systems perform Dupli-
cate Address Detection for (nearly) all new IPv6 addresses before they’re used. DAD is done for
global unicast addresses—and not just those created using stateless address autoconfiguration,
but also for link-local addresses. For obvious reasons, there is no DAD for anycast addresses, as
the whole point of anycast is that multiple systems have the same address. It’s also permitted to
skip DAD for addresses that have an (EUI-64-based) interface identifier that was already tested
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for uniqueness. So if a host just uses stateless address autoconfiguration with an EUI-64
interface identifier, it only needs to perform DAD for the link-local address.

As depicted in Figure 8-2, a host starts with only a link-local address. DAD is also done for
the link-local address, but this isn’t shown in the figure. When a host receives a router advertise-
ment that contains one or more prefixes with the autonomous address configuration flag set, the
host creates addresses with interface identifiers derived from the EUI-64 and possibly also a ran-
domly generated one, if the host uses RFC 3041 address privacy. (See Chapter 2.) The host marks
the resulting addresses as “tentative” and proceeds to execute the Duplicate Address Detection
procedure. It does this by joining the solicited node multicast group for the address in question
and sending out one or more neighbor solicitation messages for the address. (If the number of
DAD retries is configured to be zero, no DAD is performed.) Then, one of the following situations
will occur:

• The host receives a neighbor advertisement from another host that is holding the
address.

• The host receives a neighbor solicitation message from another host that is performing
DAD. (It can tell because the source address is set to the unspecified address and the
MAC address is different from its own.)

• There is no answer. (Except maybe that the host hears its own neighbor solicitation.)

CHAPTER 8 ■ IPV6 INTERNALS160

Figure 8-2. The life cycle of an IPv6 address



The first two cases indicate a conflict, and the addresses are marked “duplicate.” When
this occurs, the address remains unused. Only when there is no answer is the address used.
If there is a conflict, the system is supposed to log the error and wait for manual intervention.

Address Lifetime
After successfully maneuvering past the DAD hurdle, addresses configured through state-
less address autoconfiguration can be used until the “preferred lifetime” from the router
advertisement message expires. In most cases, this won’t happen because new RAs refresh
the timers. But if there are no more RAs, eventually, the preferred lifetime will elapse and
the address becomes “deprecated.” New sessions shouldn’t use deprecated addresses but
prefer “preferred” (non-deprecated) addresses, if available. However, existing sessions will
continue to use the deprecated address. Eventually, the “valid lifetime” will also run out,
and the deprecated address is removed from the interface. This will break any sessions that
are still using the address.

■Note Many UNIX-like operating systems will continue to send packets containing a source address that
has been removed from the system as long as there are sessions that use this address. This has the advan-
tage that if an address disappears and comes back quickly (for instance, when a wireless link goes down for
a moment because of bad reception), the sessions are still alive.

Renumbering
Having different preferred and valid timers for the router advertisement itself and also for any
prefixes contained in it makes it possible to do two things: renumber easily and shoot yourself
in the foot. It’s even possible to do both at the same time. With stateless autoconfiguration,
renumbering couldn’t be easier: simply give the router an address in the new prefix and set
the preferred lifetime for the old prefix to zero, as in Listing 8-1.

Listing 8-1. Installing a New Prefix and Deprecating an Old One

!
interface Ethernet0
ipv6 address 2001:db8:4500:17c::/64 eui-64
ipv6 address 2001:db8:31:2::/64 eui-64
ipv6 nd prefix 2001:db8:31:2::/64 infinite 0
!

In this example, a Cisco router is configured with an address in prefix 2001:db8:4500:17c::/64.
This would be the new prefix, which is automatically added to the list of prefixes in router
advertisements with the autonomous address configuration flag set. The following line speci-
fies the old prefix (2001:db8:31:2::/64), and the line after that sets up an infinite valid lifetime
(the 32-bit field set to all ones or 0xffffffff) but a preferred lifetime of zero. This makes hosts
create one or more new addresses and deprecate any existing ones in the old prefix as soon as
they receive the resulting router advertisement. After that, all new communication should
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start using the new address immediately. Existing TCP sessions and UDP associations will
continue to use the same address as before. After some time, all communication that started
before the change should have stopped so that the old addresses can be removed safely. This
process is started with Listing 8-2. 

Listing 8-2. Setting the Valid Lifetime to Two Hours in Router Advertisements

!
interface Ethernet0
ipv6 nd prefix 2001:db8:31:2::/64 7200 0
!

This sets the preferred lifetime to zero and the valid lifetime to 7200 seconds. As a precau-
tion against attackers, hosts are not supposed to trust a valid lifetime of less than 7200. Older
versions of Linux (such as Red Hat 9 with its 2.4 kernel) don’t bother with this check, though.
Make sure that the hosts have received at least one RA after setting the valid lifetime to 7200,
and then set both the lifetimes to zero and remove the autonomous address configuration flag
for the prefix:

ipv6 nd prefix 2001:db8:31:2::/64 0 0 no-autoconfig

Two hours later, all hosts should have removed the addresses in this prefix so you can
remove the prefix from the router, as in Listing 8-3.

Listing 8-3. Removing a Prefix from a Router

!
interface Ethernet0
no ipv6 address 2001:db8:31:2::/64 eui-64
no ipv6 nd prefix 2001:db8:31:2::/64
!

You can monitor address lifetimes with netsh interface ipv6 show address under
Windows, ip -6 addr show under Linux, and with ifconfig -L under BSD/MacOS. It’s too bad
that the hard part in renumbering isn’t the actual address renumbering of hosts, but rather
hunting down addresses in all kinds of configuration files, filters, and of course the DNS and
then changing the addresses in all those places in such a way that everything keeps working,
or at least the interruptions are as short-lived as possible.

■Caution When you renumber because you’re switching from one ISP to another, it’s unavoidable that at
some point, packets with source addresses in address space from ISP A end up at ISP B, or the other way
around. If ISP B employs anti-spoofing or ingress filtering, it won’t allow these packets through, so you’ll
suffer reduced connectivity.

You can ask one ISP to remove the filters temporarily and then send out all your outgoing traffic over
that ISP (or one that didn’t filter in the first place). However, don’t expect too much cooperation from your
ISP unless you’re a non-tiny customer.
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Address Prefix and Router Lifetime Mismatch
Earlier, I mentioned the potential for shooting yourself in the foot because router advertisements
and the prefixes they contain have independent lifetimes. This allows for four permutations:

• The RA lifetime is valid, and the prefix lifetime is valid: IPv6 works.

• The RA lifetime is invalid, and the prefix lifetime is invalid: IPv6 is disabled.

• The RA lifetime is valid, but the prefix lifetime is invalid: The system has an IPv6 default
route but no global IPv6 address.

• The RA lifetime is invalid, but the prefix lifetime is valid: The system has a global IPv6
address but no IPv6 default route.

When a host has no global addresses but does have an IPv6 default route (case 3), it can’t
reach the rest of the IPv6 Internet. Unfortunately, FreeBSD and MacOS hosts don’t know that:
they try anyway, with long delays as a result. Only after trying all the remote destination’s IPv6
addresses and timing out, the system falls back on IPv4 (for applications that try more than
one address). Linux, on the other hand, doesn’t install or ignores the IPv6 default route when
there are no global IPv6 addresses present, so the timeout is immediate.

Windows XP does install the default route but magically manages to avoid lengthy timeouts
anyway. On the other hand, Windows XP suffers timeouts when it has an IPv6 address but no
default route (case 4). This is because Windows implements the on-link assumption: it will first
do neighbor discovery on the local subnet for any IPv6 addresses. Only after neighbor discovery
times out will Windows falls back on IPv4. FreeBSD and MacOS, however, don’t implement the
on-link assumption, so they immediately notice that the IPv6 destination address is unreachable
and fall back on IPv4, if an IPv4 address is available and the application cycles through all
addresses. With Linux, the default route doesn’t seem to expire even though the timers eventu-
ally reach zero and lower. But addresses do expire and are removed when the lifetime for the
associated prefix has timed out.

Address Selection
Choice is good, but it comes with problems of its own, as anyone who has ever ordered a cup
of coffee at Starbucks can attest to. The explicit support for multiple addresses in IPv6 requires
the system or applications to choose which address to use for a given communication session.
The coexistence of IPv4 and IPv6 in the same host makes this issue even more pressing. RFC
3484 provides guidelines in this area. It lists no fewer than 10 rules for choosing a destination
address and eight rules for selecting a source address. Most of these rules are fairly obvious,
such as preferring a non-deprecated address over a deprecated one and not using a link-local
source address to communicate with a destination that has a global address. It gets more
interesting with the “policy table.” On systems that support this mechanism, such as Windows
XP and FreeBSD 5.4, the administrator can instruct the system to prefer certain address ranges
over others. Listing 8-4 displays the default policy table under FreeBSD. Coincidently, this is
the suggested policy table in RFC 3484.
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Listing 8-4. Displaying the FreeBSD Address Policy Table with ip6addrctl

# ip6addrctl show
Prefix                          Prec Label      Use
::1/128                           50     0        0
::/0                              40     1     8892
2002::/16                         30     2        0
::/96                             20     3        0
::ffff:0.0.0.0/96                 10     4        0

The policy table honors the longest match first rule, so overlapping prefixes are possi-
ble, but having the same prefix in the table more than once isn’t allowed. The precedence
value for each prefix determines the relative merit of addresses falling in that prefix. A
higher value means more preferred. The label value makes it possible to select the right
source address (the one with the same label) for a given destination address. It works like
this. Suppose that a destination has two addresses in the DNS: 2001::db8:31:2::1 (a regular
address) and 2002:dfe0:e1e2:2::1 (a 6to4 address). The regular address falls within the pre-
fix ::/0, so it gets assigned a precedence value of 40. The 6to4 address also falls within ::/0
and within 2002::/16. The latter has a longer prefix, so it’s more specific, and the 6to4 address
inherits a precedence value of 30. If there are no complications such as deprecated
addresses, the system will select the regular address to reach this destination. Next order of
business is to select an accompanying source address. The destination address has a label of
1, so if the system has any addresses that also have label 1 (i.e., regular non-6to4 addresses),
it will select one of those. Additionally, when there are multiple addresses with the same
precedence or label, the system will select the destination address that has the most bits in
common with a local address and use a source address that has the most bits in common
with the destination address. So if the local system has addresses 2600:9700:c0::1 and
3ffe:9700:c0::1, it will try to reach the destination 2001::db8:31:2::1 from the 2600:9700:c0::1
source address. These two addresses have their first five bits in common, while
2001::db8:31:2::1 and 3ffe:9700:c0::1 have only the first three bits in common.

You can remove entries from the policy table with ip6addrctl delete <prefix> and create
new entries with ip6addrctl add <prefix> <precedence> <label>. For instance, ip6addrctl
add 3ffe::/16 35 5 adds a policy table entry for the 6bone address space that has a lower prece-
dence. This way, the system will only try to contact remote systems over a 6bone address if there
are no addresses out of the RIR or production range, in anticipation of the dismantling of the
6bone. Without the policy rule, the system would give 6bone and RIR addresses equal priority
and use them in turn for different sessions.

You can also use the IPv6 address policy table to determine whether the system prefers
IPv6 over IPv4 or the other way around. For instance, ip6addrctl add ::ffff:83.0.0.0/104
60 4 adds a rule that prioritizes the IPv4 address range 83.0.0.0/8 over everything else (prece-
dence 60). The label is the same as that for the existing IPv4 range (::ffff:0.0.0.0/96, in IPv6
mapped notation), so the system will select an IPv4 source address, even if it falls outside
83.0.0.0/8.

Listing 8-5 shows the default address policy table under Windows XP and the effect of
adding a policy entry.
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Listing 8-5. The Address Policy Table Under Windows XP

C:\>netsh
netsh>interface ipv6
netsh interface ipv6>show prefixpolicy
Querying active state...

Precedence  Label  Prefix
----------  -----  --------------------------------

5      5  3ffe:831f::/32
10      4  ::ffff:0:0/96
20      3  ::/96
30      2  2002::/16
40      1  ::/0
50      0  ::1/128

netsh interface ipv6>set prefixpolicy ::ffff:83.0.0.0/104 60 4
Ok.

netsh interface ipv6>show prefixpolicy
Querying active state...

Precedence  Label  Prefix
----------  -----  --------------------------------

60      4  ::ffff:83.0.0.0/104

The first entry is for an experimental Teredo prefix, which is given a precedence that’s
even lower than that of IPv4. For some reason, adding a policy table entry makes Windows
forget the default entries. You can remove entries with delete prefixpolicy <prefix>, but the
default entries don’t come back. As with other netsh commands, the prefix policy commands
take a store=active or store=persistent option. The default is persistent, allowing the policy
entries to survive a reboot.

■Note RFC 3484 mandates that regular public addresses are preferred over RFC 3041 temporary addresses
by default in order to avoid problems with the temporary addresses timing out or lack of a proper reversed DNS
mapping. According to the RFC, applications should specifically request the use of temporary addresses if this
is appropriate for the communication.

■Caution Don’t be too enthusiastic with adding policy table entries, because a policy makes the system
consistently choose the same address. If this address doesn’t work, sessions will consistently fail unless the
application tries all available addresses in turn.
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Path MTU Discovery and Fragmentation
Because routers can’t fragment IPv6 packets, PMTUD3 is mandatory in all cases where links
with MTUs larger than 1280 bytes are used for IPv6. This means it’s imperative that routers
generate ICMPv6 packet too big messages and that these messages make it back to the source
of the offending packet. Filtering out these ICMPv6 messages, like the Windows XP Service
Pack 2 firewall does with its own packet too big messages when it’s configured to be an IPv6
router, makes it impossible to communicate reliably.

■Note If you absolutely, positively have to filter ICMPv6 packet too big messages, you must use an MTU
equal to the IPv6 mandatory minimum of 1280 bytes across your network so there is no need for PMTUD.

Upon reception of a packet too big message, TCP will reduce its packet size to accommo-
date the smaller MTU on the path in question. However, protocols that run over UDP often
can’t arbitrarily reduce their packet size. In IPv4, UDP packets are generally sent without the
don’t fragment bit set, so routers will fragment them if necessary.4 In IPv6, this is not possible;
if the packet is too large, the source host has to fragment it. The source host does this by first
splitting the packet into unfragmentable and fragmentable parts. The IPv6 header and any
headers that must be processed by routers along the way make up the unfragmentable part;
the payload data and any headers that only have to be processed on the destination host are
the fragmentable part. The fragmentable part is then split into as many parts as required to fit
in the path MTU, and each part is transmitted as a packet containing the unfragmentable
part, a fragment header and one of the fragments of the fragmentable part.

The fragment header is 8 bytes in size, and except for a next header field and two reserved
fields, it contains the same fragment offset, more fragments, and identification fields as the
IPv4 header. The identification field is now 32 bits long and is used to indicate which fragments
belong to the same original packet. All fragments except the last one have the more fragments
bit set and are multiples of 8 bytes.

After receiving the first fragment (which isn’t necessarily the first fragment of the original
packet), a host waits up to 60 seconds for all other fragments to come in and, if they do, reassem-
bles the original packet by combining all the fragments with the same source and destination
addresses and identification field into a single packet. If one or more fragments are lost, the packet
can’t be reassembled, so the entire packet is lost.

■Note IPv6 fragmentation has the same problem as IPv4 fragmentation: the TCP or UDP port numbers are
available only in the first fragment. This makes it hard for firewalls and the like to filter fragmented packets.
Common solutions are to reassemble the packet prior to filtering or to discard all fragments.
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4. Some systems set the DF bit on IPv4 UDP packets, too, which invariably leads to problems when the
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DHCPv6
DHCPv6 (RFC 3315) is the IPv6 version of the Dynamic Host Configuration Protocol (DHCP).
Because IPv6 has stateless address autoconfiguration, DHCP occupies a very different part of the
landscape in IPv6, compared to IPv4. Although the details are different in the by-now-expected
places (address length, use of multicasts, some streamlining), the DHCPv6 protocol itself is quite
similar to the IPv4 version of DHCP. The more important differences are the way in which the pro-
tocol is used. DHCPv6 has three purposes:

• Address configuration: Giving out addresses to individual hosts.

• Non-address configuration: Giving out other configuration information, such as DNS
resolver addresses and domain search lists.

• Prefix delegation: Giving out entire prefixes to routers (RFC 3633).

A DHCPv6 client interested in an address and/or other configuration information sends
out a solicit message indicating its needs to the link-local scope multicast address ff02::1:2,
port 547. (Server-to-client messages are addressed to port 546.) DHCPv6 servers that receive
the solicit message either directly or forwarded by a relay and are able to accommodate the
request respond with an advertise message. The client considers the offers in the various
advertise messages and directs a request message to the server of its choice. The server then
replies with a reply message, confirming the address and/or configuration information. Alter-
natively, if the client only wants to receive configuration information and no addresses or
prefixes, it can send a request-information message, and the server immediately sends back a
reply message, so only half the messages are exchanged and the whole process completes
much faster. The client may also us the “rapid commit” option to indicate that it wants to use
the expedited procedure for address or prefix assignment if it’s pretty sure that it will take up
the offer from the first DHCPv6 server that responds. As expected, IPv6 addresses assigned
with DHCPv6 come with a preferred and a valid lifetime. Sometime before this timer expires,
the client sends a renew message, asking the server if it can continue to use the address. When
it has no more use for the address, the client sends a release message. There are some other
messages for less common situations.

To allow servers to recognize clients, each device that implements DHCPv6 has DHCP
Unique Identifier (DUID). In IPv4, DHCP clients use a MAC address or user-supplied string as
a Client Identifier. In DHCPv6 this is always the DUID. Devices may create their DUID in vari-
ous ways, as long as the DUID is unique and not subject to change, if at all possible. Cisco
routers create their DUID based on the lowest MAC address in the system. Because even
modular Cisco routers have stable MAC addresses, this works well. For hosts with removable
Ethernet interfaces, the DUID should be created based on a MAC address and the DUID cre-
ation date. After all, an Ethernet card can reside in only one host at a time. The resulting DUID
should be stored for further use, even after the Ethernet card in question is removed from the
system.

DHCPv6 supports an authentication mechanism that allows clients and servers to inter-
act in a secure way, so third parties can’t inject false DHCP messages or modify legitimate
ones. However, this mechanism must be pre-configured manually on all servers and clients,
partially negating the advantages of DHCP over manual configuration.
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KAME DHCP6
The KAME Project has a DHCPv6 implementation available on the KAME FTP site
ftp.kame.net in the directory /pub/kame/misc under the name kame-dhcp6 followed by a ver-
sion number. Due to the differences between the KAME and the Linux IPv6 implementations,
the DHCP6 client, server, and relay daemons won’t compile under Linux. I also ran into trou-
ble compiling them under MacOS, but FreeBSD worked just fine. The implementation is still
largely experimental and doesn’t support DHCPv6 address assignment. The dhcp6s server
daemon requires a configuration along the lines of Listing 8-6.

Listing 8-6. A KAME dhcp6s.conf File

option domain-name-servers 2001:db8:31:2::53;
option domain-name "example.com";

host router
{
duid 00:03:00:01:00:04:27:FE:24:9F;
prefix 2001:db8:4700::/48 86400 259200;

};

All systems that ask for DNS servers and/or a domain name search list will receive the infor-
mation in the first two lines. The system with a matching DUID (regardless of whether its name is
“router”) will also receive the prefix 2001:db8:4700::/48, with a preferred lifetime of one day and
a valid lifetime of three days. (Opposite order from other examples!) See the dhcp6s.conf man
page for more options. The dhcp6s daemon takes an interface as its argument, and optionally
some flags or an alternative location for the configuration file with the -s option. The daemon can
be controlled (or rather, must be controlled—there is no reasonable other way to do it) with the
dhcp6sctl program, but the configuration required for that isn’t part of Listing 8-6. Listing 8-7
shows a configuration for the dhcp6c client daemon.

Listing 8-7. A KAME dhcp6c.conf File

interface xl0
{
information-only;
script "/etc/dhcp6clientscript.sh";

};

The dhcp6c daemon sets various environment variables (see the man page) and then calls
the indicated script. Listing 8-8 is a very simple version of such a script.

Listing 8-8. DHCPv6 Client Script

#!/bin/sh
echo  >/etc/resolv.conf domain $new_domain_name
echo >>/etc/resolv.conf nameserver $new_domain_name_servers

It would be a bad idea to use this script in practice, because if the DHCPv6 server doesn’t
provide an option, the environment variable remains empty, resulting in a broken resolv.conf
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file. Also, there may be more than one nameserver, but the resolv.conf wants to see those on
separate lines. The $new_domain_name variable contains the list of domains to be searched, not
just the domain for this host.

Linux DHCPv6
The DHCPv6 project found on SourceForge (http://dhcpv6.sourceforge.net/) is based on the
KAME DHCPv6 implementation. It’s not a straight Linux port: it also adds address assignment.
Despite the claim on the project Web site that it supports all POSIX systems, the source won’t
compile under FreeBSD or MacOS. In my tests, this implementation didn’t work very well. For
instance, the dhcp6c was unable to successfully create a DUID. Also, there doesn’t appear to be
a way to put the information learned through DHCPv6 to good use, as the script configuration
command isn’t implemented.

Cisco IOS DHCPv6
Recent versions of Cisco’s IOS have very good DHCPv6 support. A Cisco router can act as either a
DHCPv6 client, a relay, a server, or a combination. Making a router a relay is the simplest option,
as shown in Listing 8-9. 2001:db8:31:2::547 is the address of the DHCPv6 server.

Listing 8-9. A Cisco Router as a DHCPv6 Relay

!
interface Ethernet0
ipv6 dhcp relay destination 2001:db8:31:2::547
!

Having a router relay DHCPv6 messages makes it possible to have a central DHCP server
rather than having to run one on each subnet. Cisco’s DHCPv6 implementation doesn’t sup-
port address assignment, but it does support informing clients of non-address configuration
information and prefix delegation, as you can see in Listing 8-10.

Listing 8-10. A Cisco Router as a DHCPv6 Server

!
ipv6 dhcp pool dhcpv6-pool
prefix-delegation 2001:DB8:AA5E::/48 00030001000427FEAA5E lifetime 7200 900
prefix-delegation 2001:DB8:246E::/48 00030001000427FE246E
dns-server 2001:db8:31:2::53
domain-name example.com
!
interface Ethernet0
ipv6 dhcp server dhcpv6-pool
!

The DHCPv6 “pools” work differently from IPv4. In IPv4, they may be associated with a
subnet or with a specific client. In IPv6, a pool is associated with an interface. In the example,
the pool “dhcpv6-pool” is associated with the Ethernet0 interface. Other interfaces may share
the same pool or have a different one. When a DHCPv6 request comes in on the Ethernet0
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interface, the subsequent reply will contain information from the dhcpv6-pool pool. In the
example, all clients receive the DNS and domain information, but only the two clients with
the listed DUIDs receive a prefix. The first prefix has a valid lifetime of 7200 seconds and a
preferred lifetime of 900 seconds; the second one uses the default lifetimes.

So far so good. But things only really start cooking with a Cisco router as a DHCP prefix
delegation client, as in Listing 8-11.

Listing 8-11. A Cisco Router as a DHCPv6 Prefix Delegation Client

!
interface Ethernet1
ipv6 address autoconfig
ipv6 dhcp client pd dhcpv6prefix
!
interface Ethernet2
ipv6 address dhcpv6prefix 0:0:0:A0::/64 eui-64
!

In this example, interface Ethernet1 is configured to obtain an IPv6 address by acting as
a Stateless Autoconfiguration client. This isn’t really pertinent to prefix delegation, as DHCPv6
can be executed on interfaces that don’t have a global address. But if the router doesn’t have
a global address, this leads to strange traceroutes.

Anyway, in the next line, the interface becomes a DHCPv6 client and is configured to ask
for a prefix. The resulting prefix is conceptually stored in the variable “dhcpv6prefix,” which is
then used to configure the IPv6 address for interface Ethernet2. The prefix obtained from the
DHCP server is combined with the partial prefix 0:0:0:a0::/64 and the EUI-64 to form a full
address. The prefix delegated by the DHCP server is 2001:db8:6:7000::/56. This makes the /64
for this interface:

2001:0db8:0006:70xx
xxxx:xxxx:xxxx:xxa0
------------------- +
2001:0db8:0006:70a0

The resulting prefix is advertised in router advertisements as usual for prefixes configured on
an interface, while the preferred and valid lifetimes are inherited from the ones provided by the
DHCP server in the prefix advertisement. The router will renew the lease before the preferred life-
time runs out. If the renewal succeeds, all addresses derived from the prefix remain available. If
the renewal doesn’t succeed, for instance, because the DHCPv6 server delegates a new prefix as a
result of a network renumbering, there won’t be any more RAs for the old prefix. Addresses in this
prefix then go to “deprecated” and disappear after the valid lifetime expires. In the meantime, the
router now advertises the new prefix, so the renumbering should be completely painless.

Obviously, a /64 directly connected route is added to the routing table (and propagated
in any IPv6 routing protocols that redistribute connected routes), but the same is true for the
entire delegated prefix, as the router installs a route toward the Null0 interface for that prefix.

■Tip Use the show ipv6 dhcp interface ... command to list delegated prefixes and their properties,
show ipv6 dhcp to learn the router’s DUID, and clear ipv6 dhcp client ... to restart the DHCP client.
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IPv6 Over...
Even a protocol as advanced as IPv6 can’t do everything on its own. Like IPv4 and other network-
layer protocols, IPv6 needs the assistance of lower layer protocols to get packets from one system
to the next. Protocols at these lower layers are all about turning electromagnetic signals into
bits (the OSI physical layer) and a stream of bits into a coherent frame (the OSI datalink layer).
“Frame” is the datalink layer term for what becomes a “packet” at the network layer. Because
lower layer protocols can have very different characteristics, typically, they need their own stan-
dard for carrying IPv6 packets. This is standardized in various “IPv6 over ...” RFCs.

IPv6 over Ethernet
Ethernet has a long history, and all aspects of the protocol except one have changed some-
where along the way: the cables are now Unshielded Twisted Pair (UTP) or fiber rather than
coaxial cable; the speed can now also be 100, 1000, or 10,000 megabits per second in addition
to the original 10 Mbps; we now use switches rather than a single shared cable or hubs; and so
on. The only thing that has stayed the same is the frame format, as shown in Figure 8-3.

Putting an IP packet in an Ethernet frame is extremely straightforward: the IPv4 or IPv6
packet simply occupies the “user data” portion of the frame, and the Type field is set to 0x800
(IPv4), 0x806 (IPv4 ARP), or 0x86dd (IPv6) (RFCs 894, 826, and 2464, respectively). Because the
user data has a minimum length of 46 bytes, it’s possible that the IP(v4) packet doesn’t occupy
the entire Ethernet frame and there are some extra bytes to fill up the minimum length. Because
the IP header carries its own length field, this doesn’t lead to problems. If you’ve ever spent a lot
of time learning about networks, you may be familiar with IEEE 802.3, SAP, SNAP, and the like.
These are further developments of the Ethernet II standard. However, they are completely irrele-
vant to IPv4 and IPv6, as IP is always encapsulated in Ethernet II frames, as shown in Figure 8-3.
This is sometimes called “ARPA encapsulation.”

Multicast
Ethernet has very simple but powerful support for multicast. When bit 7 in the MAC
address is set to 1, the MAC address is a group address. Modern Ethernet cards can be pro-
grammed to listen for several group addresses. Packets addressed to those are sent over to
the software driver for further processing, the same way that frames addressed to the card’s
MAC address are. Obviously, there are some limitations to the filtering the Ethernet hard-
ware can do, so drivers must also be prepared to filter, but under normal circumstances, all
multicasts that the host or router isn’t interested in are ignored at the hardware level. To
use this hardware capability, it’s necessary to map IP multicast addresses to Ethernet
multicast addresses. In IPv4, this happens by taking the bottom 24 bits of the IP multicast
address and appending them to the IETF’s IEEE OUI, 00:00:5E, or rather the IETF OUI with
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the group bit set, 01:00:5E.5 Apparently, the IEEE has a policy against giving out blocks of
OUIs, so it wasn’t possible to obtain a block of 16 OUIs so the entire 28-bit IPv4 multicast
address space (224.0.0.0/4) could be mapped to Ethernet group addresses one-to-one.
The cost of $1000 per OUI may also have been an issue. In any event, four different IPv4
multicast addresses map to the same Ethernet group address, which may lead to some
additional processing of unwanted multicasts, but otherwise, there is no harm in this.

With IPv6, the IETF adopted another strategy. Rather than use a globally unique OUI, the
Ethernet multicast groups for IPv6 are MAC addresses with the unique/local bit set to “local.”
IPv6 multicasts map to Ethernet MAC addresses with the top 16 bits set to 33:33 and the bot-
tom 32 bits copied from the bottom 32 bits of the IPv6 multicast address. Under FreeBSD and
MacOS, the netstat -ia command shows the different multicast addresses present on an
interface. See Listing 8-12.

Listing 8-12. Listing Multicast Addresses on FreeBSD or MacOS

> netstat -ia
Name    Mtu Network       Address              Ipkts Ierrs    Opkts Oerrs  Coll
xl0    1500 <Link#1>    00:01:02:29:26:40   681428     0   169451     0     0

33:33:5b:81:52:75
33:33:00:00:00:01
33:33:ff:29:26:40
01:00:5e:00:00:01

xl0    1500 192.0.2.65/24  sequoia           154437     -   164922     -     -
ALL-SYSTEMS.MCAST.NET

xl0    1500 fe80:1::201 fe80:1::201:2ff:f     1359     -     2389     -     -
ff02:1::2:5b81:5275(refs: 1)
ff02:1::1          (refs: 1)
ff02:1::1:ff29:2640(refs: 1)

xl0    1500 2001:db8:31 2001:db8:31:2:201:2  33034     -     2866     -     -
ff02:1::2:5b81:5275(refs: 1)
ff02:1::1          (refs: 1)
ff02:1::1:ff29:2640(refs: 1)

The Ethernet card in Listing 8-10 listens for five MAC addresses:

• 00:01:02:29:26:40 is the card’s burned-in MAC address.

• 33:33:5b:81:52:75 maps to ff02::2:5b81:5275, which is the ICMPv6 node information
group address for this host’s domain name. This group address allows other systems on
the subnet to find the local system based on its name. ICMPv6 node information is not
an RFC (yet), but it’s implemented in KAME-derived IPv6 stacks. See Chapter 9 for more
information.

• 33:33:00:00:00:01 is always present, as it maps to the all-hosts address ff02::1.
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• 33:33:ff:29:26:40 maps to the solicited node address (ff02::1:ff29:2640) for 
both the global and link-local addresses (2001:db8:31:2:201:2ff:fe29:2640 and
fe80::201:2ff:fe29:2640).

• Last but not least, 01:00:5e:00:00:01 maps to the IPv4 all-hosts address 224.0.0.1
(or ALL-SYSTEMS.MCAST.NET in the example).

The fe80:1::201:2ff:f and 2001:db8:31:2:201:2 addresses are truncated. You may also
notice that all the listed IPv6 multicast addresses and link-local addresses have an extra “1”
occupying bits 17 through 32 in the address, for instance, turning the all-node group address
ff02::1 into ff02:1::1. This is where the system encodes the interface number in the address
in order to disambiguate multicast and link-local addresses that may be present on more than
one interface.

Under Linux, you can inspect IP multicast addresses, but not Ethernet multicast
addresses, with netstat -gn. The -n flag is necessary to suppress strange address-to-name
mappings.

Group Membership Management
Multicast on an old-fashioned shared medium Ethernet is simple: all Ethernet cards see all
packets anyway, so all that’s needed is to ignore the uninteresting ones. Things get more com-
plex when the multicasts have to traverse one or more routers or switches. In the case of
multicast routing, the routers need to know which multicast groups are active on which sub-
net. They also need a whole battery of multicast routing mechanisms, but fortunately, that’s
beyond the scope of this book.

In IPv4, multicast-aware routers periodically send out Internet Group Management Proto-
col (IGMP) queries. Hosts respond to these queries by telling the router which multicast groups
they’re currently listening to. The protocol also provides join and leave messages. An interesting
aspect of IGMP is that although switches aren’t party to IGMP, the more intelligent ones imple-
ment “IGMP snooping.” In other words, they listen in on IGMP exchanges and enable or disable
multicast forwarding on a per-address basis for each port. This way, IP multicast traffic is only
forwarded to ports connecting to systems interested in those multicasts. Less sophisticated
switches simply treat all multicasts as broadcasts and forward them to all ports. IPv6 Multicast
Listener Discovery (MLD, RFC 2710) is very similar to IGMPv2. The differences are that MLD has
room for IPv6 addresses and it is part of ICMPv6, rather than having its own protocol number.

■Caution Some switches, especially multilayer switches that are also IPv4 routers, implement IGMP
snooping in an IPv6-incompatible way: they only allow Ethernet multicasts through after successfully snoop-
ing a corresponding IGMPv2 message. Consequently, the Ethernet multicast addresses used by IPv6 are
always blocked. Because this blocks all IPv6 discovery functions, you need to disable IGMP in these cases
to be able to use IPv6. You can diagnose this situation with tcpdump (see Chapter 10); the host won’t receive
any router advertisements and/or neighbor solicitations.
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IPv6 over Wi-Fi
Wi-Fi or IEEE 802.11 is a wireless LAN technology. It operates in the unlicensed 2.4 GHz band.6

This has the advantage that IEEE 802.11 doesn’t require any licenses, but the downside is that
there are several other users in this frequency band, such as microwave ovens, cordless phones,
and Bluetooth short-range computer-to-peripheral or mobile phone-to-peripheral communi-
cation. To survive in such a hostile environment, the IEEE 802.11 standard spreads its signal
over a very large part of the 2.4 GHz band. So wide, in fact, that of the 11 channels that are
available in the U.S., only channels 1, 6, and 11 can be used without much overlap. The wide-
band signal contains a lot of redundancy, so it can withstand a lot of interference from other
signals.

■Note Some channel overlap can be tolerated. In practice, having three or even two empty channels in
between two active channels is enough. In most of Europe, channels 1–13 are available, and using 1, 5, 9,
and 13 works very well. 1, 4, 8, 11 (in the U.S.) or 1, 4, 7, 10, 13 (in Europe) also often work well, if the base
stations aren’t too close together.

IEEE 802.11 communication can happen in one of two modes: with the independent BSS
(Basic Service Set) or the infrastructure BSS. Unsurprisingly, this terminology never gained
mainstream acceptance. Independent BSS (which is what IBSS stands for, if you encounter it)
is better known as ad-hoc or peer-to-peer, because there is no access point in this mode. Infra-
structure BSS doesn’t really have a common use name, as it’s the default mode that uses one or
more access points. In IBSS mode, frames travel directly from the source node to the destina-
tion node, while in infrastructure BSS, all frames must go through an access point. The former
is somewhat more efficient when the communication is directly between wireless nodes. The
latter has the advantage that each node only has to be able to reach an access point to be able
to communicate with all other nodes and the wired network that access points generally con-
nect to. In peer-to-peer mode, it’s possible for three nodes, A, B, and C, to be positioned such
that A and C can both communicate with B but not with each other.

Because 802.11 hides its internal workings from higher layers, there is no separate “IPv6
over IEEE 802.11” RFC: to IPv6, IEEE 802.11 looks like ordinary Ethernet. However, there are
some practical differences, especially with regard to multicast. Transmission over the air has
a relatively high error rate, so all unicast IEEE 802.11 frames are acknowledged and, if neces-
sary, retransmitted at the datalink layer. However, there is no reasonable way for the receivers
to acknowledge the receipt of multicasts or broadcasts. This means that the access point
transmits multicasts at a “safe” speed and hopes for the best. Transmitting the multicasts at
low speeds is necessary to accommodate old 802.11 implementations that are limited to 2 Mbps.
It also increases the chances of the multicast packet making it to all recipients. However, this
means that often, less than a megabit per second worth of multicasts can saturate the entire
wireless channel. And there is still a significant chance that multicasts are lost. In theory, this
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means that IPv6 over IEEE 802.11 is less reliable than IPv4, because IPv6 relies on multicasts
so heavily. However, in practice, wireless LANs that are usable with IPv4 are also usable with
IPv6.

IPv6 over IEEE 1394
IEEE 1394 (or Firewire, as Apple calls it) is a very interesting link technology. Roughly
speaking, it shares aspects of USB and Ethernet. Like USB, it can be used to connect vari-
ous peripherals to a computer. But unlike USB, it can also be used to connect several
computers together. Physically, IEEE 1394 shows up as either a small four-lead connector,
a somewhat larger six-lead connector, or a nine-lead connector. The four- and six-lead
connectors support 100, 200, and 400 Mbps speeds (IEEE 1394a), and the nine-lead con-
nector also supports 800 Mbps (IEEE 1394b). In each case, a cable has two twisted pairs
that carry the data in opposite directions. The six-lead version adds two power leads so
that small devices may be powered over the Firewire bus, and the nine-lead version adds
additional ground signals. Devices with different connectors can be interconnected using
special cables or adapters. The limits of the least-capable connector apply in these cases.
Firewire cables have a maximum length of 4.5 meters (just under 15 feet). IEEE 1394 sup-
ports three communication modes:

• Asynchronous block writes

• Asynchronous stream packets7

• Isochronous stream packets

Block writes are transactions where one node on the IEEE 1394 bus writes data to another
node, and the receiving node sends back an acknowledgement if everything went well. Stream
packets are similar to IP’s “unreliable datagram” service and aren’t acknowledged. Asynchro-
nous communication can happen at any time when the bus isn’t occupied, but isochronous
communication allows for bandwidth allocation, so it’s very suitable for real-time audio and
video applications. RFCs 2734 and 3146 specify the use of either asynchronous block writes or
isochronous stream packets for unicast IP communication and asynchronous stream packets
for broadcasts and multicasts.

■Tip Although Firewire adapters contain an EUI-64 in lieu of a 48-bit MAC address, packets on the IEEE 1394
bus aren’t delivered based on the destination’s EUI-64 but rather based on a temporary six-bit node identifier.
This may lead to unexpected EUI-64s (such as ff:ff:ff:ff:ff:ff:ff:ff or 00:00:00:00:00:00:00:00)
in the output of tools such as tcpdump. When a cable is plugged in or removed, the Firewire bus goes through
a bus reset cycle, and node identifiers are reassigned.
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Maximum packet sizes in IEEE 1394 aren’t fixed like they are in Ethernet. The maximum
packet size depends on the speed of the communication. For 100 Mbps nodes, the maximum
packet size is 512 bytes, and with each doubling of the link speed, the packet size also doubles.
So at 400 Mbps, packets may be 2048 bytes and at 800 Mbps, 4096 bytes. Because 512 isn’t a
usable packet size for IPv4 and IPv6 requires a minimum MTU of 1280 bytes, the IPv4 and IPv6
over IEEE 1394 RFCs specify a fragmentation and reassembly procedure. A host implementing
IP over IEEE 1394 will break up a single IP packet into several IEEE 1394 packets when necessary,
and the receiving IP over IEEE 1394 node will reassemble the fragments before handing over the
packet to the IPv4 or IPv6 layer. So to the IP layer, the MTU always looks reasonably large, even
though the physical MTU may be reduced when operating at 100 or 200 Mbps. RFCs 2734 and
3146 specify a default MTU of 1500, but Apple implements an MTU that is only slightly smaller
than the hardware’s maximum 2048 or 4096 bytes. However, despite this MTU mismatch when
Firewire 400 and Firewire 800 Macs are connected, the Firewire 400 Macs are capable of receiv-
ing packets of more than 4000 bytes successfully over the Firewire link. Because this almost
certainly requires link-layer fragmentation, performance may be less than optimal.

Currently, IP over IEEE 1394 in general and IPv6 over IEEE 1394 in particular aren’t very
well supported. It works well on Macs. Under Windows XP, networking over IEEE 1394 is often
possible (and XP will even bridge IP between Ethernet and IEEE 1394, with full spanning tree
no less), but support for it isn’t all that reliable. For instance, I remember doing IP over IEEE
1394 on Windows XP before installing any Service Pack, but with Service Pack 2 installed, the
IEEE 1394 adapter doesn’t show up as a network interface. Linux and FreeBSD are even worse:
they don’t support the proper way of encapsulating IP in IEEE 1394 but rather allow sending
of Ethernet frames over Firewire as a quick (and unreliable) hack.

■Caution The IEEE 1394 design allows one device on the bus to access another device’s memory, with-
out any help from software drivers. So, in the absence of specific information about the vulnerability of a
certain host and/or operating system, make sure you connect only to trusted devices through Firewire.

IPv6 over PPP
The Point-to-Point Protocol (PPP) is a very versatile protocol that is used on all kinds of point-
to-point links. Once PPP is underway, it’s extremely simple: basically, it only provides a type
field to keep different protocols (such as IPv4 and IPv6) apart. It also recognizes the beginning
and end of frames and implements a CRC, if the hardware doesn’t already perform these func-
tions. Because by definition, only two systems are connected to a point-to-point subnet, there
is no need for link-layer addresses or address resolution. But PPP contains its share of nifty
tricks that come into play before packets start to flow. Before anything else happens, the Link
Control Protocol (LCP) negotiates the Maximum Receive Unit (MRU, a close relative of the
MTU), authentication parameters (if any), and some other details. When LCP is done, the
Network Control Protocols (NCPs) for the different network layer protocols may start their
negotiations. IPCP, the IP Control Protocol, typically negotiates the IP address for one side
of the link, along with DNS server addresses.
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Not so for the IPv6 Control Protocol (IPV6CP). RFC 2023, which governs IPv6 over PPP, only
specifies the negotiation of a unique 32-bit token that can be used as an interface identifier. Pre-
sumably, IPv6 systems that do not have an IPv6 address will use Stateless Autoconfiguration to
obtain an IPv6 address on the interface. However, this doesn’t always work very well in practice.
Listing 8-13 shows the command line for starting a PPP session on a MacOS system. FreeBSD
and Linux use the same PPP implementation, but they use different tty devices.

Listing 8-13. Starting a PPP Session

sudo /usr/sbin/pppd /dev/tty.USA19H3b1P1.1 38400 noauth local passive persist  ➥

silent ipv6 ::2005

The arguments are

/dev/tty.USA19H3b1P1.1: The device name for the serial interface. Under Linux, PC COM
ports 1–4 are numbered ttyS0–ttyS3.

38400: The serial interface speed.

noauth: Don’t ask the peer to authenticate itself (this is why we need to be root to execute
pppd).

local: Don’t use modem control lines (i.e., the connection is through a null modem).

passive: Wait for the other side to initiate the LCP session.

persist: Try to reopen the PPP session after a failure.

silent: Wait with sending LCP packets until the other end becomes active.

ipv6 ::2005: Use 0x00002005 as the identifier for the local end and an empty identifier for
the remote end.

By using this syntax, the PPP device will enable IPv6 and create a link-local address. How-
ever, even though the Cisco router on the other end sends router advertisements, the interface
never configures a global IPv6 address. If you want to run IPv6 over a PPP link, you should prob-
ably use a script to set up IPv6 addresses manually, or maybe use DHCPv6 prefix delegation.
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Security

“The only real security that a man will have in this world is a reserve of knowledge,

experience, and ability.”
Henry Ford

Many people like to think (or say) that IPv6 is more secure than IPv4. But that’s too simple.
It’s like saying an egg is round. While it’s hard to deny that eggs exhibit a lot of roundness, they
don’t exactly conform to the x2 + y2 + z2 = r2 formula that describes a perfect sphere. Similarly,
many security aspects of IPv6 improve on those of IPv4, but IPv6 also has attributes that defy
comparison to IPv4. More importantly, talking about “security” as if it’s some kind of condi-
ment that can be added in accordance with one’s taste makes me profoundly uncomfortable.
To me, security is a state of mind. It means knowing what can go wrong, taking reasonable
measures to avoid those situations from occurring, and preparing for when they do anyway.
This goes against human nature, which drives us to conserve mental energy, guess a likely or
desired outcome for any given action, and ignore other possible outcomes. Unfortunately, the
people out to take our data or money don’t mind spending a little more brain power, and
Murphy’s Law tells us that what can go wrong invariably will.

Anyway, this chapter will explain the differences between IPv6 and IPv4 with regard to
security (the good and the bad), as well as explain how standard security devices such as
packet filters apply to IPv6. No discussion of IPv6 security is complete without a treatment
of IPsec. IPsec is a very interesting technology that has unsurpassed security properties, but
it has yet to live up to its potential.

Differences from IPv4
Many of the changes between IPv4 and IPv6 have security implications. This is especially true
for the much wider use of ICMP, the larger address space and link-local addresses.

Leveraging the Hop Limit
In IPv4, it’s necessary to filter out ICMP redirect messages on links to the rest of the Internet, as
attackers may try to confuse hosts by sending falsified redirect messages. In IPv6, this problem
could have been much worse, as in IPv6, the use of ICMP was greatly expanded. However, the
writers of RFC 1970 in 1996 and its replacement RFC 2461 in 1998 came up with a clever trick to
reject ICMPv6 messages sent by remote attackers. neighbor discovery and all other ICMPv6
types that are only used on a single subnet have their Hop Limit set to 255 by the originating
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system. This allows the receiving system to determine if a packet was sent by a system on the
same subnet or by a remote system. If the sender and receiver share a subnet, the packet can’t
have traversed any routers, so the Hop Limit should still be 255 at the receiver. A remote
attacker can craft a packet with all other fields set to whatever best serves her fraudulent pur-
poses, but she can’t make the packet have a Hop Limit of 255 at the destination. If the attacker
sends a packet with a Hop Limit of 255, the receiver will see a lower value, as routers along the
way will have decremented the field. Setting an initial Hop Limit lower than 255 obviously won’t
do any good either, and a higher Hop Limit is impossible because 255 is the highest value that
fits inside the 8-bit field.

Unfortunately, despite the fact that this trick was first documented in the mid-1990s, many
other protocols that use link-local communication, such as RIPng, OSPFv3, and DHCPv6, don’t
implement it. In 2004, the mechanism was introduced into BGP under the name “Generalized
TTL Security Mechanism” (GTSM) in RFC 3682. Because both sides need to implement and
(manually) enable GTSM, it’s not very widespread yet.

■Note I don’t know whether IPv6 implementations indeed reject packets with an incorrect Hop Limit, but
they all set the outgoing Hop Limit to 255 as required by RFC 2461.

The Larger Address Space
The Net has seen many worms (sometimes called “viruses”) the past years, but the “SQL Slam-
mer” or “Sapphire” worm in January 2003 was something special: because the entire worm was
contained in a single UDP packet, the spread rate of this worm was unprecedented. Because
UDP doesn’t require a handshake or feedback from the other side, infected hosts could just send
out packets containing the worm to random destinations at maximum speed. This allowed SQL
Slammer to double the number of infected systems every 8.5 seconds, infecting 90% of all vul-
nerable hosts connected to the Internet in 10 minutes. This makes it the first and so far only
“Warhol worm.”1 In IPv6, the address space is 296 times bigger, so finding a vulnerable system
would take 296 times as long. So in IPv6, the number of infected hosts would presumably double
every 296 × 8.5 seconds, or every 2500 billion billion years. I think we can agree that people who
haven’t patched their systems by then have only themselves to blame.

In other words: IPv6’s huge address space makes it impossible for attackers to find victims
by randomly scanning for vulnerable systems. However, a determined and patient attacker
may still be able to find systems with targeted scanning. Scanning a /64 subnet still takes too
much time, but only scanning IPv6 addresses derived from an Ethernet MAC address from a
specific vendor “just” takes some 17 million packets. A DSL connection can move that number
of packets in a matter of hours, so a scan like this isn’t completely unfeasible.

On-link Dangers
The fact that IPv6 always has link-local addresses is great if you want routers to communicate
even though they don’t share a subnet prefix or if you want to create an ad-hoc network with no
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connectivity to the Internet. But it’s not so great when a system gains IPv6 connectivity (even
just on the local link) without you realizing it. Now that more and more flavors of Linux, BSD,
and other UNIX or UNIX-like operating systems gain IPv6-support in the kernel, it’s becoming
fairly common for these systems to have link-local connectivity without the owner realizing it.
To add insult to injury, existing IP packet filters or software firewalls generally filter only IPv4
and don’t get in the way of IPv6 packets. Most systems don’t rely on these types of filters to
avoid unwanted connections, but it’s something to keep in mind.

While scanning an entire subnet one address at a time isn’t really an option, there are
other ways to find IPv6 systems connected to the local subnet. An obvious one is the “broad-
cast ping” to the all-hosts multicast address, as shown in Listing 9-1.

Listing 9-1. Finding IPv6 Systems on the Local Subnet with a Multicast Ping

# ping6 -I eth0 -c 2 ff02::1
PING ff02::1(ff02::1) from fe80::201:2ff:fe29:23b6 eth0: 56 data bytes
64 bytes from ::1: icmp_seq=1 ttl=64 time=0.078 ms
64 bytes from fe80::20a:95ff:fecd:987a: icmp_seq=1 ttl=64 time=0.366 ms (DUP!)
64 bytes from fe80::204:27ff:fefe:249f: icmp_seq=1 ttl=64 time=2.07 ms (DUP!)
64 bytes from fe80::20a:95ff:fef5:246e: icmp_seq=1 ttl=64 time=82.7 ms (DUP!)
64 bytes from ::1: icmp_seq=2 ttl=64 time=0.076 ms

--- ff02::1 ping statistics ---
2 packets transmitted, 2 received, +3 duplicates, 0% packet loss, time 1006ms
rtt min/avg/max/mdev = 0.076/17.066/82.734/32.842 ms

You don’t need to be root for this, but under Red Hat Linux, regular users don’t have
/usr/sbin/ where ping6 resides in their path. The -I flag supplies the outgoing interface. KAME-
derived implementations (the BSD family and MacOS) also accept the ff02::1%interface syntax.
The -c 2 tells ping6 that it should send out two echo request messages. Sending just one won’t
do any good, as ping6 then stops after receiving the first reply. In this case, that’s the reply from
the host itself, which shows up as the reply from ::1.

Node Information Queries
The KAME IPv6 stack also supports the ICMPv6 “node information query” mechanism to pro-
vide even more information to inquiring minds armed with the KAME ping6 command. The
most interesting ones are as follows:

-a ag asks for a list of the target’s global unicast addresses.

-a al asks for a list of the target’s link-local addresses.

-w asks for the target’s hostname.

-N tries to find a system with the listed name on the local subnet.

See the ping6 man page for more information. Some useful combinations of options are

ping6 -c 2 -I xl0 -w ff02::1 for a list of hostnames for all KAME IPv6 systems con-
nected to interface xl0.
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ping6 -c 2 -I xl0 -a ag ff02::1 for a list of global IPv6 addresses for each KAME-
compatible IPv6 system connected to interface xl0.

ping6 -c 2 -I xl0 -N -a ag server for a list of global addresses for each KAME-
compatible IPv6 system named “server” (domain suffixes are ignored) connected to
interface xl0 (the probe packets are addressed to a special multicast address that maps
to the name we’re looking for, similar to the solicited node address).

ping6 -c 1 -a ag www.kame.net for the list of global addresses for the KAME-compatible
IPv6 system “www.kame.net”.

ping6 -c 1 -w 2001:db8:31:5::2 for the hostname configured on the KAME-compatible
IPv6 system at address 2001:db8:31:5::2.

The last two also work over the Internet rather than just on the local subnet. There is also
a -a ac option that asks for the target’s IPv4-compatible and IPv4-mapped IPv6 addresses.
These addresses are very interesting as they contain the target’s IPv4 address, but as far as
I can tell, this option doesn’t work.

■Tip It looks like node information queries are only implemented in KAME-derived IPv6 stacks as found on
FreeBSD, other members of the BSD family and MacOS, and, curiously, Apple Wi-Fi base stations, which use
link-local IPv6 connectivity so they can be configured more easily.

Filters
In a perfect world, there would be no need for filters: it’s usually better to make the decisions
whether to allow a certain type of IP traffic at the application level. Different applications have
different access control needs, and the mechanisms that applications use to support those needs
are, or at least can be, quite sophisticated. When I connect to my bank, I know it’s their server I’m
talking to because of the X.509 certificate that my browser checked before it displayed a little lock
in the corner of its window. Or when I connect to the mail server, the server knows it’s me because
I provide my login and the password that only I know. Compared to that, filtering on IP addresses
and protocol numbers is rather primitive. Worse, the usefulness of this type of filtering is greatly
reduced by the fact that IP addresses tend to change from time to time, and application writers
and users sometimes actively work around filters by using nonstandard or even dynamic port
numbers. Also, many fields in the IP packet can easily be “spoofed” by an attacker.

Nevertheless, IP filters are often useful or necessary.

■Caution Before we start filtering, a word of warning: it’s very easy to set up a filter in a way that breaks
network connectivity in such a way that you’re unable to connect to the host in question and repair the dam-
age. So don’t experiment with filters on important systems, and preferably only experiment when you have
physical access to the machine or you have another way to recover from mistakes.
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■Caution Filtering out packets can do damage in non-obvious ways. Make sure you’re familiar with issues
such as Path MTU discovery and fragmentation as well as ICMPv6 in general and neighbor discovery in par-
ticular before attempting to implement filters in a production environment. Chapter 8 can be helpful here.

TCP Wrappers
The TCP wrapper functionality is a good example of something that was added to the stereo-
typical UNIX environment at one point and that has remained there while the world around it
changed. I doubt that many people will use TCP wrappers with IPv6, but sometimes it’s good
to consider our humble beginnings. The idea is that daemons started by inetd, or any other
daemon that is linked against the right support library, gain some extra logging and access
control capabilities. Originally, there was an /etc/hosts.allow file with hosts that are allowed
access to services and an /etc/hosts.deny file with, you guessed it, hosts that were denied
access to services. Later, both types of clauses were moved to the hosts.allow file. Listing 9-2
shows a simple hosts.allow file.

Listing 9-2. A hosts.allow File

# wrap inetd daytime service
daytime : .example.com : deny
daytime : 10.53.64.0/255.255.192.0, [2001:db8:31:2::53] : allow
# The rest of the daemons are protected.
ALL : ALL \

: severity auth.info \
: twist /bin/echo "You are not welcome to use %d from %h."

In this example, all connections from hosts in the domain example.com toward the “day-
time” service are rejected without further ado. Although the TCP wrappers don’t fall for the
most obvious DNS tricks, checking the DNS only provides a very limited level of security. Hosts
in 10.53.64.0/18 and the host with address 2001:db8:31:2::53 are allowed to use the daytime
service. The hosts.allow file works on a “first match” basis, so when host venus.example.com
has address 10.53.65.1, it’s rejected based on its domain name, and the address match on the
next line doesn’t come into play. Different versions of the TCP wrapper support slightly differ-
ent hosts.allow clauses, but the ones I was able to test didn’t support prefix notation for IPv4
address ranges or any kind of wildcard matching for IPv6. The final clause logs any attempts
to use any services (that are active and use TCP wrappers) and sends back an error message.
Depending on the protocol, this message may or may not be displayed to the user.

On Red Hat 9 Linux, the TCP wrappers worked unreliably. Under FreeBSD, they worked
well, with the caveat that when a daemon receives an incoming connection and the TCP wrap-
pers reject the connection, the daemon sees a strange termination of the incoming request. For
the MySQL daemon, this was enough to crash. This can be solved either by using a packet filter
as discussed below or binding the service to the localhost address so connection attempts from
the outside world aren’t possible. In MacOS 10.4, the xinetd daemon doesn’t support TCP wrap-
pers, but other daemons may still be compiled with TCP wrapper support. This is the case for
the built-in sshd, for example.
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■Tip See the man pages for tcpd, hosts_access(5), and hosts_options for more information. How-
ever, these manual pages are often out of date, with no clear way to determine what version of the actual
software is installed on the system.

Stateful Filtering to Replace NAT
When several hosts share a single public IPv4 address, this makes it hard for the Network
Address Translation box that implements this sharing to determine what to do with incoming
TCP session establishment requests. By default, these requests will be rejected, thereby shield-
ing the hosts behind the NAT device from potentially harmful and potentially useful incoming
traffic alike. The situation is similar for UDP: only when the incoming UDP packet is a reply to
an earlier outgoing request does the NAT device know how to translate the packet.

In IPv6, the assumption is that there is no NAT, so there is no automatic protection against
uninvited incoming traffic either. For TCP, this is easily fixed by filtering out packets that contain
a TCP header with the SYN bit set and the ACK bit cleared. This makes it impossible to establish
TCP sessions from the outside to the inside, while all other TCP packets, such as session estab-
lishment acknowledgements for sessions initiated from the inside or packets belonging to
already established sessions, can pass through.

For UDP, it gets more complicated, as there is no way to determine whether a UDP packet
is an incoming request or the reply to an earlier outgoing request by just looking at the packet.
So to block uninvited UDP traffic, it’s necessary to implement a stateful filter that keeps track
of outgoing UDP packets so it can determine whether incoming packets were invited or not.
A stateful filter can also reject TCP packets that would slip past a normal filter that only looks
at the TCP flags. (However, the receiving host would reject those packets anyway because they
don’t belong to valid TCP sessions.) Last but not least, stateful filtering often gets the job done
with a smaller number of filter rules.

However, stateful filtering also has a few downsides. To successfully determine whether
a packet belongs to an existing session, the stateful filter needs to keep a lot of information
(or state) around. Smart stateful filtering implementations know how to search through this
information very efficiently, but it still takes memory and CPU resources to manage all the
state information. Also, a stateful filter can only do its work when it can observe the packet
flow in both directions.2 When the filter is located on the filtered host itself, that isn’t much of
a problem (although even there it’s not impossible that a packet goes out on interface A and
the reply comes in through interface B), but it can be when the filter is implemented in an
external system that functions as a firewall. If there is only one such a firewall, then obviously
all packets will flow through it in both directions. The trouble starts when there is more than
one firewall, so that for some traffic, one firewall gets to see the outgoing packets for a given
session and another the incoming packets.

Of the IP filters discussed here, ipf, PF and Cisco IOS can do stateful filtering in IPv6.
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Linux ip6tables
The 2.2 Linux kernel did its IP packet filtering with ipchains. As of kernel 2.4, the preferred
method for this is iptables. The name for the actual filter is the “Netfilter subsystem,” but I
find these names impossible to remember, so it’s easier to talk about the executable that pro-
vides the user interface. Red Hat Linux comes with iptables (the IPv4 version) but not with
ip6tables (the IPv6 version). Listing 9-3 shows how to download and install ip6tables, along
with a newer version of iptables that the ip6tables RPM needs. The output of the commands
is left out.

Listing 9-3. Downloading and Installing ip6tables

# service iptables stop
# chkconfig iptables off
# wget http://download.fedoralegacy.org/redhat/9/updates/i386/➥

iptables-ipv6-1.2.8-8.90.1.legacy.i386.rpm
# wget http://download.fedoralegacy.org/redhat/9/updates/i386/➥

iptables-1.2.8-8.90.1.legacy.i386.rpm
# rpm --upgrade iptables-1.2.8-8.90.1.legacy.i386.rpm
# rpm --install iptables-ipv6-1.2.8-8.90.1.legacy.i386.rpm 
# service ip6tables start
# chkconfig --level 345 ip6tables on

The Red Hat and ip6tables documentation is adamant that ipchains, iptables, and
ip6tables are mutually exclusive, so the first two lines stop the running iptables and stop it
from being loaded at startup in the future. The next two lines download the RPM files, and the
two lines after that upgrade the existing ip6tables and install ip6tables, respectively. The two
remaining lines start ip6tables and make it start at boot time. Because iptables only handles
IPv4 and ip6tables only handles IPv6, it’s enormously inconvenient to be unable to run both.
So I started iptables again when ip6tables was running, with no immediate bad effects. Your
mileage may vary.

According to the documentation, Red Hat Enterprise Linux has ip6tables on board, but
it doesn’t. I haven’t been able to check this, but it seems the way to install ip6tables on such
a system is to determine the version of iptables that’s installed (simply type iptables at the
prompt, and it will print its version number) and then find an RPM for the corresponding ver-
sion of ip6tables and install it as in Listing 9-3.

iptables gets its name from the different “tables” that in turn each contain one or more
“chains” with filter rules. The table we’re interested in is the default one named “filter,” which
by default contains three chains: input, output, and forward. The input chain contains the
rules that apply to packets that come in destined for local consumption. The output chain
contains the rules that apply to locally generated packets as they leave the system. The rules
in the forward chain operate on packets that are forwarded when the system acts as a router.
The filter rules in a chain are evaluated one by one, and as soon as a packet matches a rule,
the indicated action is taken, regardless of any following rules. Listing 9-4 implements a filter
that blocks several types of traffic.
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Listing 9-4. Filtering with ip6tables

# ip6tables -A OUTPUT -p tcp --dport 25 -j DROP
# ip6tables -A INPUT -s 2001:db8::/32 -j DROP
# ip6tables -A INPUT -p icmpv6 --icmpv6-type echo-request -d ff02::1 -j DROP
# ip6tables -I INPUT -p tcp --syn -j DROP
# ip6tables -D OUTPUT -p tcp --dport 25 -j DROP

The -A flag appends filter rules at the end of a chain, while -I inserts them at the begin-
ning and -D deletes existing rules. (It’s also possible to use line numbers for explicit ordering.)
The -p tcp in the first rule matches TCP packets, but --dport 25 limits this to packets with
destination port number 25 (SMTP). The -j flag specifies the action to be taken. DROP means
the packet is discarded unceremoniously, without returning an ICMP message. The documen-
tation also mentions REJECT (along with some other options), which does send back an ICMP
unreachable, but ironically, my attempts to add filter rules with a REJECT action were rejected.

The second rule uses -s 2001:db8::/32 to match all packets that have a source address
inside the IPv6 documentation prefix. Unlike the first rule, this one is applied to incoming
packets. The third rule is a bit more complex: it matches the ICMPv6 protocol and then only
the packets that are ICMPv6 type “echo request.” But the rule goes on to specify the all node
multicast address as the destination with -d ff02::1. With this rule in effect, the system won’t
respond to pings sent to the all node multicast address anymore, as these packets are filtered
out before they can be processed. The fourth rule matches all TCP session establishment
packets. ip6tables allows specifying each individual TCP flag, but in this case, using the --syn
option that matches session establishment packets is easier. This line effectively provides the
same filtering NAT does, for TCP at least. Blocking outgoing SMTP traffic makes it hard to send
mail, so the final line removes the first one again, by virtue of the -D in place of the -A or -I
option. Use ip6tables -F to flush all filter rules rather than having to delete them one by one.
Without further arguments, ip6tables -F flushes all chains, but you can also supply the chain
name to flush.

These rules work under the assumption that the default policy for any unmatched pack-
ets is to allow them through. Alternatively, you can make filter rules that accept allowed traffic
(with the ACCEPT rather than the DROP action), and then reject everything else. You can change
the default policy for a table with (for instance) ip6tables -P INPUT DROP or ip6tables -P
FORWARD ACCEPT. ip6tables -L lists the chains and their default policies. See the ip6tables
man page for more information on how to use ip6tables. You can also find more information
about Netfilter in general at http://www.netfilter.org/.

MacOS and FreeBSD ip6fw
The IPFirewall, or ipfw in IPv4 and ip6fw in IPv6, has been around for a long time in FreeBSD.
These days, many FreeBSD users prefer ipf instead, which we’ll discuss later. MacOS doesn’t
come with ipf, but ip6fw is enabled by default, so on the Mac, using ip6fw is the logical choice.
Under FreeBSD, you can enable ip6fw by adding the following lines to /etc/rc.conf:

ipv6_firewall_enable="YES"
ipv6_firewall_script="/etc/rc.firewall6"
ipv6_firewall_type="open"
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The purpose of the first line is obvious. The second line points to the system-supplied
script that sets up the IPv6 filter rules and the last line passes the argument “open” to this
script. Have a look at the script in /etc/rc.firewall6 for the options other than “open,” which
allows all packets, or “closed,” which filters out all packets. But if you want to use one of these
other options, you need to customize the script. The following rule is always present:

65535 deny all from any to any

So if you want to allow anything (or everything), you must install one or more rules with a
lower number. This makes it a very bad idea to have just the line ipv6_firewall_enable="YES" in
the /etc/rc.d without a script to set up filter rules. You can change the default behavior to allow-
ing all packets by compiling the kernel with a special option as described in the ipfirewall man
page. On the Mac, however, things work slightly differently, and the default action is to allow all
packets.

■Note The MacOS ip6fw man page is the same as the FreeBSD one, even though the default behavior of
the filter is the opposite under MacOS. Apparently, man pages for BSD utilities that are incorporated in MacOS
aren’t updated, even if the utilities themselves are.

Unlike the Linux Netfilter/ip6tables, ip6fw has only a single system-wide filter list. How-
ever, it’s possible to apply individual filter rules to just input or output packets. Listing 9-5
does the same with ip6fw as Listing 9-4 did with ip6tables.

Listing 9-5. Filtering with ip6fw

% sudo ip6fw -q add unreach admin tcp from any to any 25 out
% sudo ip6fw -q add deny ipv6 from 2001:db8::/32 to any
% sudo ip6fw -q add deny ipv6-icmp from any to ff02::1 in icmptype 128
% sudo ip6fw -q add deny tcp from any to any setup in
% sudo ip6fw list
00100 unreach admin tcp from any to any 25 out
00200 deny ipv6 from 2001:db8::/32 to any
00300 deny ipv6-icmp from any to ff02::1 in icmptype 128
00400 deny tcp from any to any in setup
65535 allow ipv6 from any to any
% sudo ip6fw delete 100

The ip6fw commands themselves are the same on FreeBSD and MacOS, but because the
root isn’t enabled by default on MacOS, it’s necessary to use the sudo tool to execute privileged
commands. The first line installs a filter rule that blocks outgoing TCP port 25 packets. When
such a packet hits the filter, an ICMPv6 type “unreachable” code “administratively blocked”
message is sent back so the application promptly returns an error. The next line blocks all IPv6
packets from the documentation range, regardless of their destination and whether the pack-
ets are incoming or outgoing. There are no ICMPv6 unreachables or TCP resets for filters with
a deny action. The third line blocks all incoming ICMPv6 echo request packets (type 128, see

CHAPTER 9 ■ SECURITY 187



Chapter 8) with the all-node multicast address as their destination. The fifth line blocks all
incoming TCP session establishment packets.

The next order of business is to delete the filter rule that blocks port 25. All ip6fw filter
rules have a line number. Because we didn’t supply a line number, the rules were numbered
automatically, and the only way to delete a rule is by using its number. So we need to display
the list of rules with ip6fw list. A nice property of ip6fw is that the output from the list sub-
command follows the rules for the add subcommand, making for easy copying and pasting.
The -q flag suppresses interactive input and output. When adding lines without providing the
-q flag, ip6fw returns “00000” after each rule. Apparently, the idea is to echo back the line
number for the new rule, but this effort isn’t entirely successful.

If the default policy (rule 65535) is to reject all packets, you may need to install a line like
the following:

ip6fw add 65534 allow ipv6 from any to any

However, with this line in effect, ip6fw is no longer able to automatically number lines, as
65534 is the highest possible number for user-defined rules; 1 is the lowest. There can be more
than one rule with a given number. In that case, evaluating or removing them happens in the
order in which they were installed. See the ip6fw man page for more options.

IPFilter
The IPFilter is an IP filter that’s available for several UNIX and UNIX-like systems. It’s included in
FreeBSD, and the examples below are for FreeBSD, but if the documentation is to be believed,
IPFilter also works with Linux as of the 2.4 kernel (some kernel hackery required). Under
FreeBSD 5.x, IPFilter works out of the box after enabling it in /etc/rc.conf, but under FreeBSD
4.x, you need to compile a custom kernel to be able to use IPFilter. In theory, it’s also available as
a loadable kernel module, but that doesn’t work (see FreeBSD bug 53966). See the chapter “Con-
figuring the FreeBSD Kernel” in the FreeBSD handbook at http://www.freebsd.org/. You need
to add following line in the kernel configuration file:

options IPFILTER

You can enable IPFilter on FreeBSD by adding the following lines to the /etc/rc.conf file:

ipfilter_enable="YES"
ipfilter_program="/sbin/ipf"
ipfilter_rules="/etc/ipf.rules"
ipv6_ipfilter_rules="/etc/ipf6.rules"

By default, ipf is compiled to allow all packets, but wouldn’t you hate to find out that your
installation uses the opposite default? This would be especially bad because, unlike other fil-
ters, IPF works both on IPv4 and IPv6. So if you lock yourself out of your machine, you really
lock yourself out of your machine. The /etc/ipf.rules file mentioned above contains the ipf
filter rules for IPv4, while /etc/ipf6.rules contains the rules for IPv6. These files aren’t pres-
ent by default, so you need to create them and put in some default rules. For instance:

# allow everything
pass in all
pass out all
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Even though ipf uses the same programs to manipulate IPv4 and IPv6 rules, those rules
are kept in separate tables: it’s not possible to have a single rule that acts on both IPv4 and
IPv6 packets. In addition to the IPv4/IPv6 split, ipf has separate rule sets for input and output.
This makes for the following permutations:

IPv4 input rules, which can be listed with ipfstat -i

IPv4 output rules, which can be listed with ipfstat -o

IPv6 input rules, which can be listed with ipfstat -6 -i

IPv6 output rules, which can be listed with ipfstat -6 -o

■Note The filtering logic in ipf is the exact opposite of that of the other filters discussed so far: rather
than stopping when the first matching filter rule is found, ipf continues to evaluate rules all the way to the
end of the list, and only then does it apply the action specified in the last matching rule.

Listing 9-6 implements filter rules similar to those in Listings 9-4 and 9-5.

Listing 9-6. ipf Filter Rules

pass in all
pass out all
block out proto tcp from any to any port = 25
block in from 2001:db8::/32 to any
block in proto ipv6-icmp from any to ff02::1 icmp-type 128
block return-rst in proto tcp from any to any flags S

The first two filter rules set up a default action. The next rule filters out any outgoing TCP
packets with destination port 25. The rules after that filter out incoming packets with source
addresses in the IPv6 documentation prefix, filter incoming ping6 packets to the all-hosts
address, and, last but not least, block all incoming TCP packets with the SYN bit set. This last
rule also sends back TCP resets. FreeBSD 5.4 did generate the reset packets, but FreeBSD 4.9
didn’t. FreeBSD 4.9 also didn’t allow using icmp6 instead of ipv6-icmp.

You can add the rules in Listing 9-6 to /etc/ipf6.rules to have them loaded on startup.
There doesn’t seem to be a way to add/remove rules on the fly without loading them from a
file. Use the command ipf -6 -Fa -f ipf6.rules to do that. The -6 flag indicates that we’re
talking about IPv6, -Fa tells ipf it should flush all existing rules both for input and output, and
the -f argument makes it read new rules from a file. See the man page for more options. Edit-
ing a file with filter rules and then reloading the rules from the file isn’t entirely without danger:
if parsing the file fails halfway through, only part of the rules are loaded, and you may lock
yourself out of your machine. However, the “apply the last matching rule” philosophy is help-
ful here: if the first rules allow all packets until subsequent rules block certain types of traffic,
missing rules result in a less restrictive filter set rather than a more restrictive one.

You can keep ipf from evaluating additional rules with the quick keyword after the in or out
in a rule. So pass out all quick means that all outgoing packets are allowed through, regardless
of what additional rules you may specify. ipf can also perform stateful filtering; see Listing 9-7.
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Listing 9-7. Stateful Filtering with ipf

pass in all
pass out all
pass out proto tcp/udp from any to any keep state
block return-rst in proto tcp from any to any
block in proto udp from any to any

The third rule permits outgoing TCP and UDP packets and keeps their state to allow return
traffic. This happens automatically. The fourth line blocks all remaining TCP packets and sends
back a reset, and the final line blocks all unsolicited UDP packets. The appropriate action would
be to send back an ICMPv6 unreachable message with code administratively prohibited, but ipf
doesn’t have much documentation, so I was unable to determine the correct syntax.

FreeBSD Packet Filter
In version 5.3, FreeBSD gained a port of the OpenBSD Packet Filter (PF). PF is a lot like ipf, but it
has some more advanced functions and, more importantly, extensive documentation, which
you’ll find at http://www.openbsd.org/faq/pf/. You can also download the documentation in PDF
format from this page, but be warned that the text is often exceptionally tiny. Another interesting
difference between PF and the other filters is that in PF IPv4 and IPv6 are fully integrated: a single
rule can apply to both protocols. Listing 9-8 is the PF version of our by now familiar filter.

Listing 9-8. PF Filter Rules

pass all
unroutable="{ 2001:db8::/32 192.0.2.0/24 }"
block in from $unroutable to any
block out proto tcp from any to any port = 25
block in proto icmp6 from any to ff02::1 icmp6-type echoreq
block return-rst in proto tcp from any to any flags S/SA

As you can see, PF rules look very similar to ipf rules. However, there are some important
differences. PF allows rules that apply both to incoming and outgoing packets, so a single pass
all accomplishes the same thing as pass in all and pass out all. PF also adds support for
macros, like the one in the second line. The contents of the macro must be between quotes
and can be an address, protocol, port, and so on. In this case, it’s a list, another new feature.
A list is a set of addresses, protocols, or ports between braces, optionally separated by com-
mas. The list in the second line of Listing 9-8 contains the IPv6 and IPv4 documentation
prefixes. The third line blocks all packets that have a source address in either of the docu-
mentation prefixes by referencing the macro.

The fourth line filters out traffic toward port 25. Because there are no addresses or an
explicit inet or inet6 after the out keyword, this rule applies to both IPv4 and IPv6. The sec-
ond to last rule filters out incoming ICMPv6 echo requests. The icmp6-type keyword isn’t
documented, but the documentation mentioned earlier does have a link to a list of ICMPv6
types that contains the names PF requires; it doesn’t accept numerical values like ipf does.
The final rule blocks incoming TCP packets that out of the S and A flags only have the S flag
set. PF won’t accept the rule without this “mask” (the SA flags in the example).
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You can load the filter rules from a file (called pf.rules in this case) with the command
pfctl -f pf.rules. There is no need to flush the rule set first; this is done automatically when
loading new rules. If there is an error in one of the rules, none of the rules is loaded and the
old ones remain in effect. You can manually flush the rules with pfctl -F rules. You can dis-
play the current list of rules with pfctl -s rules, as in Listing 9-9.

Listing 9-9. Displaying PF Filter Rules

# pfctl -s rules
No ALTQ support in kernel
ALTQ related functions disabled
pass all
block drop in inet6 from 2001:db8::/32 to any
block drop in inet from 192.0.2.0/24 to any
block drop out proto tcp from any to any port = smtp
block drop in inet6 proto ipv6-icmp from any to ff02::1 icmp6-type echoreq
block return-rst in proto tcp all flags S/SA

Don’t worry if pfctl complains about ALTQ. This is a bandwidth management mecha-
nism that PF supports, but PF will also work without ALTQ present. It’s interesting to see that
the list from Listing 9-8 is expanded to two different filter rules. This always happens with lists
and is not the result of mixing IPv4 and IPv6. PF also supports “tables,” which are similar to
lists but don’t get expanded in this way. Instead, the contents of a table is stored in a special
data structure in memory that can be searched very efficiently. So if you have a large list of IP
prefixes that you want to block or allow through, it’s best to store them in a table. Obviously,
tables only work for addresses, and there are some other limitations as well. PF also noticed
that our anti-ping rule is IPv6-specific, so it added the keyword inet6. Rules without inet or
inet6 apply to both IPv4 and IPv6. Listing 9-10 is a stateful PF filter.

Listing 9-10. Stateful Filtering with PF

scrub in all
pass all
pass out proto { tcp, udp } from any to any keep state
block return in proto { tcp, udp } from any to any

The command scrub in all tells PF to remove inconsistencies from incoming packets,
reassembles fragmented packets, and blocks packets with invalid TCP flag combinations. The
rest of the filter is very simple: the second line sets up the familiar default policy that allows
ICMP and unknown protocols through the filter. The third line directs PF to keep state infor-
mation for all outgoing TCP and UDP packets. In the absence of any TCP flags, this applies to
all outgoing TCP packets, not just outgoing TCP session establishment packets. The last line
then blocks all incoming TCP and UDP packets that weren’t already allowed through by virtue
of the state created by the third line. The return keyword makes PF send back a TCP reset for
incoming TCP packets and an ICMP port unreachable for incoming UDP packets that were
blocked. Use pfctl -s state to display the state table and pfctl -F state to clear it.

■Caution PF often errs on the side of security, so make sure your filter isn’t more restrictive than you
intend, especially when using more advanced options such as scrubbing.
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PF AND NAT

According to the documentation, PF can also perform Network Address Translation. That’s not very unusual,
but without saying it in so many words, the documentation suggests that NAT also works with IPv6. That
would be very unusual. One of the reasons to move to IPv6 would be to get back to the situation where any
two arbitrary hosts can communicate with each other without NATs that get in the way. And what’s the
advantage of IPv6+NAT over IPv4+NAT, anyway? NAT doesn’t solve the long-term address shortage in IPv4
completely, but it certainly takes the sting out of the problem. At the same time, the benefits of IPv6+NAT
aren’t quite as compelling as those of IPv6 without NAT. Also, because currently the expectation is that NAT
won’t be deployed to a significant degree in IPv6, vendors aren’t likely to include NAT traversal mechanisms
in their IPv6 products like they do with IPv4 products.

It turns out that PF does indeed support NAT with IPv6. If you want to see for yourself, set up a PF-
capable host with “internal” and “external” interfaces, enable router advertisements on the internal interface,
and turn on IPv6 forwarding. (This is all explained in Chapter 3 and Chapter 4.) Then, feed PF filter/translation
rules like the following:

nat on gif0 from 2001:db8:6::/64 to any -> 2001:db8:6:172::2
pass all

The gif0 argument is the external interface, which has the address 2001:db8:6:172::2. The
2001:db8:6::/64 prefix is the prefix for the internal network. That’s it. To the outside world, any communi-
cation from the hosts in 2001:db8:6::/64 will now seem to come from 2001:db8:6:172::2. For simple
client/server interactions, such as the HTTP protocol, this works well, but any protocols that embed
addresses in their communication will fail. The prime example of such a protocol is FTP. When requesting a
file from an FTP server, the client tells the server which address and port it should connect to to transmit the
file. With the client behind NAT the address supplied by the client won’t be reachable. With IPv6, this leads to
the following error:

230 Login successful.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> ls
500 Illegal EPRT command.
500 Unknown command.
425 Use PORT or PASV first.

The offending EPRT command is the IPv6 version of the original FTP PORT command. The interesting
thing is that with many IPv4 NATs, the exact same FTP behavior does work. The reason for this is simple: NAT
vendors include workarounds for many protocols to make them work through the NAT. In this case, the inter-
nal address as supplied by the client in the FTP PORT is changed to the external address of the NAT. In the
case of FTP, all of this is mostly moot because the protocol was extended with a “passive” mode that doesn’t
require the client to pass its address to the server. However, other protocols such as RTSP, SIP, and peer-to-
peer applications aren’t as easy to fix.
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Windows netsh firewall
The Windows netsh utility that we put to good use in earlier chapters can do more than just
manipulate IPv6 settings. As of Windows XP Service Pack 2, netsh also contains a “firewall” con-
text. This is probably a matter of opinion, but I didn’t find the netsh firewall context very useful
as a general-purpose packet filter, although it has some options to facilitate this type of filtering.
However, the Windows XP firewall has a very useful feature that lacks in the filters discussed so
far: it allows filtering based on the program that receives the packets, rather than on just the
information found in the packet itself and information like the input/output interface.

The Windows XP firewall is enabled by default as of Service Pack 2 and acts as a stateful filter
that allows return traffic for all outgoing packets. The firewall blocks some ICMPv6 types but not
others. For instance, pinging a host directly works, but Windows XP Service Pack 2 hosts don’t
reply to pings to the all node multicast address, unless you disable the firewall completely with
set opmode mode=disable. This happens despite the presence of a multicastbroadcastresponse
setting, which is enabled by default. Windows really doesn’t like it when the firewall is disabled,
though, and immediately pops up a warning. Most IPv6 traceroutes toward the Windows system
don’t work with the firewall enabled either, as the traceroute program generally uses UDP pack-
ets to unoccupied ports to solicit ICMPv6 “port unreachable” messages. As the stateful firewall
doesn’t expect these UDP packets, they are dropped and there is no ICMPv6 message. However,
Windows uses ICMP echo request messages in its traceroutes, which are allowed through by the
Windows XP firewall.

■Caution The firewall blocks outgoing ICMPv6 “packet too big” messages, which becomes problematic
when the system is configured to be an IPv6 router. See Chapter 4.

Type netsh firewall to enter the firewall context and then type ? or a command followed
by ? to learn more about netsh firewall commands.

Cisco IPv6 Access Lists
Cisco routers use “access lists” to filter packets. Over the years, Cisco has slowly changed the way
access lists work. Originally, IOS only supported numbered access lists, with different number
ranges for different protocols or access list types. For instance, access list numbers from 1 to 99
were for “standard” IPv4 access lists that only support filtering on source address, while numbers
100 to 199 were for “extended” access lists that can also look at destination addresses, protocols,
and protocol-specific information such as port numbers. In IOS 11.2, Cisco introduced a new
syntax for “named access lists.” IPv6 access lists are very similar to IPv4 named access lists, except
that there is no longer a difference between standard and extended access lists: all IPv6 access
lists are extended access lists.3 Note that there can’t be an IPv4 and an IPv6 access list with the
same name.
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Applying Access Lists to Interfaces
When filtering traffic that is forwarded by the router, access lists are applied to individual
interfaces, either for input or output (or both). Listing 9-11 shows incoming and outgoing
access lists that implement filters similar to the ones in Listings 9-4, 9-5, 9-6, and 9-8.

Listing 9-11. Filtering by Using IPv6 Access Lists on a Cisco Router

!
interface Ethernet1
ipv6 traffic-filter in-ipv6-acl in
ipv6 traffic-filter out-ipv6-acl out
!
ipv6 access-list in-ipv6-acl
deny ipv6 2001:DB8::/32 any
deny icmp any host FF02::1 echo-request
permit tcp any any established
deny tcp any any
permit ipv6 any any
!
ipv6 access-list out-ipv6-acl
deny tcp any any eq smtp
permit ipv6 any any
!

The first line in in-ipv6-acl filters out all IPv6 packets from the documentation prefix,
regardless of their destination. The ipv6 keyword seems superfluous, as this is an IPv6 access
list, but it indicates that the filter rule matches all IPv6 packets, regardless of whether the pay-
load is TCP, UDP, ICMPv6, or something else. The next line rejects ICMP messages (the “v6”
part is implied) toward the all node multicast address that are echo requests. The line after
that allows all TCP packets that are part of established sessions and then all other TCP packets
are rejected. Finally, all packets that didn’t match any of the preceding filter rules are permit-
ted through.

Rather than denying all remaining TCP packets that aren’t part of an established session,
it’s possible to allow UDP and ICMPv6 and have the unwanted TCP packets filtered out by the
implicit deny clause at the end of the access list. However, this would also reject all non-TCP/
UDP/ICMPv6 packets. This could be desirable in very security conscious environments, but
such a “deny unknown protocols” policy has the downside that it makes it harder to deploy
new protocols. Also see the discussion on filter limitations later this chapter.

In the ip6tables and ip6fw examples we removed the outgoing SMTP filter again at the
end of the listing. Listing 9-12 does this for a Cisco router with the access lists from Listing 9-11
installed.
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Listing 9-12. Removing an Access List Line

Router#show running-config | begin ipv6 access-list out-ipv6-acl
ipv6 access-list out-ipv6-acl
deny tcp any any eq smtp
permit ipv6 any any
!
Router#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
Router(config)#ipv6 access-list out-ipv6-acl
Router(config-ipv6-acl)#no deny tcp any any eq 25
Router(config-ipv6-acl)#^Z
Router#show running-config | begin ipv6 access-list out-ipv6-acl
ipv6 access-list out-ipv6-acl
sequence 20 permit ipv6 any any
!

When listing the access list as it appears in the configuration before removing the SMTP
line, the access list lines don’t have numbers, but afterward, the remaining line does. The router
automatically adds sequence numbers to all filter rules as they are entered, as you can see with
the show ipv6 access-list command. This makes it possible to insert lines in the middle of an
access list later by supplying the desired sequence number manually. For instance, adding the
SMTP filter again without a sequence number would place this filter rule at the end of the access
list, but with deny tcp any any eq 25 sequence 10, it’s placed before the permit ipv6 any any
line like before.

Stateful Filtering with Reflexive Access Lists
Although the filters in Listing 9-12 manage to keep out a lot of unwanted traffic, we can do
better by doing stateful filtering on routers where this is appropriate, such as the ones acting
as Customer Premises Equipment (CPE). Cisco IOS has a mechanism called “reflexive access
lists” for this, as shown in Listing 9-13.

Listing 9-13. Stateful Filtering with a Reflexive Access List

!
no ipv6 access-list out-ipv6-acl
no ipv6 access-list in-ipv6-acl
!
ipv6 access-list out-ipv6-acl
permit tcp any any eq 22 reflect state-acl timeout 7500
permit ipv6 any any reflect state-acl
!
ipv6 access-list in-ipv6-acl
evaluate state-acl
deny tcp any any log-input
deny udp any any log-input
!
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First order of business is to remove the existing out-ipv6-acl and in-ipv6-acl access
lists. Both access lists are still referenced under the Ethernet1 interface (see Listing 9-12),
but because they no longer exist, all traffic is allowed through. However, as soon as the first
line for out-ipv6-acl is entered, this is no longer true: the access list exists once again, and
all TCP traffic toward port 22 (SSH) is allowed through. But because the next line hasn’t been
entered yet, all non-SSH packets are caught by the ever-present implicit deny.4 This is, of
course, fixed by adding the second line, which allows all packets through. Both lines pass
the packets through the reflexive access list “state-acl” in order to set up filtering state. The
first line sets up a timeout of 7500 seconds for SSH sessions. The second line doesn’t men-
tion a timeout, so the default one of 300 seconds applies. 7500 seconds (two hours and five
minutes) is a good value for SSH sessions that may go idle for long periods, as many systems
send out a TCP keepalive once every two hours on idle TCP sessions. TCP session state is
also removed when the session terminates, but UDP and ICMP echo lines must time out
because there is no way for the filter to know when such a “session” terminates. Use show
ipv6 access-list state-acl to monitor the reflexive access list.

The in-ipv6-acl access list passes traffic through the reflexive access list set up in the
outgoing filter and reject all other TCP and UDP traffic while logging it. The reflexive access list
itself is created on-demand by the router, so it doesn’t show up in the configuration. The filter
rules in the reflexive access list are all permit rules that match specific address and TCP/UDP
port combinations or addresses/ICMP echo reply combinations. The evaluate clause passes all
traffic through the reflexive access list. All packets that are permitted there are allowed through,
but packets that aren’t permitted by the reflexive access lists aren’t denied, but rather handed
back to the calling access list (in-ipv6-acl) for further processing.

■Caution It’s important to allow ICMPv6 neighbor solicitation and neighbor advertisement packets
through access lists, or communication over IPv6 won’t be possible on the interface the access list is
applied to. For this reason, as of Cisco IOS 12.0(23)S, IPv6 access lists include implicit permit icmp
any any nd-na and permit icmp any any nd-ns rules preceding the customary implicit deny at the
end of the access list. If you want to supply your own deny ipv6 any any or deny icmp any any rule
for logging purposes, you also need to add your own permit rules for neighbor discovery.

As mentioned before, the reflexive access list allows incoming TCP and UDP packets that
match earlier outgoing packets, as well as ICMPv6 echo replies that match earlier outgoing
ICMPv6 echo requests. However, reflexive access lists aren’t smart enough to allow incoming
ICMPv6 “port unreachable” and “time exceeded” messages belonging to outgoing traceroute
probes, so traceroute6 doesn’t work. You can fix this by adding the lines permit icmp any any
port-unreachable sequence 12 and permit icmp any any time-exceeded sequence 14 to the
in-ipv6-acl access list. Because these ICMP messages are dealt with by the IPv6 stack (rather
than applications) on the receiving host, allowing them shouldn’t pose any security risks. Also,
ICMPv6 error messages aren’t supposed to generate ICMP messages in return, so they can’t be
used to trick hosts to send back a message for scanning purposes.
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When implementing reflexive access lists, beware that IPv6 traffic generated on the router
itself doesn’t go through any outgoing access lists: it’s always allowed. So with Listing 9-13 in
place, trying to telnet, ping, or traceroute from the router command line won’t work: because
the outgoing packets aren’t seen by out-ipv6-acl, no filter lines are added to the reflexive access
list, so in-ipv6-acl will reject the return traffic. If this poses a problem, you can either permit
the specific protocols that are desired toward the IPv6 addresses of the router in the incoming
access list(s) or opt for nonreflexive stateless filters such as those in Listing 9-11.

Filtering Services on the Router
An ISP would generally want to allow Telnet traffic to flow through its network. Even though
Telnet isn’t as widely used as it once was, many places around the Net still use the protocol, so
filtering it out wholesale would be an unpopular move. On the other hand, an ISP would proba-
bly want to limit Telnet access to its routers to trusted addresses only5 to discourage password
guessing and to avoid problems with vulnerabilities in the Cisco remote access implementa-
tion, which have occurred several times in the past. One way to do this would be to filter out
packets on port 23 (the Telnet port) in access lists on all interfaces, but this is very tedious. IOS
has a better way to accomplish the same result: it’s possible to apply an access list to most pro-
tocols or services running on the router, without affecting traffic flowing through the router.
Listing 9-14 implements a filter for remote access to the command line with Telnet.

Listing 9-14. Filtering IPv6 Telnet Access to a Cisco Router

!
ipv6 access-list manage-ipv6
permit ipv6 2001:db8:31::/48 any
!
line vty 0 4
ipv6 access-class manage-ipv6 in
transport input telnet
!

The access list manage-ipv6 only has a single filter rule that matches all IPv6 packets with
a source address in the prefix 2001:db8:31::/48 and any destination address. This access list
is then applied to virtual TTYs 0 to 4 with the ipv6 access-class manage-ipv6 in command.
VTYs 0 to 4 are available on all Cisco routers for incoming sessions with protocols like Telnet
and rlogin, but some routers allow more VTYs. In this case, incoming sessions are only allowed
over the Telnet protocol, and the access list makes sure that only sessions from hosts with
addresses in 2001:db8:31::/48 are accepted.

■Caution Protocols that can be enabled without access restrictions or are enabled without access restric-
tions by default, such as Telnet, need both IPv4 and IPv6 filters. For instance, with Listing 9-14 in place, the
router will still accept Telnet sessions from all IPv4 addresses.
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5. It’s better to use SSH rather than Telnet, because unlike Telnet, SSH encrypts the login session. How-
ever, not all Cisco IOS images and platforms support SSH. It can also be useful to have Telnet access
as a backup in case SSH isn’t available, for instance, when hopping from one router to the next.



Unicast Reverse Path Forwarding
In BCP 38/RFC 2827, the IETF recommends that ISPs only accept packets from their customers
with source addresses that were actually assigned to those customers. This makes it impossible
to send out abusive IP packets with falsified source addresses. Forcing attackers to use their real
IP address makes it easier to filter out the packets in question and trace back the source. Imple-
menting such filters is generally a good idea whenever downstream hosts are not under your
control or have a higher than average risk of being compromised. However, maintaining access
lists on all such router interfaces is a lot of work. This is where Cisco’s unicast Reverse Path For-
warding (uRPF) feature comes in handy.

The original Reverse Path Forwarding check is a mechanism to make sure that only a
single copy of a multicast packet is forwarded by a router. Figure 9-1 shows a network with
six routers. Let’s assume the routers in this network forward multicast packets and that
these multicasts enter the network at Router 1. Router 1 replicates the packet and sends
copies to Routers 2 and 3. Router 2 in turn sends copies to Routers 4 and 5. So far so good.
But Router 3 sends copies of the packet to Routers 5 and 6, which means that Router 5 gets
two copies of each packet. Depending on the topology of the network, Router 5 can tell
Router 3 that it doesn’t want to receive packets addressed to the relevant group address, but
if Routers 5 and 6 are connected to the same interface on Router 3, Router 3 can’t selectively
send the packet to Router 6 but not to Router 5. This is where the RPF check comes in: for
every multicast packet that Router 5 receives, it looks at the combination of the incoming
interface and the source address of the multicast packet. If the router would use this same
interface to send outgoing packets toward the address in the multicast packet’s source
address field, the packet is allowed through. If the router would use another interface to
reach the source address in question, the packet is filtered out.

In Figure 9-1, Router 5 has a default route toward Router 2, so any multicast packets com-
ing in from Router 3 fail the RPF check, and they’re filtered.
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Figure 9-1. The Reverse Path Forwarding check



Unicast RPF uses the same mechanism to check unicast packets: on an interface with
uRPF enabled, only packets with source addresses that are reachable over that interface are
accepted. In essence, uRPF uses the routing table as a filter. This has two important advan-
tages: there’s no need to maintain filters manually, and filtering is more efficient because the
routing table can be searched with very efficient algorithms while access list lines are evalu-
ated one at a time from top to bottom until there is a match.

There are two different commands that enable uRPF. The simple syntax is ipv6 verify
unicast reverse-path in interface configuration mode, optionally followed by an IPv6 access
list name. Packets permitted by the access list (if supplied) are allowed through, even if the
RPF check fails. Some IOS versions contain a more powerful uRPF implementation, which is
enabled for an interface with ipv6 verify unicast source reachable-via, followed by one or
more parameters. If the first parameter is rx, the RPF check is performed as described previ-
ously. Alternatively, it’s possible to specify any, in which case the RPF check ignores the output
interface that it finds in the routing table and checks only whether the source address is reach-
able via any interface. This “loose” uRPF form makes it possible to apply the mechanism to
links toward upstream ISPs or peering links with other ISPs. The strict form can’t be used here
without additional measures because it can’t handle destinations being reachable over more
than one interface. The loose RPF check isn’t as useful as the strict one, as it only rejects pack-
ets with source addresses that aren’t in the routing table. However, the IPv6 address space is
very big and sparsely populated, so this will still get rid of most packets with randomly gener-
ated source addresses. Additional arguments are allow-default, which makes the RPF check
consider the default route, and allow-self-ping, which is self-explanatory, and of course, an
override access list, to allow packets that would otherwise have been rejected by the RPF
check. In the simple version, allow-default and allow-self-ping are implied.

According to the Cisco documentation, the unicast RPF mechanism doesn’t use the regu-
lar IPv6 routing table, but rather the highly optimized IPv6 Cisco Express Forwarding (CEF)
table. So, for uRPF to work, IPv6 CEF must be enabled. However, in my tests on low-end Cisco
routers, uRPF also seemed to work correctly without CEF configured. See Chapter 4 on how to
enable CEF.

■Caution Be very careful with uRPF on router interfaces other than ones connecting to hosts or cus-
tomers with a single connection. Any other interface is likely to receive legitimate packets for which the
interface isn’t the best or only connection, and uRPF will block this traffic.

Filter Limitations
There are two important limitations to any filter that works on a per-packet basis with IPv6.
The first one is that, like in IPv4, when a packet is fragmented, the TCP or UDP port numbers
are present only in the first fragment. When blocking packets based on port number, this isn’t
much of an issue: the fragment with the port number in it will be blocked, even though all
other fragments are allowed through. (This depends on the configured action for the fragment
header or the filter’s default action, of course.) Without the initial fragment that holds the TCP
or UDP header, it’s not possible to reassemble the original packet, so in essence, the packet is
blocked. However, if you want to allow TCP or UDP traffic based on port numbers, you also
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need to allow all fragments, because they could be part of an allowed TCP or UDP packet.
Under normal circumstances, you shouldn’t see fragmented TCP packets in IPv6: because
fragmentation is done at the source, sending a smaller TCP packet is just as easy. Other proto-
cols may still be fragmented when applications or upper layer protocols use packets that are
too big for the (path) MTU. To avoid unpleasant interactions between fragmentation and fil-
tering, some firewalls and filters (optionally) reassemble the packet before passing it through
the filter engine.

The other problem is that of unknown extension headers. Most extension headers con-
form to the de-facto “standard” that the first byte contains a next header value and the second
byte the contains the length of the header. Unfortunately, the IETF never managed to make
this a requirement, so when a filter encounters a header it doesn’t recognize, it can’t skip past
this header, because it can’t be sure how large the unknown header is. This means that any-
thing following the problematic header (such as a regular TCP or UDP payload) is invisible to
the filter. So unless packets with any next header or this specific unknown next header type
are allowed through, the filter will reject the packets based on the unknown header rather
than allowing it based on the ultimate payload.

IPsec
IPsec is a collection of mechanisms to protect IP traffic from eavesdropping, modification in
transit, and more. The “sec” part, which should be written in lower case, stands for “security,”
but using “IP security” easily leads to confusion with the IPv4 Security Option, which is some-
thing very different: the old Internet Protocol Security Option carries information about the
security level of the payload data in an IP option. This makes it possible to ensure that classi-
fied data doesn’t leak into a non-classified part of the network.

IPsec Headers, Modes, and Algorithms
There are two IPsec headers: the Authentication Header (AH), which (surprise) provides
authentication, and the Encapsulating Security Payload (ESP) header, which provides either
authentication or encryption, or both. The difference between AH and authentication-only
ESP is that AH also protects most fields in the IP header, while ESP can only protect the head-
ers and data following the ESP header. Both AH and ESP are applied in one of two modes:
transport mode or tunnel mode. In transport mode, the AH or ESP header sits between the IP
header and transport protocol headers. In tunnel mode, the AH or ESP header precedes the
original IP header, and a new IP header is put in front of the AH or ESP header. IPsec transport
mode makes it possible to implement IPsec in a “security gateway” rather than in the source
or destination host itself. A common setup is one where two such security gateways imple-
ment a Virtual Private Network (VPN) on top of the Internet. When a host in one location
wants to communicate with a host in the other location, the VPN gateway in the first location
adds an ESP header (AH isn’t used much) along with a new IP header with a source address
belonging to the gateway itself and a destination address belonging to the remote gateway.
Upon reception of the ESP packet, the remote gateway strips off the outer header, processes
the ESP header by checking the authentication and decrypting the packet, and forwards the
packet, which is now back to its original form, to the destination host. Alternatively, in trans-
port mode, the source and destination hosts do the IPsec processing themselves. Some people
consider transport mode more secure because (with ESP encryption) the original source and

CHAPTER 9 ■ SECURITY200



destination addresses are hidden, but this isn’t necessarily a huge security boon: when tunnel
mode is used between two hosts rather than a host and a security gateway or two security
gateways, an attacker knows the addresses of the two communicating hosts anyway. The only
difference is that the attacker may not realize this. The downside of tunnel mode implemented
in security gateways is that the packet is carried in clear text over part of the network. This part
is supposed to be trusted, but that mostly means that it’s an attractive target for attackers.
There may also be MTU issues, because if a host sends a 1280 byte packet, after encapsulation
by the security gateway, the packet will be larger, requiring path MTU discovering, even though
the host limited its packets to 1280 bytes.

So far, we have eight permutations of different IPsec options:

• AH, both transport mode and tunnel mode.

• ESP with authentication, both transport mode and tunnel mode.

• ESP with encryption, both transport mode and tunnel mode.

• ESP with authentication and encryption, both transport mode and tunnel mode.

But the header and mode permutations are just the beginning. Both authentication and
encryption can be provided by a host of different algorithms. Popular authentication algo-
rithms are HMAC-MD5-96, a 96-bit Hash-based Message Authentication Code (HMAC) based
on the MD5 one-way hash function, and HMAC-SHA-1-96 based on the SHA-1 one-way hash
function. Encryption algorithm choices include DES (no longer considered safe), 3DES, and
AES. Both the HMAC authentication and the encryption algorithms require secret keys, which
should change regularly for optimum security. Last but not least, it’s also necessary to decide
which packets are eligible for IPsec treatment and which aren’t.

HMAC AUTHENTICATION

When communicating over a network, it’s very helpful to be certain that a packet was indeed sent by the
apparent sender and that the packet wasn’t changed in transit. HMAC authentication accomplishes both
tasks with cryptographic hash functions such as MD5 and SHA-1. These hash functions generate a relatively
short hash (128 bits for MD5, 160 bits for SHA-1) for source data of any length, and the tiniest change in the
source data results in a different hash. The hash function is designed so that it’s as good as impossible to
create a piece of data that generates a given hash. This makes it possible to compare the hash over a
received message, file, or packet with the known hash for that message, file, or packet. If the hashes match,
it’s a safe bet that the data is identical to the original.

A Hash-based Message Authentication Code is created by computing a cryptographic hash function
over both the packet data (and IP header fields that aren’t supposed to change in transit in the case of AH)
and a secret key that is only known by the sender and receiver. The resulting HMAC is then placed in the AH
or ESP header and transmitted along with the packet data. The receiver repeats the hash computation and
checks whether the result matches the HMAC in the received packet. Only when both HMACs are identical is
the packet accepted for further processing.

Continues
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An impostor can’t successfully create a fake packet, because he doesn’t have the secret key. If the
impostor uses a different key, the resulting HMAC won’t match the one the receiver computes, and the packet
is rejected. Similarly, if a “man-in-the-middle” intercepts the packet and changes its content, the HMAC that
the receiver computes over the changed packet won’t match the one in the packet. The chance of successfully
generating a packet with a “good” HMAC without knowing the secret key is estimated at two to the power of
half the hash length in bits. So with a 96-bit HMAC, that would be one in 248 or about one in 281 trillion. Unlike
with other applications of cryptographic hash functions, the impostor can’t see whether he has a working
packet/HMAC combination himself, so HMACs provide a very high level of security. At least, as long as the
hash functions aren’t vulnerable to “collision attacks.” MD5 seems to be walking on its last legs in this regard;
it is not (yet) possible to create fake MD5 hashes, but vulnerabilities have been found in various parts of the
MD5 algorithm.

Exchanging Keys and Security Associations
The preceding is a lot of information to put in a set of configuration files. But the real clincher
is that all these settings must be the same on both the sending and the receiving side for IPsec to
work. The Internet Key Exchange (IKE) protocol makes it possible to negotiate most of these
settings between two hosts that implement IPsec. IKE itself is stitched together from several
parts, including the Internet Security Association and Key Management Protocol (ISAKMP)
and parts of the Oakley Key Determination Protocol. IKE works in two phases. During phase 1,
IKE checks the identity of the correspondent and negotiates a secure channel so that further
IKE communication can be encrypted. Then during phase 2, the protocol negotiates Security
Associations (SAs) that are used to protect packets from other applications.

The actual IPsec encryption and authentication is generally implemented in the kernel
with the aid of two databases: the Security Policy Database (SPD) and the Security Association
Database (SAD). The SPD is a lot like an IP filter: packets are matched based on source and
destination addresses or prefixes, protocol, and port numbers. Matching packets are either
allowed through, blocked, or piped through AH or ESP in transport mode or tunnel mode. When
packets match an AH/ESP entry in the SPD, the SAD is consulted to determine the exact auth-
entication and encryption parameters. If there are no SAD entries, the IKE daemon is triggered,
which then negotiates a Security Association with its counterpart on the remote system. See
Figure 9-2 for an overview of how these different mechanisms interact.
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Figure 9-2. IPsec processing overview



IPsec on the Wire
When IPsec AH or ESP packets flow through the network, they carry one of the headers shown in
Figure 9-3. The AH header is simply inserted between the IP header and the higher-level (TCP or
UDP) header along with the user data. For the ESP header, things get a bit more complex: the
higher-level header and user data are put in the “payload data” field of the ESP header. If there is
ESP encryption, this field is encrypted, along with the padding that fills out the payload data to
an even block as required by the encryption algorithm, along with the padding length and next
header fields. “Next header” isn’t really the appropriate term in this case, as the “next” header
(the contents of the payload data field) precedes the next header field. When both encryption
and authentication are enabled in ESP, the packet is first encrypted, and only then is the authen-
tication data computed. This allows the receiver to reject fake packets without having to (try to)
decrypt them first. If ESP authentication wasn’t enabled, the “authentication data” field isn’t
present. Note that encryption without authentication is insecure because an attacker can mod-
ify the encrypted packet in dangerous ways even without knowing the encryption key.

The Security Parameters Index (SPI) field is used by the receiver to map incoming packets
to the right Security Association in the SA database, similar to the function of the port numbers
in TCP and UDP. The sequence number field contains a counter that can be used to thwart
“replay attacks.” This is an attack where the attacker records a legitimate packet exchange and
then later sends out another copy of those packets. The first packet for any SA always has a
sequence number of one, and the sequence number is increased by one for every new packet.
If the receiver wants replay protection, it simply rejects packets with a sequence number lower
than the last packet it received and higher than the next packet it expects, with a small margin
to account for packets that come in out of order.

■Note Security Associations and SPIs only work in one direction. So if an exchange is protected in both
directions, there are always at least two SAs with accompanying SPIs involved. A Security Association is
uniquely identified by the SPI, the security protocol (AH or ESP), and the destination address, so it’s possible
to use the same SPI for different SAs toward different destination hosts.
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IKE uses UDP port 500. ESP uses protocol number (next header) 50, AH 51. Don’t forget to
allow these protocols in any IP filters that are present on hosts running IPsec!

The KAME IPsec Implementation
Even more so than with other subjects discussed in the book, IPsec provides many ways to
shoot yourself in the foot if you don’t know what you’re doing. The examples below are merely
intended to show that it’s actually possible to run IPsec on BSD/Linux in practice, something
that is hard to believe at first because of the complexity of the protocols and the many, many
ways in which the racoon IKE daemon can fail when things aren’t set up just right.

IPsec has been part of the KAME effort from the beginning. MacOS comes with KAME
IPsec built in, and for FreeBSD, it’s only a kernel compile away. See the FreeBSD manual as
mentioned earlier this chapter and add the following lines to your kernel configuration:

options IPSEC
options IPSEC_ESP

You can install the KAME setkey and racoon utilities from security/racoon (not racoon2)
in the ports collection. The easiest way to do this is to type /stand/sysinstall as root, select
Configure then Packages, choose an FTP server, and find racoon in the security section. The
program will guide you through the rest of the installation procedure.

The Linux 2.6 kernel also has a KAME-like IPsec implementation on board.6 Unless you
have Red Hat ES Linux or another distribution that comes with setkey and racoon, you’ll have
to download IPsec-Tools that contains Linux versions of the racoon and setkey utilities, avail-
able at http://ipsec-tools.sourceforge.net/.

To use IPsec, you need to have three things in place:

• A properly configured IKE daemon.

• A way to authenticate the remote end.

• One or more entries in the Security Policy Database.

The racoon daemon comes with an example configuration file, which is long and confus-
ing. It’s generally found in /etc/racoon/racoon.conf or /usr/local/etc/racoon/racoon.conf,
depending on your system. Listing 9-15 is the minimum you need to get everything to work.

Listing 9-15. A Simple racoon.conf File

path include "/etc/racoon";
path pre_shared_key "/etc/racoon/psk.txt";

listen { }
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support IPv6. However, at least one of the forks does.



remote anonymous
{
exchange_mode aggressive,main;
my_identifier fqdn "host1.example.com";
proposal
{
encryption_algorithm 3des;
hash_algorithm sha1;
authentication_method pre_shared_key;
dh_group 2;

}
}

sainfo anonymous
{
encryption_algorithm aes, 3des;
authentication_algorithm hmac_sha1;
compression_algorithm deflate;

}

The first line tells racoon where it can find its files. The second line points to the file that
contains “pre-shared keys.” Make the necessary changes if the directory where the racoon
config files are isn’t /etc/racoon/ on your system. The listen { } directive tells racoon to lis-
ten for incoming sessions on all addresses. This is all the global configuration that you need;
the default settings are fine for everything else. However, you do need remote and sainfo
specifications. When you communicate with several destinations by using IPsec, you’ll prob-
ably need to have remote and sainfo entries for each of these destinations, or at least most of
them. This is rather tricky, so carefully study the racoon.conf man page. But the anonymous
settings work well as long as all settings (except the pre-shared keys) are the same for all
destinations.

The exchange_mode specifies that we’ll try to be aggressive and cut down on the number of
round trips if possible and fall back to the regular way of doing things otherwise. The local iden-
tifier is specified to be the fully qualified domain name host1.example.com. Listing encryption
and hash algorithms under proposal is mandatory, as is an authentication method, which we
already decided should be pre-shared key. The dh_group setting specifies the group used for the
Diffie-Hellman exponentiations. Not knowing what that means doesn’t buy you a free pass: you
need to specify a group. All these settings relate to phase 1 of the IKE negotiations. Finally, the
sainfo settings determine the encryption and authentication algorithms, along with the com-
pression algorithm to be used prior to encryption, that apply to the SAs established in IKE phase
2. You can simply type racoon (as root) to start the daemon, or racoon -F to make it stick to the
TTY and show debugging output. Listing 9-16 is a sample psk.txt file. There doesn’t seem to be
any way to make racoon reload its configuration; you need to stop and start the daemon for this.

Listing 9-16. A Pre-Shared Key

host2.example.com          NoMoreSecretS
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Make sure that the file containing the pre-shared key is only readable and writable by root.
In this example, the identifier is a FQDN, but you can also use an IP address or user@FQDN as
the identifier. The FQDN in the psk.txt file is the one for the remote end. At that end, there
must be an entry for our identifier with the same pre-shared secret. The pre-shared key is never
used to actually encrypt or authenticate anything but only to authenticate the other side in the
IKE phase 1. Last but not least, you need to create Security Policy Database entries. This is best
done by creating a file like the one in Listing 9-17.

Listing 9-17. SPD Entries

spdflush;

spdadd 2001:db8:31::/48[any]
2001:db8:2:5::2[80]
tcp -P out ipsec esp/transport//require;

spdadd 2001:db8:2:5::2[80]
2001:db8:31::/48[any]
tcp -P in ipsec esp/transport//require;

The first line in the file flushes all existing entries in the Security Policy Database. After that,
two new entries are specified. Newlines ignored as commands are terminated by a semicolon.
The first line of the first entry matches all packets with a source address in 2001:db8:31::/48 with
any source port, but the second line narrows this down to packets with host 2001:db8:2:5::2 as
their destination, with the destination port being 80. This would be appropriate if the local system
has an address in 2001:db8:31::/48. The final line of the first entry specifies the TCP protocol.
Any packets that match all this and are on their way out get IPsec treatment with ESP trans-
port mode. The following entry matches packets belonging to the same TCP session toward
host 2001:db8:2:5::2 on port 80, but in the incoming direction.

■Caution Make sure that you don’t specify an SPD policy that matches ICMPv6 packets on the local sub-
net, because if these packets are blocked for some reason (IKE negotiations fail or haven’t completed yet)
neighbor discovery no longer works. This is even a problem if you only match global addresses, as these are
used for Neighbor Unreachability Detection (Chapter 8).

You can load these policies in the SPD with setkey -f spd.txt or similar. You need to be
root to do this. You can monitor the Security Policy Database with setkey -DP and the Security
Association Database with setkey -D. However, racoon doesn’t negotiate SAs with the other side
until there is traffic that matches an entry in the SPD. After this, SAs are inserted in the SAD and
stay there until they time out. You can change SPD entries without having to restart racoon.

If you want to test between two hosts, you can simply use the same files on both ends,
with just the identifiers swapped in the racoon.conf and psk.txt files and “in” and “out”
swapped in the SPD entries on the second system.
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IPsec Advantages and Limitations
So far, IPsec hasn’t been deployed as a general-purpose, end-to-end encryption and authentica-
tion mechanism the same way SSL has. That’s too bad, because IPsec has considerable security
advantages over SSL: SSL runs on top of TCP, so disrupting the TCP session is enough to disrupt
the SSL communication happening over the TCP session in question as well. Breaking TCP ses-
sions is entirely trivial for an attacker who can observe the TCP traffic and is often doable with
some effort for long-lived TCP sessions even without the ability to observe traffic. Fortunately,
disrupting an SSL session just blocks the communication: it doesn’t allow an attacker to inject
falsified data successfully or decrypt encrypted information.

IPsec, on the other hand, is able to reject disruptive packets before TCP, UDP, or any other
higher-layer protocol looks at them. It’s also not just limited to TCP or transport protocols that
are similar to TCP. An attacker who can’t observe traffic can’t even make the receiving host waste
time executing authentication algorithms because the falsified packets are rejected based on the
SPI and replay counter. This is an important advantage over the BGP TCP MD5 protection mech-
anism, which is vulnerable to “crypto DoS,” where an attacker injects fake packets that fail the
authentication test for the purpose of consuming CPU resources on the victim system. However,
an important downside of IPsec is that it needs to carry encryption and authentication house-
keeping information in each individual packet, which adds a significant amount of overhead. It’s
also generally more efficient to authenticate or encrypt/decrypt a large amount of data in one go
(like with SSL when transferring big blocks of data) rather than doing the same for a number of
individual packets carrying the same amount of data.

One of the reasons that IPsec never gained much traction other than for VPNs is probably
that it operates at a very low level. For instance, an application that wants to use SSL can be
redistributed with its own SSL code, without any impact to other applications. Having applica-
tions supply their own IPsec isn’t realistically possible because IPsec operates deep inside the
system.

Unfortunately, even on a system that has IPsec support in the kernel, it’s very hard or even
impossible to create IPsec policies based on anything other than IP addresses. In other words, to
be able to communicate over IPsec, you need to know the IP addresses of your correspondents
in advance. For applications like VPNs, this isn’t much of a problem, but for a general-purpose
SSL replacement, it’s unworkable. However, there is an API that applications can use to enable
IPsec for their communication, so there are still possibilities. In the meantime, it’s hard to avoid
the conclusion that mandatory IPsec support in IPv6 so far hasn’t helped IPv6 security in the real
world.

■Note Many IPsec RFCs are found in the RFC 2401 to RFC 2412 range, and RFC 2401 is an overview of
how the underlying protocols make up IPsec.
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Troubleshooting

“If there are two or more ways to do something, and one of those ways can result in a

catastrophe, then someone will do it.”
Edward A. Murphy, Jr.

Over the years, I’ve had occasion to speak about IPv6 to very different audiences. At one
point, I was talking about the protocol in front of a group of people who weren’t all that tech-
nical. I started the talk by showing them two screenshots of a Web browser: “On the left, you
see a Web page over IPv4. On the right, you see the same page over IPv6.” Naturally, the images
were exactly the same, making my point that for average users, nothing changes with the
advent of IPv6. In every day use, it’s great that users can’t tell the difference between IPv4 and
IPv6: both just work.1 For troubleshooting, it’s not so great: it’s important to know whether an
application that works is using IPv4 or IPv6 and which of the two protocols, and in what order,
an application is trying when it doesn’t work.

The first part of this chapter explains tcpdump, a popular tool for inspecting packets flowing
over the network. tcpdump will tell you which IP version you’re using without fail. Armed thusly,
we can look at different kinds of problems that can keep IPv6 from working as it should.

tcpdump
tcpdump intercepts packets flowing in and out of a network interface and displays their con-
tent, decoding many protocols in the process. Linux, FreeBSD, and MacOS have it installed
out of the box, but you can find the most recent version on http://www.tcpdump.org/. Use
tcpdump -H to find out which version you have. There is also a Windows port under the name
“WinDump,” which is available at http://www.winpcap.org/windump/ (with pointers to the
accompanying WinPcap library). However, the Windows version isn’t as stable as the UNIX
version. There is also ethereal (http://www.ethereal.com/), which is often even more power-
ful than tcpdump. However, ethereal is mostly a graphical application, so it isn’t as widely
available as tcpdump.

In addition to the tcpdump application that provides the user interface, two other mecha-
nisms are involved in intercepting and displaying packets: the Packet Capture library (pcap
library or libpcap) and the Berkeley Packet Filter (BPF). To the system, the BPF looks like a
device. When an application opens a BPF device, it supplies a network interface along with
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a filter program, and the application then gets to receive copies of the packets flowing through
the specified network interface that match the filter. For efficiency reasons, the filter is imple-
mented as a program in assembly code running on a virtual CPU. Applications can also write
packets to a BPF device. These packets are then transmitted over the selected network inter-
face. Not all programmers are comfortable working directly with devices under UNIX, and
having to write assembly code to specify filters isn’t exactly everyone’s cup of tea either. The
pcap library provides a higher-level interface to the BPF functionality in the form of a standard
C library. Most notably, the pcap library takes filter expressions in plain text and generates fil-
ter programs from them. The tcpdump program relegates the actual filtering to the pcap library
and mainly concerns itself with decoding and displaying the received packets.

■Note To use tcpdump and similar tools, you need a certain level of knowledge about the intercepted
protocols.

tcpdumping ICMPv6
Even if you don’t expect to do much tcpdumping, you may want to use tcpdump from time to
time to monitor certain ICMPv6 functions, such as router advertisements and neighbor dis-
covery. In Listing 10-1, tcpdump intercepts a router advertisement message.

Listing 10-1. Intercepting a Router Advertisement Message

# tcpdump
tcpdump: listening on eth0
13:33:33.436664 fe80::204:27ff:fefe:249f > ff02::1: icmp6: router advertisement➥

[class 0xe0]

1 packets received by filter
0 packets dropped by kernel

Listing 10-1 is on a Red Hat Linux system, where tcpdump is run as root, as regular users
don’t get to open BPF devices on almost all systems. tcpdump automatically selects the desired
interface: eth0. You can display the list of possible interfaces with -D (useful under Windows,
which uses hard-to-guess interface names) and select one with the -i flag:

tcpdump -i eth1

Each tcpdump line starts with a timestamp, which is formatted as hours, minutes, and
seconds (no surprises there), followed by fractions of seconds all the way down to microsec-
ond precision. Note that the BPF device adds this timestamp, so this information is not
entirely trustworthy: there could have been a delay between the moment the packet was
received by the hardware and the moment BPF processed it. Also, intercepting the same
packet twice (for instance, by running two instances of tcpdump) will generally result in non-
identical timestamps.
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Next up are the source and destination addresses. The source address is the link-local
address of the router sending out the router advertisement, and the destination is the all-node
multicast address. tcpdump concludes that the packet is an ICMPv6 packet containing a router
advertisement. The line ends with the contents of the Traffic Class field, as it contains a non-
default value. Apparently, Cisco decided to honor RFC 791 (even though that RFC is specifically
about IPv4) and use the Type of Service value indicating “internetwork control” for router
advertisements.

The meaning of the “packets received by filter” and “packets dropped by kernel” values
differ from system to system, but in most cases, the former is the number of packets that the
pcap library read from the BPF device, while the latter is the number of packets that the BPF
device couldn’t deliver to the pcap library because the buffer was already full when a new
packet came in. This happens when the application (tcpdump) doesn’t process the packets fast
enough to keep up with network traffic. By default, tcpdump doesn’t decode the contents of
router advertisements, but Listing 10-2 uses the -v flag to enable this.

Listing 10-2. Decoding a Router Advertisement Message

# tcpdump -v -s 0
tcpdump: listening on eth0
13:52:05.259531 fe80::204:27ff:fefe:249f > ff02::1: icmp6: router advertisement( ➥

chlim=64, pref=medium, router_ltime=1800, reachable_time=0, retrans_time=0)(src  ➥

lladdr: 00:04:27:fe:24:9f)(mtu: mtu=1500)(prefix info: LA valid_ltime=2592000,pr ➥

eferred_ltime=604800,prefix=2001:db8:31:53:/64) [class 0xe0] (len 64, hlim 255)

The -v option triggers more verbose output, and -s 0 tells tcpdump to capture the entire
packet, rather than the first 68 or 96 bytes, which is the default. The additional information that’s
now decoded contains the current Hop Limit (64), the router lifetime (1800), the reachable and
retransmission times (0 for undefined), the MAC or link-layer address for the router, and the MTU
(1500 bytes). tcpdump also tells us pref=medium, but this information seems to be made up by the
program, as there is no “pref” field in router advertisements. Last but not least, there is a prefix
option with the prefix 2001:db:31:53::/64, which has the L (on-link) and A (autonomous address
configuration) bits set and contains valid and preferred lifetimes of 30 and 7 days, respectively.
The Traffic Class is as before, and tcpdump now also displays the contents of the Payload Length
(64) and Hop Limit (255) fields in the IPv6 header.

Listing 10-3 shows a neighbor discovery interaction between two hosts.

Listing 10-3. Decoding a Neighbor Discovery Exchange

# tcpdump -v -s 0 -e
tcpdump: listening on eth0
15:02:27.471601 0:a:95:f5:24:6e 33:33:ff:29:23:b6 ip6 86: host3.example.com >  ➥

ff02::1:ff29:23b6: icmp6: neighbor sol: who has host5.example.com(src lladdr:  ➥

00:0a:95:f5:24:6e) (len 32, hlim 255)
15:02:27.471708 0:1:2:29:23:b6 0:a:95:f5:24:6e ip6 86: host5.example.com > host3 ➥

.example.com: icmp6: neighbor adv: tgt is host5.example.com(SO)(tgt lladdr: 00:0 ➥

1:02:29:23:b6) (len 32, hlim 255)

The -e flag tells tcpdump to show link-layer information. In this example, that’s the source
MAC address, the destination MAC address, and the ethertype and the size of the packet as
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reported by the interface logic. The Ethernet Frame Check Sequence at the end of the packet
isn’t displayed.

The first packet is from host3 toward host5’s solicited node address (notice the Ethernet
multicast MAC address) and inquires about host5’s link-layer address. host3 lists its own link-
layer address so host5 knows where to send the reply. The second packet is the unicast reply
from host5 to host3, with the solicited and override flags set. This indicates that this is a reply
to an earlier request and the link-layer address in the packet should overwrite a cached one.

■Note When router advertisements or multicast neighbor solicitations don’t seem to come through, either
in one direction or both directions, this usually indicates an IGMP snooping issue. In those cases, it usually
helps to turn off IGMP snooping. See Chapter 8.

tcpdumping UDP
Listings 10-4 to 10-7 show the output for different invocations of tcpdump when capturing a
DNS request and reply over UDP.

Listing 10-4. Standard tcpdump Output

# tcpdump
tcpdump: listening on eth0
13:12:33.935061 host5.example.com.32782 > ns.example.com.domain:  15025+ AAAA?  ➥

ns.example.com. (32)
13:12:33.948362 host5.example.com.domain > host5.example.com.32782:  15025* 1/2/2  ➥

(148)

After the timestamp, the next items in the output line are the source address and port, fol-
lowed by the destination address and port. By default, tcpdump looks up addresses in the DNS
(possibly incurring a noticeable delay in the process) and port numbers in the /etc/services
file. In this example, the source port wasn’t a known service, which is normal for source ports.
However, many systems choose their source port numbers from ranges that include registered
ports, which can be confusing when tcpdump displays the name of a completely unrelated pro-
tocol in the source port field. You can suppress address and port lookups with the -n flag.

For DNS packets such as this one, tcpdump displays the query identifier, the query type, and
the name for which information is requested. The last value on the line is the length of the DNS
packet, excluding the length of the IP and UDP headers. More information may be present
when the queries are non-standard. For replies, the program also displays the query identifier
and the packet length, and, between those, the number of answer records, the number of name
server records, and the number of additional records separated by slashes. If tcpdump captured
enough of the packet, the contents of the answer are also displayed. The plus and the asterisk
in the listing signify that the client requested recursion and that the answer was authoritative,
respectively. Listing 10-5 displays more information.
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Listing 10-5. More Verbose tcpdump Output and Capturing Full Packets

# tcpdump -v -s 0
13:06:07.693110 host5.example.com.32775 > ns.example.com.domain: [udp sum ok]  ➥

65043+ AAAA? ns.example.com. (32) (len 40, hlim 64)
13:06:07.710238 ns.example.com.domain > host5.example.com.32775: [udp sum ok]  ➥

65043* 1/2/2 ns.example.com. AAAA 2001:db8:31:53::53 (148) (len 156, hlim 60)

With the extra verbosity and the entire packet available, tcpdump double checks the UDP
checksum and tells the user whether the checksum in the packet was correct. With the full
DNS reply available, the answer section of the reply is now also displayed. Listing 10-6 uses an
even higher verbosity setting.

Listing 10-6. Even More Verbose tcpdump Output When Capturing Full Packets

# tcpdump -vv -s 0
tcpdump: listening on eth0
13:07:17.811560 host5.example.com.32778 > ns.example.com.domain: [udp sum ok]  ➥

45697+ AAAA? ns.example.com. (32) (len 40, hlim 64)
13:07:17.827372 ns.example.com.domain > host5.example.com.32778: [udp sum ok]  ➥

45697* q: AAAA? ns.example.com. 1/2/2 ns.example.com. AAAA 2001:db8:31:53::53 ns:  ➥

example.com. NS ns.example.com., example.com. NS ns2.beispiel.de. ar:  ➥

ns.example.com. A 192.0.2.80, ns.example.com. A6 0 2001:db8:31:53::53  ➥

(148) (len 156, hlim 60)

In addition to the answer section, tcpdump now also displays ns: followed by the name
server section and ar: with the additional information section. If the output is delayed, this is
probably due to reverse DNS lookups of some of the addresses in the DNS packet. Again, use
-n to disable this. Using -vvv doesn’t provide extra information over -vv for DNS requests.
However, if you really want to know every possible detail, use -X to obtain a hexdump of the
packet, like in Listing 10-7.

Listing 10-7. Displaying Packet Contents in a Hexdump with tcpdump

# tcpdump -X -s 0
11:24:03.310136 host5.example.com.64875 > ns.example.com.domain:  29533+ AAAA?  ➥

ns.example.com. (32)
0x0000:  6000 0000 0028 1140 2001 0db8 0002 0000  `....(.@........
0x0010:  020a 95ff fef5 246e 2001 0db8 0031 0053  ......$n.....1.S
0x0020:  0000 0000 0000 0053 fd6b 0035 0028 938e  .......S.k.5.(..
0x0030:  735d 0100 0001 0000 0000 0000 026e 7307  s]...........ns.
0x0040:  6578 616d 706c 6503 636f 6d00 001c 0001  example.com.....

11:24:03.327441 ns.example.com.domain > host5.example.com.64875:  29533* 1/2/2  ➥

AAAA 2001:db8:31:53::53 (148)
0x0000:  6000 0000 009c 113f 2001 0db8 0031 0053  `......?.....1.S
0x0010:  0000 0000 0000 0053 2001 0db8 0002 0000  .......S........
0x0020:  020a 95ff fef5 246e 0035 fd6b 009c 7f6e  ......$n.5.k...n
0x0030:  735d 8580 0001 0001 0002 0002 026e 7307  s]...........ns.
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0x0040:  6578 616d 706c 6503 636f 6d00 001c 0001  example.com.....
0x0050:  c00c 001c 0001 0001 5180 0010 2001 0db8  ........Q.......
0x0060:  0031 0053 0000 0000 0000 0053 c00f 0002  .1.S.......S....
0x0070:  0001 0001 5180 0002 c00c c00f 0002 0001  ....Q...........
0x0080:  0001 5180 0011 036e 7332 0862 6569 7370  ..Q....ns2.beisp
0x0090:  6965 6c02 6465 00c0 0c00 0100 0100 0151  iel.de.........Q
0x00a0:  8000 04c0 0002 50c0 0c00 2600 0100 0151  ......P...&....Q
0x00b0:  8000 1100 2001 0db8 0031 0053 0000 0000  .........1.S....
0x00c0:  0000 0053                                ...S

It’s easy to recognize the IPv6 header in the beginning of the two packets because of the
initial “6” in the dump. Apparently, no special quality of service handling is requested, and the
Flow Label is set to zero, as the remaining 28 bits of the first 32 bits (two groups of four hexa-
decimal digits) of the header are all zero. The next 16 bits (one group) contain the payload
length and the following group the Next Header field, which is 17 (0x11 in hexadecimal) for
UDP, along with the Hop Limit. The addresses that follow are easy to recognize in the hex-
dump. In the second packet, it’s remarkable that even though the DNS reply packet contains
the actual reply for the query, two name server records and two additional records, there are
only two recognizable domain names present. This happens because of “label compression”
in the DNS protocol. The -X option can be combined with other output options when desired.

tcpdumping TCP
The output of tcpdump gets a bit harder to decipher when capturing TCP, simply because TCP
is a much more complex protocol than UDP or ICMPv6. Listing 10-8 shows the same DNS
request as Listings 10-4 to 10-7 but now over TCP, with no flags in effect to change tcpdump’s
output.

Listing 10-8. tcpdump of a DNS Request/Reply over TCP

% sudo tcpdump
tcpdump: WARNING: en0: no IPv4 address assigned
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on en0, link-type EN10MB (Ethernet), capture size 96 bytes
14:32:35.468540 host3.example.com.58231 > ns.example.com.domain: S 2265400865: ➥

2265400865(0) win 65535 <mss 1440,nop,wscale 0,nop,nop,timestamp 631301731 0>
14:32:35.484974 ns.example.com.domain > host3.example.com.58231: S 3739752857: ➥

3739752857(0) ack 2265400866 win 57344 <mss 1220> [flowlabel 0x6c66e]
14:32:35.485197 host3.example.com.58231 > ns.example.com.domain: . ack 1 win 65535
14:32:35.485722 host3.example.com.58231 > ns.example.com.domain: P 1:35(34) ack 1  ➥

win 65535 45278+[|domain]
14:32:35.503456 ns.example.com.domain > host3.example.com.58231: P 1:151(150) ack  ➥

35 win 58560 45278*[|domain] [flowlabel 0x6c6bd]
14:32:35.507729 host3.example.com.58231 > ns.example.com.domain: F 35:35(0) ack  ➥

151 win 65535
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In this example, tcpdump runs under MacOS (so we need sudo) on a currently IPv6-only
interface. The program warns us that the interface doesn’t have an IPv4 address, but this is of
no consequence to its operation. Because tcpdump contains its own protocol decode logic, you
can even use it to monitor IPv6 packets on a system that doesn’t have any IPv6 support on
board. We are also told that the “link-type” is 10 Mbps Ethernet, but don’t be fooled: the speed
is irrelevant, as all flavors of Ethernet use the same link-layer header format. So EN10MB is
displayed for Ethernet of any speed.

The first captured packet is a SYN packet from the client to the server that sets up a new
TCP session. The packet contains no fewer than four different TCP options. The first one is
the Maximum Segment Size (MSS) option, which has a value of 1440 bytes, counting just the
TCP payload and assuming a 20 byte TCP header. Together with the 40 byte IPv6 header, this
makes for a total of 1440 + 20 + 40 = 1500 bytes, which is the MTU for the outgoing interface.
The MSS option allows TCP to discover a smaller MTU on the remote end very efficiently,
although Path MTU Discovery is still necessary to find reduced MTUs in the middle of a
path. The NOP (“no operation”) options are necessary to fill out the option space in the TCP
header to an even 32 bits. The window scale (wscale) and timestamp options are part of the
RFC 1323 TCP extensions for high performance.

The 2265400865:2265400865(0) part represents the sequence number of the first byte in
this packet and the first sequence number in the next packet or segment. The (0) means there
are zero data bytes in this TCP segment. This is tcpdump’s roundabout way of telling us the ini-
tial sequence number chosen by the client. The server does the same on the next line, and also
acknowledges the client’s first sequence number. In subsequent packets, the sequence num-
ber is displayed as a value relative to the initial sequence number. Both initial packets have an
S following the destination host/port specification, indicating that the SYN bit is set. Other
common flags are P for PUSH and F for FIN. TCP packets with no special flags set get a period
in this place. The server uses a flow label for this session, but the client doesn’t, and tcpdump
doesn’t display the 0x0 flow label value in that case. The third packet is the acknowledgment
back from the client to the server, completing the session setup.

Shortly after establishing the session, the client sends the first actual data packet: the DNS
query, which is 34 bytes long. The snaplen (the amount of data that tcpdump copies from each
packet that matches its filter) is 96 bytes, but 14 of those are used by the Ethernet header, 40 by
the IPv6 header, and 20 by the TCP header. So only the first 22 bytes of the DNS query are
available for tcpdump to decode. The [|domain] message indicates that further decoding was
impossible somewhere during the processing of the DNS protocol. The same happens for the
reply, which is even longer at 150 bytes. The reply acknowledges the segment that contained
the request by indicating that the next expected byte in the session is number 35 (relative to
the initial sequence number). After the client sends its FIN packet in order to tear down the
session, there are some additional FIN and ACK packets, but you get the picture. For some rea-
son, tearing down TCP sessions often involves a lot of misunderstanding between the two
ends in the communication.
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TCP HIGH PERFORMANCE EXTENSIONS

On a 100 Mbps Ethernet, it’s possible to transmit a full size packet every  6.7 microseconds. With the maximum
TCP window size of 65,535 bytes, the sender must stop sending data after 43 packets (288 microseconds) and
wait for the receiver to acknowledge the first packet before sending the 44th one. However, on a transatlantic
link, it takes some 80 milliseconds for the first acknowledgment packet to return because of speed of light
delays. So for 79.712 milliseconds out of 80, the sender is just waiting for an acknowledgment without sending
any data, severely limiting TCP performance. The maximum bandwidth that TCP can use is one window size per
round trip, or some 800 kilobytes per second in this example.

Because even the IETF can’t change the speed of light and the Earth isn’t getting smaller any time soon,
RFC 1323 allows bigger windows to increase performance over high-delay, high-bandwidth links. Rather
than change the window size field in the TCP header from 16 to 32 bits, RFC 1323 introduces a “window
scale” option. The window scale is a multiplier factor that is applied to the window size field in the TCP
header. So if the TCP header has a window size of 65,535, and the window scale option at the beginning of
the TCP session was 16, the actual window is 1,048,560 bytes, or about a megabyte. This is enough to satu-
rate a 100 Mbps connection with an 80 ms roundtrip time. Both sides must have a window scale option in
their initial TCP packets to enable this feature. A window scale option of zero means that the sending system
supports the option if the other end desires to use it but won’t be using it itself for outgoing packets during
this session.

The timestamp option allows for much better roundtrip time estimates, which is necessary to achieve high
performance. When both sides support the option, each inserts a timestamp of its own along with the last-seen
timestamp from the other side in every packet, which adds 12 bytes of overhead to every TCP packet. The aver-
age packet size on the Internet is around 500 bytes, so having 12 bytes extra overhead in every packet reduces
bandwidth efficiency by 2%. This extra overhead is a small price to pay if it means being able to use the full
available bandwidth, but unfortunately, the timestamp option is used in every packet, regardless of whether the
window scale option is really activated (i.e., there is an actual window scale of two or higher), the application
requests it, or traffic patterns warrant it. In addition to having RFC 1323 support, it’s also necessary for both
ends that either the system or the application to set large enough send and receive windows to enable high
performance. The send and receive buffers limit the maximum TCP windows.

However, the system generally uses a “one size fits all” default, and very few applications set their
own buffer sizes. So most of the time, RFC 1323 support just wastes 12 bytes per TCP packet. You can
disable both the window scale option and the timestamp option on FreeBSD and MacOS systems by set-
ting the sysctl variable net.inet.tcp.rfc1323 to zero. Linux uses two sysctl variables for this:
net.ipv4.tcp_window_scaling and net.ipv4.tcp_timestamps. Setting them to zero to turns
off the behavior, both for IPv4 and IPv6.

Some stateful filters perform checks on the TCP sequence numbers but don’t support the RFC 1323
extensions. Obviously, this leads to problems when a window scale option of 2 or higher is in effect. For
instance, IPF suffers from this problem. See Chapter 9 for more information about IPF.

Promiscuity
By default, tcpdump will try to put the interface into “promiscuous mode,” so that it pulls all
packets off the wire, rather than just the ones addressed at its own MAC address, along with
the usual broadcasts and multicasts of interest. Promiscuous mode, of course, only applies
to interfaces that use MAC addresses, such as Ethernet. With the proliferation of Ethernet
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switches, this mode isn’t as useful as it once was: when the tcpdumping host is connected to
a switch, the only extra packets it sees are multicasts that the switch didn’t filter out (simple
switches treat multicasts as broadcasts) and “unknown unicast” traffic. These are packets for
which the switch doesn’t know on which port the MAC address in question lives. So the only
thing the switch can do is “flood” these packets to all ports. In most cases, inspecting packets
to and from the host running tcpdump is good enough, so being connected to a switch isn’t a
problem. Still, it’s not a bad idea to keep an old hub around just in case you ever want to look
at packets to and from a system that you can’t run tcpdump on, such as a router. When you con-
nect the host running tcpdump and the system that is the source or destination of interesting
packets to a hub, you’ll be able to see all the traffic to and from that system. More advanced
switches generally have some kind of “port monitoring” capability that allows you to receive
copies of all packets passing through a certain switch port. The -p option tells tcpdump that it
shouldn’t try to put the interface in promiscuous mode. However, the interface may be in
promiscuous mode for another reason (such as another tcpdump without the -p flag having
the interface open), so you may see all packets anyway; filter when necessary.

Filters
So far, we’ve run tcpdump without providing a filter, so it displayed all packets that passed the
interface in question. In most cases, this is not what you want, if only because the information
overload makes it harder to decipher the program’s output for relevant packets. The pcap library
and, by extension, the tcpdump program don’t use a fixed filtering syntax. Simple filters just look
at addresses or fields such as port numbers, possibly accompanied by a protocol identifier. More
complex filters are created by stringing together smaller filter fragments with AND and OR clauses
and parentheses. Examples of simple filters are as follows:

ip looks for IPv4 packets.

ip6 looks for IPv6 packets.

host 192.0.2.53 looks for packets with IPv4 address 192.0.2.53. This includes IPv4 pack-
ets to and from this address and also ARP packets for this address.

host 2001:db8:31:53::53 matches any packet to or from this IPv6 address.

host ns.example.com looks up the domain name ns.example.com and matches all the IP
addresses that the DNS returns (both IPv4 and IPv6).

ip6 host ns.example.com looks up the domain name ns.example.com and matches all the
IPv6 addresses that the DNS returns.

net 2002::/16 matches any packet to or from prefix 2002::/16 (6to4 address space).2

src net fe80::/16 matches packets with a link-local source address.

dst ff02::1 matches packets addressed to the all-hosts multicast address.

port 53 matches all TCP and UDP packets with port number 53 (DNS).
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dst port 80 matches all TCP and UDP packets with a destination port 80.

tcp matches TCP packets.

udp matches UDP packets.

icmp6 matches ICMPv6 packets.

ether host 0:3:93:e0:ea:2 looks for packets with the specified MAC address.

ether proto 0x86dd matches packets with ethertype 0x86dd (IPv6). The ethertype may
also be supplied in decimal.

ip6 proto 58 matches IPv6 packets with a Next Header value of 58 (ICMPv6). You can also
use protocol names present in /etc/protocols, but they must be escaped with a back-
slash if they’re also tcpdump filter keywords.

ip6 protochain ipv6-icmp matches ICMPv6 packets with possible intermediate headers
between the IPv6 and ICMPv6 headers. (“ipv6-icmp” is the name for ICMPv6 in /etc/
protocols.)

“protochain \tcp” looks for IPv4 or IPv6 packets with a TCP payload, possibly at the end
of a protocol chain. The backslash escapes the TCP keyword, so the entry named “tcp” in
the file /etc/protocols provides the required protocol number. Without the slash, tcpdump
generates a parse error. The quotation marks are necessary to keep the shell from inter-
preting the backslash.

When specifying IP payload protocols such as TCP, UDP, and ICMPv6, the respective key-
words only make tcpdump check for the specified protocol in the IPv4 Protocol field or the IPv6
Next Header field. So the filter “tcp” won’t match an IPv6 packet with an IPsec AH header fol-
lowed by the TCP header. For this, use the “protochain” keyword. However, following the
protocol chain is hard work for BPF, so this may be slower than other filters.

You can create more complex filters by combining multiple clauses with “and,” “or,” and
“not.” Don’t forget to use parentheses when necessary, and use quotes to keep the shell from
interpreting the parentheses in this case. And if this doesn’t address your filtering needs, have
a look at the tcpdump man page for information on creating more sophisticated filters.

IPV4 CHECKSUM  AND LENGTH STRANGENESS

A good number of Ethernet network interface cards supports “checksum offloading” with IPv4. Some cards
can just do the IP header checksum calculations, others can also handle the TCP and UDP checksum. For
incoming packets, this is of little consequence for tcpdump, but for outgoing packets, you may encounter
various “bad checksum” messages. This happens because (obviously) the BPF device copies packets before
the interface card computes the checksum.

Because of Ethernet’s 64 byte minimum packet size, when using the -e option, you may see packets
that have the minimum link layer length of 60 bytes, while the actual payload is (much) smaller. (The 4-byte
Frame Check Sequence is counted in the Ethernet specifications but not by tcpdump.) With IPv6, this can’t
happen for normal packets as the Ethernet header (14 bytes), the IPv6 header (40 bytes) and the TCP (20
bytes), and UDP (8 bytes) or ICMPv6 (8 bytes) headers add up to at least 62 bytes.
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IPv6 Connectivity
As we saw in Chapter 8, strange things can happen when a host has an IPv6 address but not
a default route, or an IPv6 default route but no global unicast address. You can tell whether a
system has an IPv6 default route by listing the entire IPv6 routing table with netstat -r -A
inet6 under Linux or netstat -r -f inet6 under FreeBSD or MacOS. (Add a -n flag to speed
up the output by suppressing DNS lookups.) If the output contains a ::/0 route, the system
was configured with a default route in some way, most likely by router advertisements. Use
netsh interface ipv6 show route under Windows.

Address Availability and DAD Failures
If there is a default route, the next order of business is checking for available IPv6 addresses.
Listing 10-9 shows the netsh output on a Windows XP system. This will list all available IPv6
addresses on the system. However, in this particular case, there is an address conflict: another
system on the subnet uses the same address as the Windows machine tried to configure for
itself.

Listing 10-9. Listing Addresses Under Windows, Uncovering a DAD Failure

netsh interface ipv6>show address
Querying active state...

Interface 5: Local Area Connection 3

Addr Type  DAD State  Valid Life   Pref. Life   Address
---------  ---------- ------------ ------------ -----------------------------
Temporary  Preferred   6d23h59m39s    23h56m52s 2001:db8:31:2:ff8f:41ae:c9f6:a97
Public     Duplicate  29d23h59m58s  6d23h59m58s 2001:db8:31:2:201:2ff:fe29:23b6
Link       Preferred      infinite     infinite fe80::201:2ff:fe29:23b6

Listing 10-10 shows lines from the syslog and the output of the ifconfig command under
MacOS when a DAD failure occurs. The FreeBSD output is virtually the same.

Listing 10-10. Syslog and ifconfig Output Under MacOS/FreeBSD After a DAD Failure

% tail /var/log/system.log
May  4 17:16:40 localhost kernel: en1: DAD detected duplicate IPv6 address 2001 ➥

:0db8:0031:0002:0204:27ff:fefe:249f: NS in/out=0/1, NA in=1
May  4 17:16:40 localhost kernel: en1: DAD complete for 2001:0db8:0031:0002:0204 ➥

:27ff:fefe:249f - duplicate found
May  4 17:16:40 localhost kernel: en1: manual intervention required
% ifconfig en1
en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet6 2001:db8:31:2:201:2ff:fe29:23b6 prefixlen 64 duplicated
inet6 fe80::230:65ff:fe24:f106 prefixlen 64 scopeid 0x5 
ether 00:30:65:24:f1:06 
media: autoselect status: active
supported media: autoselect
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On a Cisco router, the failure is logged to the logbuffer and may be observed with the show
ipv6 interface ... command, as in Listing 10-11.

Listing 10-11. DAD Failure on a Cisco Router

3w0d: %IPV6-4-DUPLICATE: Duplicate address 2001:DB8:31:2:204:27FF:FEFE:249F on  ➥

Ethernet0
Cisco#show ipv6 interface ethernet 0
Ethernet0 is up, line protocol is up
IPv6 is enabled, link-local address is FE80::204:27FF:FEFE:249F 
Global unicast address(es):
2001:DB8:31:2:204:27FF:FEFE:249F, subnet is 2001:DB8:31:2::/64 [EUI/DUP]
3FFE:FFFF:310:3:204:27FF:FEFE:249F, subnet is 3FFE:FFFF:310:3::/64 [EUI]

Joined group address(es):
FF02::1
FF02::2
FF02::9
FF02::1:FFFE:249F

MTU is 1500 bytes
ICMP error messages limited to one every 100 milliseconds
ICMP redirects are enabled
ND DAD is enabled, number of DAD attempts: 1
ND reachable time is 30000 milliseconds
ND advertised reachable time is 0 milliseconds
ND advertised retransmit interval is 0 milliseconds
ND router advertisements are sent every 200 seconds
ND router advertisements live for 7200 seconds
Hosts use stateless autoconfig for addresses.

In this case, the Cisco router has two global unicast addresses, and only one suffers from
an address collision, despite the fact that both use the same interface identifier. So the first
address is rendered unusable, but the second remains viable. The same thing happened under
Windows, where the EUI-64 derived address was a duplicate but the temporary RFC 3041
address is still usable.

■Note DAD failures for one or more of a router’s global unicast addresses generally don’t cause too much
trouble. But if DAD fails for a router’s link-local address, the whole interface is rendered unusable for IPv6.

When the system has an IPv6 default route but no IPv6 global unicast addresses, you may
see somewhat strange DNS-related behavior under MacOS and Linux. Both of them won’t try
to connect to IPv6 addresses if the local system doesn’t have a global IPv6 address and report
“no address associated with nodename” (MacOS) or “cannot assign requested address” (Linux)
when trying to force IPv6, such as with traceroute6. Windows does mostly the same thing. For
instance, a tracert to a destination that has an IPv6 address will normally use the IPv6 address,
but if the local system doesn’t have a global IPv6 address, tracert will use the IPv4 address for
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the traceroute instead. tracert6, on the other hand, will use IPv6 regardless of the availability
of a global IPv6 address on the local system, which means it uses a link-local address in the
source address field of outgoing traceroute probes, which works for the first hop but not for
subsequent hops. FreeBSD ignores any lack of global IPv6 addresses and tries to connect over
IPv6 when there is an IPv6 default route.

Even though, apparently, under Windows, Linux, and MacOS, the system returns IPv4
addresses to applications that do a name lookup when there are no global IPv6 addresses,
host, dig, and nslookup will still show IPv6 addresses, as those tools bypass the system’s
resolver library and query the DNS server directly.

ndp
On KAME-derived IPv6 stacks, you can use the ndp utility to display information learned through
neighbor discovery, including router advertisements and the subsequent autoconfiguration on
BSD and MacOS systems. ndp -a displays a list of neighbors along with their link-layer addresses,
similar to arp -a with IPv4. See Listing 10-12.

Listing 10-12. Displaying the Neighbor Cache on FreeBSD or MacOS with ndp

% ndp -an
Neighbor                        Linklayer Address  Netif Expire    St Flgs Prbs
::1                             (incomplete)         lo0 permanent R      
2001:1af8:6::20a:95ff:fef5:246e 0:a:95:f5:24:6e      en1 permanent R      
fe80::1%lo0                     (incomplete)         lo0 permanent R      
fe80::204:27ff:fefe:249f%en1    0:4:27:fe:24:9f      en1 23h57m56s S  R   
fe80::20a:95ff:fef5:246e%en1    0:a:95:f5:24:6e      en1 permanent R

As always, the -n flag suppresses address-to-name lookups. Using this flag is pretty much
required when using ndp on MacOS, as the system will otherwise list its own name whenever a
name lookup was unsuccessful. Apparently, this is the result of a bug. Listing 10-13 uses ndp to
list interface-specific information.

Listing 10-13. Listing Information for an Interface with ndp

% ndp -i xl0
linkmtu=1500, curhlim=64, basereachable=30s0ms, reachable=40s, retrans=1s0ms
Flags: nud accept_rtadv

This form of the ndp command is the only way to reliably determine the IPv6 MTU for
an interface on KAME IPv6 stacks. For unknown reasons, FreeBSD always reports that router
advertisements are accepted (see the listing) while MacOS always reports that they aren’t,
both regardless of the real situation. Have a look at the ndp man page for more esoteric
options, such as the ones for adding and removing neighbor entries.

traceroute6
If the system has both an IPv6 default route and a usable global unicast address, you can do a
traceroute6 (tracert6 under Windows, and tracert also supports IPv6) to determine whether
there is actually any IPv6 connectivity. A traceroute to 2002:: is often a good choice if you’re
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not sure whether the DNS is working correctly. Because this is a 6to4 address for IPv4 address
0.0.0.0, the trace won’t complete, but it will stall at the nearest 6to4 gateway. If you see at least
a couple of working hops in the traceroute6 output, the local router and the next one are
working. You can, of course, also do a traceroute toward a valid IPv6 host, but for this, you
either need to know the host’s IPv6 address or the DNS must be working.

When there is valid IPv6 connectivity and you experience application delays or things just
don’t work, it’s important to determine whether the application is trying to use IPv6 and, if it is,
whether it falls back on IPv4 if IPv6 doesn’t work. When the application is connected over TCP, the
easiest way to find out whether it’s using IPv4 or IPv6 is with netstat. On all systems, netstat -n
will list active TCP connections and display the local and remote ends as addresses, so it’s easy to
tell the IP version for the session. See Listing 10-14.

Listing 10-14. Determining a Session’s IP Version with netstat

% netstat -n | more
Active Internet connections
Proto Recv-Q Send-Q  Local Address          Foreign Address       (state)
tcp6       0      0  2001:db8:31::20a.55858 3ffe:ffff:2310:2.993  ESTABLISHED
tcp4       0      0  192.0.2.6.55672        192.0.2.225.22        ESTABLISHED
tcp6       0      0  2001:db8:31::20a.52731 2001:db8:2:5::2.80    CLOSE_WAIT
udp6       0      0  *.5353                 *.*
udp4       0      0  *.5353                 *.*

Piping the output through more makes sure the information doesn’t scroll off the screen
immediately. The first session is a TCP connection over IPv6 toward a Secure IMAP server
(port 993). The second line is an IPv4 SSH session (port 22), and the last TCP connection,
which has already been closed, was an HTTP session. The two last lines indicate that the
system is listening for incoming UDP packets on port 53533 for both IPv6 and IPv4 on
separate sockets.

Alternatively, you can tcpdump with a filter that matches either the application’s port
number or the remote address and see whether the packets that flow over the interface are
IPv4 or IPv6. (Again, use -n to suppress DNS lookups in order to see the addresses.)

traceroute and ping on a Cisco Router
On IPv6-capable IOS systems, both traceroute and ping will use IPv6 when possible. If you
want to force the IPv6 version, use ip or ipv6 as the first argument following ping or traceroute,
before the destination address or hostname. You can perform a ping or traceroute with many
more options by typing traceroute or ping without any arguments. The router will then ask you
for values for different options. Note that you can’t provide a source address for ping, but you
can for traceroute. This is often useful because the router may have a point-to-point link with
an ISP using addresses from a very different range than what the rest of the site uses. The router
will often select such a point-to-point address by default, which makes it impossible to com-
pare the traceroute or ping results with those of regular hosts within the site. By making the
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router use a source address from the site’s own address range, the traceroute results should be
the same as those obtained by a regular host behind the router.

Forcing the IP Version
Unfortunately, IPv6 is still more fragile than IPv4. It’s not unheard of for a host that has an IPv6
address in the DNS to have no actual IPv6 connectivity, so trying to contact it over IPv6 results in
an annoying timeout. And it’s not uncommon for downloads to go slower over IPv6 than IPv4.
The reverse may also occur. Some of these problems are tolerable in the name of progress, but at
some point, things should just work. In those cases, it’s necessary to force the use of IPv4. In other
cases, it may be necessary to force the use of IPv6 because an application won’t use the protocol
when left to its own devices. There are four ways to force the use of a specific IP version:

• Use application mechanisms. As we discussed in Chapter 6, Firefox allows the user to
enable and disable IPv6 support. Many command line utilities, such as ssh and many
versions of telnet and ftp, take a -4 or -6 argument, with easy-to-guess results.

• Select an IPv4-only or IPv6-only DNS name. When you have control over the DNS, it’s
always good to have IPv4- and IPv6-only aliases for important dual-stack domain names.
Simply selecting the DNS name that links to the right IP version in the application will
then do the trick.

• Use a literal address. Unfortunately, there are still applications that support IPv6 but
can’t handle literal IPv6 addresses, such as Internet Explorer. However, when the appli-
cation must use a literal address, there can’t be any doubt as to which IP version it uses,
and there is no dependency on the DNS or possible DNS caching in the operating sys-
tem or the application.

• Under FreeBSD 5 or Windows, modify the address policy table to give the desired proto-
col a higher preference or the undesired protocol a lower preference, for the destination
in question, as discussed in Chapter 8.

Path MTU Discovery and Fragmentation
In IPv4, Path MTU Discovery causes lots of problems for people who use links in their net-
works with an MTU smaller than 1500 bytes. This happens when people use PMTUD (pretty
much everyone has PMTUD enabled because having it enabled is the default setting in all
major TCP/IP stacks), but somehow the packet too big messages that inform the source that it
should use smaller packets don’t make it back to the sending IP stack. In IPv6, this hasn’t been
as large a problem, probably because the proliferation of tunnels clearly illuminates the prob-
lem when it occurs, so it’s usually fixed, and also because IPv6 has a reasonable minimum
packet size of 1280 bytes that people can use if they don’t want to run PMTUD.

However, IPv6 isn’t immune to this problem: when people filter ICMPv6 packet too big
messages, like Windows does by default when it’s configured as an IPv6 router, path MTU dis-
covery can’t work and packets larger than 1280 bytes won’t make it through to the other side.
This results in the typical behavior that TCP sessions establish without problems, as the initial
packets are smaller than 1280 bytes, but as soon as the actual data transfer starts, the session
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hangs and nothing happens. Pings don’t show any problems, as those also use small packets
by default. (And the DF generally isn’t set in IPv4 pings.) You can diagnose the problem by
doing a ping6 with packets larger than 1280 bytes. If the ping works, the problem lies some-
where else, but if the ping doesn’t work after several attempts, you have a PMTUD black hole
on your hands.

However, what happens when you execute an oversized ping6 is a little strange. The fact
that it’s impossible to let routers fragment oversized packets has the strange side effect that, in
IPv6, Path MTU Discovery also works for UDP and even ICMPv6. First, let’s look at a normal
ping in Listing 10-15.

Listing 10-15. Route Cloning Under Linux

# ping6 -c 1 www.kame.net
PING www.kame.net(orange.kame.net) 56 data bytes
64 bytes from orange.kame.net: icmp_seq=1 ttl=47 time=345 ms

--- www.kame.net ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 345.453/345.453/345.453/0.000 ms
# ip -6 route get 2001:200:0:8002:203:47ff:fea5:3085
2001:200:0:8002:203:47ff:fea5:3085 via fe80::204:27ff:fefe:249f dev eth0  proto  ➥

kernel  src 2001:db8:31:2:201:2ff:fe29:23b6 metric 1024 expires 59sec mtu 1500  ➥

advmss 1440

After a single packet ping6 to www.kame.net, the ip -6 route get ... command shows
a “cloned” route toward www.kame.net’s address with an MTU of 1500 bytes. Listing 10-16
repeats the ping with a packet size of 1300 bytes. Actually, the IPv6 packet is 1348 bytes: the
specified 1300 bytes, 8 bytes ICMPv6 header, and 40 bytes IPv6 header. Naturally, I chose this
destination because I have to reach it through a tunnel with a 1280 byte MTU.

Listing 10-16. Fragmentation Under Linux

# ping6 -c 1 -s 1300 www.kame.net
PING www.kame.net(orange.kame.net) 1300 data bytes
From 2001:288:3b0::55 icmp_seq=1 Packet too big: mtu=1280

--- www.kame.net ping statistics ---
1 packets transmitted, 0 received, +1 errors, 100% packet loss, time 0ms

# ip -6 route get 2001:200:0:8002:203:47ff:fea5:3085
2001:200:0:8002:203:47ff:fea5:3085 via fe80::204:27ff:fefe:249f dev eth0  src  ➥

2001:db8:31:2:201:2ff:fe29:23b6  metric 0
cache  expires 587sec mtu 1280 advmss 1440

The ping6 output indicates that the ping packet encountered a link with a 1280 byte MTU.
Because the original packet didn’t make it to its destination and, subsequently, there was no
reply, ping6 reports 100% packet loss. The cloned route now lists the 1280 byte path MTU,
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along with a longer expire time, apparently because of the non-standard MTU. If we send
another 1300-byte ping, it will be fragmented at the source, so it seems logical that this ping
should receive a reply. But it doesn’t. The reason is simple: the reply to our 1300 byte ping is
also larger than 1280 bytes, so the return packet will also trigger PMTUD for the other direc-
tion. However, the third 1300 byte ping packet is answered. The ping6 syntax under FreeBSD
or MacOS is the same as the Linux ping6 syntax in Listings 10-15 and 10-16, but looking up a
(cloned) route is done with route get -inet ... on KAME-derived IPv6 implementations.
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Providing Transit Services

Moving IPv6 packets through the network isn’t that different from moving IPv4 packets, and
for most services that run on top of IP, such as the World Wide Web and mail, the difference is
minor as well. So providing IPv6 transit services to customers isn’t radically different from doing
the same with IPv4. However, there are a few exceptions. The most important difference is the
way in which customers get their addresses, both because IPv6 has stateless autoconfigura-
tion but mostly lacks DHCP and because the address space is so much larger, making for very
different address policies.

Getting Address Space
The first order of business if you plan to provide IPv6 access to customers is getting IPv6 address
space yourself. As I’m writing this in the summer of 2005, the prerequisites for getting a provider
aggregatable (PA) IPv6 address block are pretty much the ones outlined in Chapter 2: being a
Local Internet Registry, not being an “end site,” and intending to assign 200 /48 prefixes to others
connected to your network in the next years. However, this policy is under pressure, and some
RIRs have already changed it to some degree. As of this writing, the policies are as follows:

• In the APNIC and RIPE regions, you must plan to make 200 assignments in the next two
years.

• In the ARIN region, either you need to be an existing ISP or you must plan to make 200
assignments in the next five years.

• In the AfriNIC and LACNIC regions, you must show a detailed plan to provide IPv6 con-
nectivity in the region and for making assignments, and you must plan to announce
the allocation as a single aggregated block in BGP within a year.

Ironically, the regions with the strictest policies have the largest number of PA block allo-
cations: RIPE has more than 500, APNIC 250, ARIN around 150, LACNIC some 35, and AfriNIC
a handful.

If you’re a very large wholesale IP carrier and only provide transit services to ISPs with
their own IPv6 address space, strictly speaking, you don’t need address space of your own. In
practice, you’ll probably have some customers who don’t have their own address space, and
even if that’s not the case, you need address space for your own network. The 200-customer
rule is problematic here: you may not be in the position to assign address space to 200 cus-
tomers within two years.
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It’s a bad idea to misrepresent the truth toward an RIR when requesting resources such as
address space, but there are no rules against optimism. You won’t get into trouble if you base
your expectation to reach 200 /48 assignments within two years on optimistic (but reasonable)
predictions toward a growth in customers and a speedy adoption of IPv6 that never materialize.

■Tip Don’t forget to request delegation of the DNS reverse mapped zones for your new address block.

Provisioning Customers
While the IPv6 Provider Aggregatable address block allocation policies are quite strict, the pol-
icy for assigning address space to customers is the exact opposite. The IETF isn’t in the policy
business; the RIRs are free to decide on address allocation and assignment policies per their
respective policy development processes, which are based on community consensus. How-
ever, in RFC 3177, the IAB and the IESG write:

This document provides recommendations to the addressing registries (APNIC, ARIN

and RIPE-NCC) on policies for assigning IPv6 address blocks to end sites. In particular,

it recommends the assignment of /48 in the general case, /64 when it is known that one

and only one subnet is needed and /128 when it is absolutely known that one and only

one device is connecting.

You can find the various RIR policies on their Web sites. So far, the RIRs have all followed
the RFC 3177 recommendations. So not only can you give customers a single address, a /64
subnet, or a /48 block as you feel appropriate and/or as is desired by the customer, but you
don’t even have to bother with red tape such as request forms and whois registration. The only
thing you need to do is keep records about which address block was used for what, which your
Regional Internet Registry may want to look at at some point. Only when a customer needs
more than a /48 do you need to check back with the RIR.

Single Address Customers
Although it’s possible that some customers may never need more than a single address, this
is probably rare; and if it happens, it’s hard to predict that this customer really won’t need any
additional addresses in the future. So it’s probably not worth it to allow for this specifically in
your provisioning plans. 

Single Subnet Customers
In these days of ubiquitous Ethernet switching, relatively few people need more than a single
subnet. Customers who don’t require a block of IPv6 address space that they break into sub-
nets themselves are best served by stateless autoconfiguration, but in some cases, manual
configuration is more appropriate.
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Stateless Autoconfiguration
Stateless autoconfiguration works especially well when each customer has his own physical or
virtual subnet. This is common both in many server hosting environments, where systems
from a single customer are put in a per-customer VLAN, and in most DSL and some cable
setups, where there is a per-customer ATM PVC. Just configure your router interface with a /64
for the customer and enable router advertisements. The customer systems will automatically
configure themselves with addresses within the /64 and use your router(s) without the need
for any configuration at the customer side.

You can also use stateless autoconfiguration in much the same way if you have customers
sharing a link or subnet. In server hosting environments, it’s common to have shared VLANs
with systems from several customers on them. Enabling autoconfiguration on such a subnet
works very well but has the disadvantage that it’s very hard to determine which IPv6 address
belongs to which customer, especially when customers use RFC 3041 temporary addresses.
This means there is no accountability and no possibility of billing based on IP-level traffic
metering. And customers who didn’t ask for IPv6 connectivity but found IPv6 and stateless
autoconfiguration enabled without realizing it may be quite surprised about their system’s
unexpected behavior.

■Note Cisco’s DSL concentrators support a feature called routed bridge encapsulation (RBE) that allows
the customer premises equipment (CPE) to be in bridge mode while the concentrator does mostly regular
IPv4 routing. Apparently, RBE is supported for IPv6 as well, but I haven’t been able to test this. Look up the
atm route-bridged command in the Cisco documentation to learn more. Alternatively, you can set up a
routed PVC for IPv6 customers as explained later this chapter.

Manual Configuration
Because DHCPv6 for address configuration is as good as nonexistent, the only alternative
for stateless autoconfiguration on shared subnets is manual configuration. In theory, you
can do manual address configuration and still have customer systems find IPv6 routers by
virtue of router advertisements, but this is too dangerous: when a customer has a BSD sys-
tem that accepts RAs but doesn’t have a (manually configured) IPv6 address, the host will
still try to connect to remote hosts over IPv6 without success, incurring lengthy timeouts.

On the other hand, if you don’t have existing customers or only have customers who are
interested in IPv6 on the subnet where you’re going to provide IPv6 connectivity, you may
want to use RAs without actual stateless autoconfiguration, as in Listing 11-1.

Listing 11-1. Router Advertisements Without Stateless Address Autoconfiguration

!
interface Ethernet0
ipv6 address 2001:DB8:31:3::/64 eui-64
ipv6 enable
ipv6 nd prefix 2001:DB8:31:3::/64 no-autoconfig
!
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The ipv6 address ... line configures an IPv6 address for the interface. The lower 64 bits
are derived from the interface’s MAC address. This has the advantage that there can be more
than one router on the subnet without having to worry about which router got which address.
The ipv6 enable line enables the sending of router advertisements, even though this often
also happens without specifically enabling it. The line after that disables stateless autoconfig-
uration for this prefix. If you have several prefixes configured on the interface, you need to
disable autoconfiguration for all of them.

■Note Don’t forget to redistribute connected routes into your internal IPv6 routing protocol so that the
other routers in your network know how to reach the customer addresses.

If you choose not to use router advertisements to inject a default route into customer’s
systems, it’s best to use the “1” address in a subnet for your router. For instance, in the
2001:db8:31:3::/64 subnet, your router would have address 2001:db8:31:3::1, which is the
address customers point their IPv6 default route to. There are basically three ways to assign
addresses on a shared subnet to customers:

• Use individual addresses within a shared /64 prefix.

• Use ranges of addresses within a shared /64 prefix.

• Use a /64 prefix per customer.

The first option isn’t all that attractive because, after some time, you’ll have a long list
of address-to-customer mappings, even if you have only a small number of customers with
several systems each. The second option doesn’t have this downside. For instance, if you
give a /112 range of addresses to every customer, they get to determine the last four digits
in the IPv6 address themselves, and you only need map one address range to each customer.
Notice the distinction between a /112 address range within a /64 subnet as opposed to a
/112 prefix. Because the range falls within a larger subnet prefix, a customer with address
range 2001:db8:31:3::e01:0 to 2001:db8:31:3::e01:ffff (which equals a /112) can have an
address 2001:db8:31:3::e01:53/64 with a default route pointing to 2001:db8:31:3::1. If the
customer were to use the address  2001:db8:31:3::e01:53/112 instead, the default gateway
would have to be within that same /112,1 so you’d need a different default gateway address
for each customer.

As you can see, the prefix size mechanics can get a bit complicated, and having a range
of addresses in a shared prefix has another disadvantage: it’s not really possible to move a
customer from a shared subnet to a dedicated subnet without the customer having to renum-
ber. So in most cases, having a dedicated /64 per customer, even though the subnet is shared,
is the best choice. This allows for customers to be moved from one subnet to another without
renumbering, it’s easier to explain, and it also allows easy switching between manual configu-
ration and stateless autoconfiguration. In this setup, the top 64 bits already identify the
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customer so that EUI-64 derived addresses may be used without trouble. The only downside
of having a /64 for each customer is that an interface that connects to a lot of customers on a
shared subnet will end up with a large number of IPv6 addresses/prefixes.

Customers must configure their addresses and, if applicable, a default route using the
same commands that we used for manually configured tunnels in Chapter 3. Apart from con-
figuring the “1” address within each prefix used by one or more customers on the subnet in
question and possibly suppressing stateless autoconfiguration, there is no special configura-
tion at your end.

■Tip If you have more than one IPv6 router on a subnet where customers use a static default route, you
may be able to use an anycast address for the default router address. However, as of this writing, Cisco and
Juniper routers don’t support anycasting, and I haven’t been able to test how this works on non-Cisco equip-
ment. In theory, the load should be split over the routers sharing the anycast address, and when one router
goes down, the traffic should shift to another. How well this works in practice is impossible to say without
experimentation.

PROTOCOL VLANS

All but the cheapest Ethernet switches support Virtual LANs (VLANs) these days. The usual way to create
VLANs is to group switch ports together. However, some switches also support the notion of “protocol VLANs.”
Protocol VLANs let you have different VLANs for different protocols on the same switch port. So an IPv4 packet
on a certain port would go into one VLAN, and an IPv6 packet on the same port into another VLAN. The switch
recognizes the different protocols by their ethertype.

Having different VLANs for IPv4 and IPv6 traffic toward a customer can be very useful, because it allows
a customer who has a dedicated VLAN for IPv4 to be part of a shared VLAN for IPv6, or the other way around.
So if you have customers in a shared VLAN for IPv4 with no easy way to move them to a dedicated VLAN
because their IPv4 addresses are intermingled with those of other customers, you can still have a dedicated
VLAN for IPv6 for that customer. This makes using stateless autoconfiguration to provision customers less
bothersome.

Consult your switch documentation for details.

Multi-Subnet Customers
If a customer wants more than a single subnet, current wisdom is to give them a /48. Recently,
the discussion about whether giving out /48s to everyone who needs more than a single /64
subnet was refueled because even though the IPv6 address space is very large, the necessary
levels of hierarchy in large service provider networks may land us uncomfortably close to its
limits in the long term. So at some point in the future, the RFC 3177 recommendation to give
a /48 to customers who need more than one subnet may be revisited. In the meantime, there
is no harm in giving out /48s now as the IPv6 address space use the next few years is com-
pletely inconsequential compared to even the most conservative estimates for several
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decades from now. There is, however, an important advantage to standardizing on the /48
boundary: this makes it much easier for customers to renumber when they switch ISPs. Of
course, making it easy for customers to move to the competition doesn’t have a very high
priority for most businesses, but it works in the other direction, too: the standard prefix size
makes it easy for customers to move from a competitor to you.

■Note If a customer wants or needs more than a /48, they have to fill in a request form that you must
present to the RIR for evaluation.

Because it’s infeasible to keep track of up to 65,536 subnets for each customer, you’ll want
customers with a /48 to have their own IPv6 router. You can then route their /48 to their router
or routers in one of three ways:

• With manual configuration

• With DHCPv6

• With a routing protocol

Manual Configuration
If a customer’s IPv6 router is configured with a static IPv6 address and a static route toward
your router as outlined earlier this chapter, you only have to set up a static route for the cus-
tomer’s /48 toward his router. The most straightforward way to do this is to use a separate /64
between your router and the customers router and use the “1” address for your router and the
“2” address in that /64 for the customer’s. It gets even easier to remember when you select a
number that identifies the customer and then put this number in a fixed place in both the /64
you use between your router and the customer’s and the customer’s /48. So if your prefix is
2001:db8::/32, customer 100 would have 2001:db8:2:100::/64 for the router-to-router com-
munication (with 2001:db8:2:100::1 for your router and 2001:db8:2:100::2 for his) and
2001:db8:100::/48 for his own use. Customer a4ff would then have 2001:db8:2:a4ff::/64
and 2001:db8:a4ff::/48. See Listing 11-2.

Listing 11-2. Manual Configuration for Two Multi-Subnet Customers

!
interface Ethernet1
description Customer 100
ipv6 address 2001:DB8:2:100::1/64
ipv6 nd suppress-ra
!
interface Ethernet2
description Customer A4FF
ipv6 address 2001:DB8:2:A4FF::1/64
ipv6 nd suppress-ra
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!
ipv6 route 2001:DB8:100::/48 2001:DB8:2:100::2
ipv6 route 2001:DB8:A4FF::/48 2001:DB8:2:A4FF::2
!

Each of the two interfaces connecting the customers (which can be subinterfaces or VLAN
interfaces) just has an IPv6 address, and router advertisements are suppressed with the ipv6
nd suppress-ra command in order to avoid problems with accidental stateless autoconfigura-
tion, although problems aren’t likely in this case, so suppressing RAs is probably not necessary.
The /48s are routed to the customer’s routers in the last two lines.

■Note You need to redistribute static routes into your IPv6 IGP to make the /48s reachable from other
routers.

DHCPv6 Prefix Delegation
In theory, IPv6 prefix delegation is a very attractive way to hand out IPv6 prefixes to customers,
because it works completely automatically and allows for easy renumbering. However, in prac-
tice, this is hard to do. Not only is there a lack of (reliable) DHCPv6 implementations, but having
prefixes assigned to customers automatically is only useful if everything happens automatically.
This includes all configurations at the customer’s end and also the DNS. See Chapter 8 for
DHCPv6 examples.

Using a Routing Protocol Toward the Customer
In some cases, it can be beneficial to have dynamic routing between you and the customer.
This is typically the case when the customer has two separate connections, two separate
routers, or both. When the links between you and the customer are susceptible to going down,
such as good old-fashioned T1, T3, or fractional T3 lines, or dark fiber, it’s very helpful to be
able to automatically reroute all traffic away from the broken link to the working one. For in-
house links, it’s not all that likely that any given link will be down for a significant amount of
time, so having a routing protocol in place usually isn’t worth the trouble. However, even for
connections within the same building, it can be a good idea to have two routers at your end
and/or two routers at the customer end to minimize the impact of router failures.

Two routing protocols are appropriate here: BGP and RIPng. BGP has the advantage that
it’s created for the specific purpose of interconnecting different networks, so the required fil-
tering is easy to accomplish. You can simply configure the customer with BGP as you would
any other (IPv4 or IPv6) BGP customer (see later this chapter), except that this customer uses
a private AS number in the 64,512 to 65,534 range, and you don’t announce the customer BGP
route to anyone else.

In cases where BGP isn’t the logical choice, for instance, because the router doesn’t sup-
port it or you or the customer isn’t comfortable with the protocol, RIPng is a reasonable
alternative. RIP is nice and simple so it won’t burn up too many CPU cycles when something
goes wrong, and the required filtering can be done without trouble. Listing 11-3 shows the
service provider configuration for this.
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Listing 11-3. Multi-Subnet Customer Provisioning with RIPng, ISP Side

!
interface Ethernet1
ipv6 address 2001:DB8:2:100::/64 eui-64
ipv6 nd suppress-ra
ipv6 rip cust100 enable
ipv6 rip cust100 default-information only
!         
ipv6 router rip cust100
distribute-list prefix-list cust100-in in  

!         
ipv6 prefix-list cust100-in seq 5 permit 2001:DB8:100::/48
!

As before, the first order of business is to set up a subnet prefix for communicating with
the customer. (This will probably also work with just link-local addresses, though.) As there
are no static routes that need the Ethernet1 address as a next hop address, we can use EUI-64
based addresses without problems. After this, router advertisements are again suppressed.
Next, we enable a RIPng instance for this specific customer and configure it to limit outgoing
routing updates on this interface to just a default route. After leaving the interface context, in
the ipv6 router rip context for this RIPng process, we set up a filter that limits incoming
updates to just the customer’s /48 and nothing else, with the aid from the cust100-in prefix
list. Listing 11-4 is the corresponding customer-side configuration.

Listing 11-4. Multi-Subnet Customer Provisioning with RIPng, Customer Side

!
interface Ethernet0
ipv6 address 2001:DB8:2:100::/64 eui-64
ipv6 nd suppress-ra
ipv6 rip customer enable
ipv6 rip customer summary-address 2001:DB8:100::/48
!
ipv6 route 2001:DB8:100::/48 Null0
!
ipv6 router rip customer
redistribute static
!

On the customer side, the configuration is quite similar, except that here, outgoing updates
aren’t limited to a default route, but rather to the customer’s /48. The summary-address line filters
out the individual /64s (or other more specific prefixes) that fall within the /48 and only allows the
/48 prefix to be propagated. For the /48 to be inserted into RIP, it’s necessary to have a matching
route in the routing table, hence the route toward the Null0 interface. The static route must also
be redistributed into the RIPng process, which happens in the last two lines of the listing. As you
can see, there is no requirement that the RIPng process names on both ends match.
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Multihomed Customers
In IPv4, you may have customers who are connected to another ISP in addition to being your
customer. So when one ISP (or the connection to that ISP) fails, they simply reroute their com-
munication sessions over the other. By announcing the same address block to both ISPs over
BGP, the rerouting is completely transparent to applications. However, in IPv6, it’s not possible
for end users to get their own provider independent (PI) address space, like they can in IPv4.
So customers who want to multihome with BGP and don’t qualify for their own PA address
block2 can only do so if they take a /48 from one of their ISPs and announce those addresses
over BGP to both ISPs. Because many ASes filter out /48s, this provides a lower level of redun-
dancy than an independent PI or PA address block would. But as long as the primary ISP (the
one that provides the address space) accepts the /48 in question from the secondary ISP, the
end user will still be reachable if there is a local problem at or toward the primary ISP. As most
problems that impact connectivity for end users are local ones, such as a broken circuit or a
power failure at the ISP, this way of multihoming is still useful. Listing 11-5 is the BGP config-
uration that supports this.

Listing 11-5. Configuration to Have a Semi-Multihomed Customer

!
router bgp 40000
no synchronization
neighbor 2001:DB8:2:100::2 remote-as 50000
neighbor 3FFE:9500:3C:74::10 remote-as 45000
!
address-family ipv6
neighbor 2001:DB8:2:100::2 activate
neighbor 2001:DB8:2:100::2 prefix-list cust-100-bgp-in in
neighbor 2001:DB8:2:100::2 filter-list 12 in
neighbor 3FFE:9500:3C:74::10 activate
neighbor 3FFE:9500:3C:74::10 prefix-list import in
neighbor 3FFE:9500:3C:74::10 prefix-list export out
neighbor 3FFE:9500:3C:74::10 filter-list 2 out
network 2001:DB8::/32
exit-address-family
!
ip as-path access-list 2 permit ^$
ip as-path access-list 2 permit ^50000$
ip as-path access-list 12 permit ^50000$
!
ipv6 prefix-list import seq 5 permit 2001:DB8:100::/48
ipv6 prefix-list import seq 10 deny 2001:DB8::/32 le 128
ipv6 prefix-list import seq 15 permit ::/0 le 48
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!
ipv6 prefix-list export seq 5 permit 2001:DB8::/32
ipv6 prefix-list export seq 10 permit 2001:DB8:100::/48
!
ipv6 prefix-list cust-100-bgp-in seq 5 permit 2001:DB8:100::/48
!

Under the router bgp directive that initiates the BGP part of the configuration (and
provides the local AS number), there is a reminder to always configure no synchronization
and two BGP neighbors: the first one (AS 50000) is the customer, the second one (AS 45000)
is our own upstream ISP. The rest of the settings for these neighbors are configured in the
address-family ipv6 segment. We use two filters for the customer: AS path filter 12 and pre-
fix filter “cust-100-bgp-in.” These filters are listed below the BGP configuration. The AS path
filter is very simple: it only allows the AS number of the customer.3 The prefix filter allows
the customer’s /48 and nothing else.

The configuration toward the ISP is very similar, except that there is now also an
“export” filter that controls which prefixes are allowed out. These prefixes are the local PA
block 2001:db8::/32 (see the network statement) and also the customer’s prefix
2001:db8:100::/48. Although the latter falls within the former, it’s not allowed by the first
line because the match isn’t exact. The “import” filter is very important: this rejects incom-
ing routing updates that have our own addresses in it. If not rejected, such updates could
potentially be used by attackers elsewhere to intercept traffic or block services. The first line
in this filter allows the customer’s prefix. Without this, it wouldn’t be possible to reach the
customer through her secondary ISP if our direct link to her goes down. The second line
rejects our own block, including any prefixes that are smaller, all the way up to a /128. Last
but not least, we allow all prefixes up to a /48. See Chapter 4 for more BGP filtering consid-
erations and an example of the customer-end BGP configuration.

■Caution There is one thing your customers should be aware of before they decide to multihome by
using a /48 prefix from one of their ISPs: because many networks filter out the /48s, in places where the
/48 is present, it’s often through a path that’s longer than necessary. Because of the longest match first rule,
packets will flow toward the /48, so they may incur detours. If possible, do some experimenting to deter-
mine whether this is the case and how bad it is before committing to this solution.

Hybrid Autoconfig/Manual Configuration
For customers on a dedicated subnet, you can easily create a standard hybrid configuration
that allows the customer to use either a single /64 with stateless autoconfiguration or a subnet
/48 with manual configuration by setting up an IPv6 router themselves. Listing 11-6 combines
a configuration very much like Listing 11-2 with stateless autoconfiguration.

CHAPTER 11 ■ PROVIDING TRANSIT SERVICES236

3. You’ll probably want to use a more sophisticated filter that also allows for AS path prepending in a
real setup, such as ^(50000_)+$, which allows an AS path consisting of one or more times AS number
50000 and nothing else.



Listing 11-6. Hybrid Stateless Autoconfiguration and Manual Routing of a /48

!
interface ATM0.100
description Customer 100
ipv6 address 2001:DB8:2:100::1/64
!
ipv6 route 2001:DB8:100::/48 2001:DB8:2:100::2
!

If you look closely, you’ll see that the only substantial change from Listing 11-2 is the
removal of the suppress-ra command. Also notice that the interface is an ATM subinterface;
apart from the usual settings that are also necessary to set up an ATM PVC for IPv4 routing,
the configuration in Listing 11-6 is all that’s required to support IPv6 over DSL and other
ATM-based infrastructures.

THE SIZE OF IPV6 POINT-TO-POINT SUBNETS

Although larger end-user networks may also run into this issue, it mainly comes up in ISP networks: what is
the correct subnet size for IPv6 point-to-point links? There is no consensus on the right answer just yet, even
though an entire RFC is devoted to this subject (RFC 3627). But there are some tradeoffs you should be
aware of.

First of all, it’s a perfectly valid choice to have no global IPv6 address on an interface at all. Link-local
addresses will simply pick up the slack, and everything should work just fine. When a global address is
required for sending back ICMP messages, the router will borrow a global address from another interface.
On a Cisco router, you can use the ipv6 unnumbered ... syntax to force which interface the address
will be borrowed from.

On the other hand, having a dedicated global address for an interface is useful for debugging: you can
ping it to see if the interface is up, and you can add a descriptive DNS name that will show up in traceroutes.
The smallest possible subnet size for a point-to-point link that must accommodate two routers (or a router
and a host, for that matter) is a /127, which allows for two addresses. Unlike IPv4, IPv6 doesn’t have a sub-
net broadcast address, so the address with all ones in the host part is a usable address. However, the same
isn’t true for the address with all zeros in the host part: this is the subnet all routers anycast address. If you
configure a /127 on a point-to-point link with a router that doesn’t implement the all routers anycast address
(such as Cisco and Juniper) holding the higher of the two addresses, there won’t be any problems, regardless
of whether the other router implements the all routers anycast address. However, if a router that does imple-
ment the anycast address holds the higher address, this router won’t be able to send packets to the router
with the lower address. But even if everything works today, you may run into nasty surprises when a soft-
ware upgrade adds support for the all routers anycast address. So stay away from /127 subnets in IPv6.

The next possibility is a /126. With two bits to number hosts and one address lost because of the all
routers anycast address, a /126 allows for three hosts, so it will accommodate a point-to-point link just fine.
However, there is a complication: RFC 2526 specifies that the highest 128 addresses (with the universal/local
bit set to “local,” if applicable) in a subnet are reserved anycast addresses, so the minimum subnet size must
be a /120. It’s not clear what is supposed to happen when a longer prefix is configured, and in practice, a
/126 works fine. But it’s not entirely inconceivable that at some point, some routers will not handle subnet
prefixes shorter than /120.

Continues
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A /120 allows for 256 subnets within a single /64, which is probably more than you need. A /112 still
allows for 248 subnets within a /64 and has the slight advantage that the entire last hexadecimal number in
the IPv6 address belongs to the same subnet.

Alternatively, you can just use a /64 for point-to-point links and use EUI-64 addressing. This has the
advantage that you don’t have to keep track of which router holds which address. However, this only works
well if you don’t have to point any static routes to the other router’s address, because EUI-64 addresses are
hard to type in correctly and change when you replace the hardware.

IPv6 Dial-Up
If you want to provide IPv6 connectivity over dial-up, you have a challenge on your hands,
because there is no easy way to assign addresses over dial-up links. On the customer side, it’s pos-
sible to get around this by assigning addresses statically, so the customer’s equipment always has
the same address. However, for regular dial-up service, you don’t know which modem or ISDN
line the customer is going to connect to, so there is no obvious way to set up routing toward the
customer’s address or address range. In the future, this should get easier as more support for RFC
3162 IPv6 RADIUS extensions becomes available. RADIUS is the main protocol that allows dial-
up concentrators to get authentication and configuration information from a central server
when a customer connects.

Alternatively, when both your equipment and the customer’s support DHCPv6 prefix del-
egation, you can configure the dial-up concentrator to supply the customer with a prefix when
she connects. Another option is to exchange routing information with RIP. Router advertise-
ments aren’t really compatible with the standard way of configuring dial-up by using a template
interface configuration that is cloned when a call comes in.

None of these alternatives make much sense in mass deployment, so your best bet is
probably to wait until you can use RADIUS or to give IPv6 dial-up customers a static IPv4
address and configure a tunnel with this static address as the endpoint. 

DNS and Customer Service
Most ISPs host domains for at least some of their customers and usually make a nice profit
in the process. As we saw in Chapter 5, IPv6 requires some changes to the DNS. For most
domains, the changes are inconsequential: a few AAAA records for servers that are reachable
over IPv6. However, even something as small as this can be quite problematic: if your DNS
management software doesn’t support AAAA records, you need to either upgrade the soft-
ware or find a different way to inject these records in the domains where they’re needed,
such as delegating a subdomain to a different DNS server that can handle the AAAA records.
Still, if the tools you use to manage the DNS do support IPv6, you’re not entirely out of the
woods: the people who work with the system need to know enough about IPv6 to be able to
enter and change the records. This isn’t a huge amount of IPv6 knowledge, but without it,
expect frustrated staff and customers.

Then there is the reverse DNS. In large IPv4 installations, such as cable, DSL, or dial-up
networks, it’s common practice to pre-populate the DNS with both forward and reverse map-
ping information, so every IP address has working DNS name. In IPv6, this is no longer
possible because of the large address space. There are several ways to deal with this:
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• Ignore the issue and forego reverse mapping. Obviously, this isn’t an ideal solution, but
life is possible without reverse DNS mappings.4

• Use dynamic DNS updates. Although there is some client support for dynamic DNS
updates in current operating systems, this doesn’t yet include updating the IPv6 reverse
DNS. Also, opening the relevant zones for client updates may not be what you want.

• Generate the reverse mapping from the AAAA records. This can work well if you host all
the “forward” zones for domains used in your network and if there is a good system in
place to update the AAAA records themselves.

• Manually maintain the reverse zones. Not much fun, but as long as you only have a few
IPv6 systems, this can be easier than setting up complex systems to do it.

• Delegate the reverse zones to customers. This is common for customers with their own
prefix. The prefix doesn’t have to be a /48 for this; you can delegate on any 4-bit bound-
ary. Some tunnel brokers even allow customers to enter two nameservers when signing
up for the tunnel and the delegation is then done automatically.

Running a Private 6to4 Gateway
Although 6to4 tunneling has many downsides, it’s a great invention because it allows many peo-
ple to connect to the IPv6 Internet very quickly, often in minutes. None of this would be possible
without the generous contribution of time, effort, and bandwidth from the people who run public
6to4 gateways. Don’t worry, I’m not going to tell you that you’ll earn lots of karma points by run-
ning one of those. Instead, I’m going to tell you to look out for number one and optimize your
own connectivity to and from 6to4 addresses by running a private 6to4 gateway. The fact that this
serves the public good by lowering the load on public 6to4 gateways is just an added bonus.

When you’re first starting with IPv6, you may already have customers who use IPv6. However,
because you weren’t providing IPv6 services before, they must be using either a manually config-
ured tunnel toward a remote tunnel broker or 6to4. By running a private 6to4-to-IPv6 gateway,
you’ll probably increase performance for these customers, because their packets toward regular
IPv6 addresses no longer have to flow through a remote 6to4 gateway. Listing 11-7 implements a
gateway in the 6to4-to-IPv6 on a Cisco router.

Listing 11-7. A Cisco 6to4-to-IPv6 Gateway Configuration

!
interface Loopback2002
ip address 192.88.99.1 255.255.255.255
!
interface Tunnel2002
ipv6 enable
ipv6 mtu 1280
tunnel source 192.88.99.1
tunnel mode ipv6ip 6to4
!
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Even though the 6to4 hosts address packets to the anycast gateway address
2002:c058:6301::, there is no need to configure this address on the gateway; before the gateway
sees the packets, they are already encapsulated in an IPv4 packet addressed to 192.88.99.1. This
is the address that must be configured as a local address on the gateway and also as the tunnel
source on the tunnel interface. In the listing, this address configured on a loopback interface.
(Don’t forget that Cisco routers support multiple loopback interfaces.) Without the 6to4 anycast
address present and configured as the tunnel source, the router won’t recognize the 6to4 packets
toward the 6to4 anycast gateway address. To able to act as a 6to4 gateway in this direction, the
router must participate in the IPv4 routing protocol and have at least a default route for IPv6,
and the 192.88.99.1 address must be redistributed into the IPv4 interior routing protocol in
order to attract 6to4 packets.

It may seem more natural to also configure the 2002::/16 prefix, but this can have an
unpleasant side effect. As the router then considers the entire 2002::/16 range “directly con-
nected,” it will try to send packets to those destinations by using 6to4 tunneling. However,
these tunneled packets will have 192.88.99.1 as their source address, per the tunnel source
directive. In many cases, this will work just fine, but it’s also possible that packets with those
source addresses are filtered out, either by your own IPv4 anti-spoofing filters or by your
upstream’s ingress filters. After all, 192.88.99.1 isn’t an address registered to you.

Not having an IPv6 address on the 6to4 interface does have one odd side effect: whenever
the router must return ICMP messages, the router must select a valid global scope IPv6 address
from another interface as the source address for the ICMP packet. This means that when a 6to4
user does a traceroute, the first hop in the traceroute shows a regular IPv6 address for the
router rather than a 6to4 address.

■Tip Make sure that you can provide production quality service for your 6to4 gateway: a non-working
gateway is much worse than no gateway, because it cuts your customers off from working gateways
elsewhere, especially if you run a public gateway by advertising 192.88.99.0/24 and/or 2002::/16 to
other ISPs.

Although a private gateway in the 6to4-to-IPv6 direction is nice to have and can increase
performance for 6to4 users on your network, it doesn’t have a lot of long-term potential: as
soon as you start rolling out native (or tunneled) IPv6 services, 6to4 use on your network will
decline, and the gateway won’t have much to do. However, at this point, when regular IPv6
traffic increases, it becomes beneficial to run a private gateway in the IPv6-to-6to4 direction,
as shown in Listing 11-8.

Listing 11-8. A Private 6to4 Gateway in the IPv6-to-6to4 Direction

!
interface Tunnel2002
ipv6 address 2002:DFE0:E1E2::/16
ipv6 mtu 1280
tunnel source 223.224.225.226
tunnel mode ipv6ip 6to4
!
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In this listing, the tunnel does have an IPv6 address, which mostly serves to make the
2002::/16 address block “directly connected” through the tunnel interface, so the router will use
6to4 to reach 6to4 destinations. The tunnel source address (from which the IPv6 was derived) is
one of the router’s regular IPv4 addresses configured on another interface, so outgoing packets
have a normal source address, and anti-spoofing filters won’t kick in. Don’t forget to redistribute
the connected 2002::/16 route into your IPv6 IGP.

Unfortunately, it’s not possible to have more than a single 6to4 tunnel interface on a Cisco
router. So if you want to have a 6to4 gateway in both directions, either you need to use two
separate routers or you’ll have to use the 192.88.99.1 address and make sure that outgoing
packets with this address as their source address aren’t filtered.

Setting up a 6to4 gateway in the IPv6-to-6to4 direction under FreeBSD or Linux is very
simple: just use the listings from Chapter 3, but leave out the default route to the 6to4 gateway
address, and make sure that the 2002::/16 prefix is routed to the Linux or FreeBSD system in
question. You can run a private 6to4 gateway in the 6to4-to-IPv6 by setting up the  192.88.99.1
anycast gateway address as an alias on one of the system’s interfaces and propagating this
address in the internal IPv4 routing protocol.

If you want to run a public gateway, you should probably contact one or more existing
6to4 gateway operators first. Look up 192.88.99.0/24 in the RIPE whois database to find con-
tact information.
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The IETF and RFCs

Most people know that technical standards for the Internet are written down in RFCs and that
the IETF produces RFCs. Of course, there is much more to it than that. The RFC series originally
started in 1969 as a series of “request for comments” documents: someone would write a short
text and request comments from others, much the same way we do now with email mailing lists.
Later, the RFC series became a mechanism to publish a variety of documents.

An Internet Standard doesn’t come into existence overnight. Like all RFCs, standards doc-
uments start their life as “Internet drafts.” These drafts are published by the IETF for a period
of six months and then deleted. This forces draft authors to resubmit updated drafts twice a
year to escape oblivion. Most drafts are related to IETF working groups and as such are subject
to working group and Internet Engineering Steering Group (IESG) review. It’s also possible to
have the RFC Editor publish an informational or experimental RFC without going through the
IETF/IESG, but when the RFC Editor suspects that the work may overlap with IETF work, she
or he asks the IESG to review the draft before publication as an RFC.

Although IETF working groups can also publish informational or experimental RFCs, their
work usually enters the “standards track.” Standards track protocol RFCs are initially published
as “proposed standard.” A proposed standard usually doesn’t have any implementations or
operational experience (there are exceptions to this rule), but it should be a complete specifica-
tion. Then, after two independent implementations have been shown to interoperate, a protocol
may move to “draft standard” status. Finally, a widely implemented protocol that is successful in
wide deployment may become an “Internet standard.” The specification then receives an STD
number, but it keeps its RFC number. In most cases, exposure to the real world requires some
protocol revisions. Existing RFCs are never updated, so revisions always require the publication
of a new RFC. Depending on the nature and size of the changes, the IESG may keep a protocol
at its current maturity level, move it back, or allow it to advance.

However, only a fraction of all RFCs are standards documents. The others specify older
versions of current standards, specify an experimental protocol, contain “historic” information,
provide guidelines that are considered “best current practice,” or just “provide information for
the Internet community.” The status of an RFC can be any of the following:

Informational: The RFC just provides information and doesn’t specify a standard.

Experimental: The RFC specifies an experimental protocol that isn’t recommended in
production environments.

Proposed standard: The protocol is standards track but has no operational experience yet.

Draft standard: There is limited operational experience with the protocol.
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Standard: The RFC specifies a mature protocol.

Obsolete: The RFC doesn’t specify the most recent version of the protocol (this doesn’t say
anything about the status of the protocol).

Historic: The RFC is no longer in use, but it is of historical value.

The best current practice (BCP) status seems to be independent of the document or
protocol status. For instance, RFC 3152 is a BCP, but it’s also made obsolete by RFC 3596.

Over the years, there has been a deflation (in the monetary sense) of the standards track
levels, to the degree that it’s almost impossible to gain “Internet standard” status for complex
protocols. For instance, protocols such as HTTP and BGP, which can hardly be called imma-
ture, are stuck at the “draft standard” level.

The RFC Editor keeps an RFC index that reflects the current status of all RFCs. (The fol-
lowing list of RFCs was taken from this index.) There is also a document that contains all
standards and BCPs. The documents are available at ftp://ftp.isi.edu/in-notes/rfc-
index.txt and http://www.rfc-editor.org/rfcxx00.html, respectively. Especially the former
is rather large. The RFCs themselves are available from http://www.rfc-editor.org/ and
many other places. If you know the number, http://www.ietf.org/rfc.html is a quick way to
obtain the RFC.

The RFCs mentioned in this book are as follows:
0768 User Datagram Protocol. J. Postel. Aug-28-1980. (Format: TXT=5896 bytes) (Also

STD0006) (Status: STANDARD)
0791 Internet Protocol. J. Postel. Sep-01-1981. (Format: TXT=97,779 bytes) (Obsoletes

RFC0760) (Updated by RFC1349) (Also STD0005) (Status: STANDARD)
0792 Internet Control Message Protocol. J. Postel. Sep-01-1981. (Format: TXT=30,404

bytes) (Obsoletes RFC0777) (Updated by RFC0950) (Also STD0005) (Status: STANDARD)
0793 Transmission Control Protocol. J. Postel. Sep-01-1981. (Format: TXT=172,710 bytes)

(Updated by RFC3168) (Also STD0007) (Status: STANDARD)
0826 Ethernet Address Resolution Protocol: Or Converting Network Protocol Addresses to

48-Bit Ethernet Address for Transmission on Ethernet Hardware. D.C. Plummer. Nov-01-1982.
(Format: TXT=22,026 bytes) (Also STD0037) (Status: STANDARD)

0894 Standard for the Transmission of IP Datagrams over Ethernet Networks. C. Hornig.
Apr-01-1984. (Format: TXT=5697 bytes) (Also STD0041) (Status: STANDARD)

1035 Domain Names—Implementation and Specification. P.V. Mockapetris. Nov-01-1987.
(Format: TXT=125,626 bytes) (Obsoletes RFC0973, RFC0882, RFC0883) (Updated by RFC1101,
RFC1183, RFC1348, RFC1876, RFC1982, RFC1995, RFC1996, RFC2065, RFC2136, RFC2181,
RFC2137, RFC2308, RFC2535, RFC2845, RFC3425, RFC3658, RFC4033, RFC4034, RFC4035)
(Also STD0013) (Status: STANDARD)

1112 Host Extensions for IP Multicasting. S.E. Deering. Aug-01-1989. (Format: TXT=39,904
bytes) (Obsoletes RFC0988, RFC1054) (Updated by RFC2236) (Also STD0005) (Status: STANDARD)

1323 TCP Extensions for High Performance. V. Jacobson, R. Braden, D. Borman. May 1992.
(Format: TXT=84,558 bytes) (Obsoletes RFC1072, RFC1185) (Status: PROPOSED STANDARD)

1886 DNS Extensions to Support IP Version 6. S. Thomson, C. Huitema. December 1995.
(Format: TXT=6424 bytes) (Obsoleted by RFC3596) (Updated by RFC2874, RFC3152) (Status:
PROPOSED STANDARD)

1918 Address Allocation for Private Internets. Y. Rekhter, B. Moskowitz, D. Karrenberg, 
G. J. de Groot, E. Lear. February 1996. (Format: TXT=22,270 bytes) (Obsoletes RFC1627,
RFC1597) (Also BCP0005) (Status: BEST CURRENT PRACTICE)
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1970 Neighbor Discovery for IP Version 6 (IPv6). T. Narten, E. Nordmark, W. Simpson. August
1996. (Format: TXT=197,632 bytes) (Obsoleted by RFC2461) (Status: PROPOSED STANDARD)

2023 IP Version 6 over PPP. D. Haskin, E. Allen. October 1996. (Format: TXT=20,275 bytes)
(Obsoleted by RFC2472) (Status: PROPOSED STANDARD)

2136 Dynamic Updates in the Domain Name System (DNS UPDATE). P. Vixie, Ed.,
S. Thomson, Y. Rekhter, J. Bound. April 1997. (Format: TXT=56,354 bytes) (Updates RFC1035)
(Updated by RFC3007, RFC4033, RFC4034, RFC4035) (Status: PROPOSED STANDARD)

2401 Security Architecture for the Internet Protocol. S. Kent, R. Atkinson. November 1998.
(Format: TXT=168,162 bytes) (Obsoletes RFC1825) (Updated by RFC3168) (Status: PROPOSED
STANDARD)

2402 IP Authentication Header. S. Kent, R. Atkinson. November 1998. (Format:
TXT=52,831 bytes) (Obsoletes RFC1826) (Status: PROPOSED STANDARD)

2406 IP Encapsulating Security Payload (ESP). S. Kent, R. Atkinson. November 1998.
(Format: TXT=54,202 bytes) (Obsoletes RFC1827) (Status: PROPOSED STANDARD)

2407 The Internet IP Security Domain of Interpretation for ISAKMP. D. Piper. November
1998. (Format: TXT=67,878 bytes) (Status: PROPOSED STANDARD)

2408 Internet Security Association and Key Management Protocol (ISAKMP). D.
Maughan, M. Schertler, M. Schneider, J. Turner. November 1998. (Format: TXT=209,175 bytes)
(Status: PROPOSED STANDARD)

2409 The Internet Key Exchange (IKE). D. Harkins, D. Carrel. November 1998. (Format:
TXT=94,949 bytes) (Updated by RFC4109) (Status: PROPOSED STANDARD)

2411 IP Security Document Roadmap. R. Thayer, N. Doraswamy, R. Glenn. November
1998. (Format: TXT=22,983 bytes) (Status: INFORMATIONAL)

2412 The OAKLEY Key Determination Protocol. H. Orman. November 1998. (Format:
TXT=118,649 bytes) (Status: INFORMATIONAL)

2460 Internet Protocol, Version 6 (IPv6) Specification. S. Deering, R. Hinden. December
1998. (Format: TXT=85,490 bytes) (Obsoletes RFC1883) (Status: DRAFT STANDARD)

2461 Neighbor Discovery for IP Version 6 (IPv6). T. Narten, E. Nordmark, W. Simpson.
December 1998. (Format: TXT=222,516 bytes) (Obsoletes RFC1970) (Status: DRAFT STANDARD)

2462 IPv6 Stateless Address Autoconfiguration. S. Thomson, T. Narten. December 1998.
(Format: TXT=61,210 bytes) (Obsoletes RFC1971) (Status: DRAFT STANDARD)

2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification. A. Conta, S. Deering. December 1998. (Format: TXT=34,190 bytes) (Obso-
letes RFC1885) (Status: DRAFT STANDARD)

2464 Transmission of IPv6 Packets over Ethernet Networks. M. Crawford. December 1998.
(Format: TXT=12,725 bytes) (Obsoletes RFC1972) (Status: PROPOSED STANDARD)

2474 Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.
K. Nichols, S. Blake, F. Baker, D. Black. December 1998. (Format: TXT=50,576 bytes) (Obsoletes
RFC1455, RFC1349) (Updated by RFC3168, RFC3260) (Status: PROPOSED STANDARD)

2526 Reserved IPv6 Subnet Anycast Addresses. D. Johnson, S. Deering. March 1999.
(Format: TXT=14,555 bytes) (Status: PROPOSED STANDARD)

2529 Transmission of IPv6 over IPv4 Domains Without Explicit Tunnels. B. Carpenter,
C. Jung. March 1999. (Format: TXT=21,049 bytes) (Status: PROPOSED STANDARD)

2671 Extension Mechanisms for DNS (EDNS0). P. Vixie. August 1999. (Format: TXT=15,257
bytes) (Status: PROPOSED STANDARD)

2672 Non-Terminal DNS Name Redirection. M. Crawford. August 1999. (Format:
TXT=18,321 bytes) (Status: PROPOSED STANDARD)
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2673 Binary Labels in the Domain Name System. M. Crawford. August 1999. (Format:
TXT=12,379 bytes) (Updated by RFC3363, RFC3364) (Status: EXPERIMENTAL)

2675 IPv6 Jumbograms. D. Borman, S. Deering, R. Hinden. August 1999. (Format:
TXT=17,320 bytes) (Obsoletes RFC2147) (Status: PROPOSED STANDARD)

2710 Multicast Listener Discovery (MLD) for IPv6. S. Deering, W. Fenner, B. Haberman.
October 1999. (Format: TXT=46,838 bytes) (Updated by RFC3590, RFC3810) (Status: PRO-
POSED STANDARD)

2732 Format for Literal IPv6 Addresses in URLs. R. Hinden, B. Carpenter, L. Masinter.
December 1999. (Format: TXT=7984 bytes) (Obsoleted by RFC3986) (Updates RFC2396)
(Status: PROPOSED STANDARD)

2734 IPv4 over IEEE 1394. P. Johansson. December 1999. (Format: TXT=69,314 bytes)
(Status: PROPOSED STANDARD)

2765 Stateless IP/ICMP Translation Algorithm (SIIT). E. Nordmark. February 2000.
(Format: TXT=59,465 bytes) (Status: PROPOSED STANDARD)

2821 Simple Mail Transfer Protocol. J. Klensin, Ed.. April 2001. (Format: TXT=192,504
bytes) (Obsoletes RFC0821, RFC0974, RFC1869) (Status: PROPOSED STANDARD)

2827 Network Ingress Filtering: Defeating Denial of Service Attacks Which Employ IP
Source Address Spoofing. P. Ferguson, D. Senie. May 2000. (Format: TXT=21,258 bytes) (Obso-
letes RFC2267) (Updated by RFC3704) (Also BCP0038) (Status: BEST CURRENT PRACTICE)

2858 Multiprotocol Extensions for BGP-4. T. Bates, Y. Rekhter, R. Chandra, D. Katz. June
2000. (Format: TXT=23,305 bytes) (Obsoletes RFC2283) (Status: PROPOSED STANDARD)

2874 DNS Extensions to Support IPv6 Address Aggregation and Renumbering. M. Craw-
ford, C. Huitema. July 2000. (Format: TXT=44,204 bytes) (Updates RFC1886) (Updated by
RFC3152, RFC3226, RFC3363, RFC3364) (Status: EXPERIMENTAL)

2893 Transition Mechanisms for IPv6 Hosts and Routers. R. Gilligan, E. Nordmark. August
2000. (Format: TXT=62,731 bytes) (Obsoletes RFC1933) (Status: PROPOSED STANDARD)

3041 Privacy Extensions for Stateless Address Autoconfiguration in IPv6. T. Narten, R.
Draves. January 2001. (Format: TXT=44,446 bytes) (Status: PROPOSED STANDARD)

3056 Connection of IPv6 Domains via IPv4 Clouds. B. Carpenter, K. Moore. February 2001.
(Format: TXT=54,902 bytes) (Status: PROPOSED STANDARD)

3068 An Anycast Prefix for 6to4 Relay Routers. C. Huitema. June 2001. (Format:
TXT=20,120 bytes) (Status: PROPOSED STANDARD)

3142 An IPv6-to-IPv4 Transport Relay Translator. J. Hagino, K. Yamamoto. June 2001.
(Format: TXT=20,864 bytes) (Status: INFORMATIONAL)

3146 Transmission of IPv6 Packets over IEEE 1394 Networks. K. Fujisawa, A. Onoe.
October 2001. (Format: TXT=16,569 bytes) (Status: PROPOSED STANDARD)

3152 Delegation of IP6.ARPA. R. Bush. August 2001. (Format: TXT=5727 bytes) (Obsoleted
by RFC3596) (Updates RFC2874, RFC2772, RFC2766, RFC2553, RFC1886) (Also BCP0049)
(Status: BEST CURRENT PRACTICE)

3162 RADIUS and IPv6. B. Aboba, G. Zorn, D. Mitton. August 2001. (Format: TXT=20,492
bytes) (Status: PROPOSED STANDARD)

3172 Management Guidelines & Operational Requirements for the Address and Routing
Parameter Area Domain (“arpa”). G. Huston, Ed.. September 2001. (Format: TXT=18,097 bytes)
(Also BCP0052) (Status: BEST CURRENT PRACTICE)

3177 IAB/IESG Recommendations on IPv6 Address Allocations to Sites. IAB, IESG.
September 2001. (Format: TXT=23,178 bytes) (Status: INFORMATIONAL)

APPENDIX A ■ THE IETF AND RFCS246



3194 The H-Density Ratio for Address Assignment Efficiency: An Update on the H ratio.
A. Durand, C. Huitema. November 2001. (Format: TXT=14,539 bytes) (Updates RFC1715)
(Status: INFORMATIONAL)

3315 Dynamic Host Configuration Protocol for IPv6 (DHCPv6). R. Droms, Ed., J. Bound,
B. Volz, T. Lemon, C. Perkins, M. Carney. July 2003. (Format: TXT=231,402 bytes) (Status: PRO-
POSED STANDARD)

3363 Representing Internet Protocol Version 6 (IPv6) Addresses in the Domain Name
System (DNS). R. Bush, A. Durand, B. Fink, O. Gudmundsson, T. Hain. August 2002. (Format:
TXT=11,055 bytes) (Updates RFC2673, RFC2874) (Status: INFORMATIONAL)

3364 Tradeoffs in Domain Name System (DNS) Support for Internet Protocol Version 6
(IPv6). R. Austein. August 2002. (Format: TXT=26,544 bytes) (Updates RFC2673, RFC2874)
(Status: INFORMATIONAL)

3484 Default Address Selection for Internet Protocol Version 6 (IPv6). R. Draves. February
2003. (Format: TXT=55,076 bytes) (Status: PROPOSED STANDARD)

3493 Basic Socket Interface Extensions for IPv6. R. Gilligan, S. Thomson, J. Bound,
J. McCann, W. Stevens. February 2003. (Format: TXT=82,570 bytes) (Obsoletes RFC2553)
(Status: INFORMATIONAL)

3513 Internet Protocol Version 6 (IPv6) Addressing Architecture. R. Hinden, S. Deering.
April 2003. (Format: TXT=53,920 bytes) (Obsoletes RFC2373) (Status: PROPOSED STANDARD)

3587 IPv6 Global Unicast Address Format. R. Hinden, S. Deering, E. Nordmark. August
2003. (Format: TXT=8783 bytes) (Obsoletes RFC2374) (Status: INFORMATIONAL)

3596 DNS Extensions to Support IP Version 6. S. Thomson, C. Huitema, V. Ksinant,
M. Souissi. October 2003. (Format: TXT=14,093 bytes) (Obsoletes RFC3152, RFC1886) (Status:
DRAFT STANDARD)

3627 Use of /127 Prefix Length Between Routers Considered Harmful. P. Savola. Septem-
ber 2003. (Format: TXT=12,436 bytes) (Status: INFORMATIONAL)

3633 IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP) Version 6.
O. Troan, R. Droms. December 2003. (Format: TXT=45,308 bytes) (Status: PROPOSED
STANDARD)

3682 The Generalized TTL Security Mechanism (GTSM). V. Gill, J. Heasley, D. Meyer.
February 2004. (Format: TXT=23,321 bytes) (Status: EXPERIMENTAL)

3879 Deprecating Site Local Addresses. C. Huitema, B. Carpenter. September 2004.
(Format: TXT=24,142 bytes) (Status: PROPOSED STANDARD) 
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Startup Scripts

When left to their own devices, trained professionals will invariably start working on the
ultimate solution to a problem that, as far as anyone else can tell, really doesn’t need further
solving. A good example of this affliction is starting services on UNIX and UNIX-like operating
systems: although Linux, FreeBSD, and MacOS all share the same heritage in this area, service
startup has evolved and continues to evolve in different directions on each.

Red Hat Linux
The Red Hat Linux service startup mechanism was inspired by UNIX System V and IRIX. The
idea is that startup scripts are in the /etc/init.d/ directory (which is actually a symbolic link
for /etc/rc.d/init.d/). In /etc/rc.d/, there are additional directories that govern which
startup scripts are called for which run levels, but fortunately, we don’t have to deal with that
directly. When adding a new service to the system, the first order of business is creating a
startup script, like the one in Listing B-1, and putting it in /etc/init.d/ (well,
/etc/rc.d/init.d/, really) under a suitable name, such as zebra.

Listing B-1. A Startup Script for the zebra and bgpd Daemons

#!/bin/sh
# chkconfig: 2345 60 40
# description: Zebra is a set of routing daemons
### BEGIN INIT INFO
# Provides: $zebra
### END INIT INFO

# Source function library.
. /etc/init.d/functions

[ -f /usr/local/sbin/zebra ] || exit 0
[ -f /usr/local/sbin/bgpd ] || exit 0
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start()
{
echo -n $"Starting zebra: "
daemon /usr/local/sbin/zebra -d
echo
echo -n $"Starting bgpd: "
daemon /usr/local/sbin/bgpd -d
echo

}
stop()
{
echo -n $"Shutting down bgpd: "
killproc bgpd
echo
echo -n $"Shutting down zebra: "
killproc zebra
echo

}
rhstatus()
{
status zebra
status bgpd

}
restart()
{
stop
start

}

case "$1" in
start)

start
;;

stop)
stop
;;

status)
rhstatus
;;

restart|reload)
restart
;;

*)
echo $"Usage: $0 {start|stop|status|restart}"
exit 1

esac
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As usual, the first line points to the shell that should be used to execute the script. The line
after that tells the chkconfig utility (see Listing B-2) for which run levels this script should be
executed, along with a value that determines the relative startup ordering and a value that
determines the relative shutdown ordering. The next four lines are necessary for chkconfig
compatibility, and the . /etc/init.d/functions imports some functions into the script that
are used later. The script then checks whether the zebra and bgpd executables exist and exits
when this isn’t the case.

After this, four functions are defined: one that starts the daemons, one that stops them,
one that displays their status, and finally one that stops and then restarts the daemons. The
daemon, killproc, and status commands are provided by the system to simplify this. Note that
our status function is called “rhstatus” to avoid a conflict with the status command. Finally, a
case construct tests the first argument for the script and calls the appropriate function or dis-
plays a usage line if the argument wasn’t recognized.

Startup scripts are readable, writable, and executable by root and readable and executable
by group and world, although it’s not clear why other users than root would have to look at
these scripts, let alone execute them. A chmod 755 zebra (where zebra is the name of the script)
makes sure that our script doesn’t stand out. You can now manually execute the script to start
or stop the daemons, or list their status. But the point of the exercise is to have the script exe-
cuted at system startup. The chkconfig command in Listing B-2 makes this happen.

Listing B-2. Using chkconfig to Execute a Script at System Startup

# chkconfig --list zebra
service zebra supports chkconfig, but is not referenced in any runlevel (run  ➥

'chkconfig --add zebra')
# chkconfig --add zebra
# chkconfig --list zebra
zebra           0:off   1:off   2:on    3:on    4:on    5:on    6:off

The first chkconfig --list shows that the zebra script wasn’t installed in the chkconfig
system yet, hence the chkconfig --add. The subsequent chkconfig --list shows that the
zebra script is executed when entering or leaving runlevels 2 to 5, with arguments “start” and
“stop,” respectively. If you want to disable a service, do this with chkconfig zebra off, and
then you can enable it again with chkconfig zebra on. You can remove the script from the
chkconfig system with chkconfig --del.

FreeBSD
Under FreeBSD, the traditional way to start services at system startup is to create a startup
script in /usr/local/etc/rc.d/. As you can read in “Starting Services” in Chapter 11 of the
FreeBSD Handbook, available at http://www.freebsd.org/, these scripts must have a .sh
extension and be readable, writable, and executable for the system (the handbook recom-
mends a chmod 755 <file>) and react appropriately to start and stop arguments. Listing B-3
starts the racoon IKE daemon when the system boots.
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Listing B-3. Startup Script for the racoon Daemon

#!/bin/sh

case "$1" in
start)

if [ -x /usr/local/sbin/racoon ]; then
/usr/local/sbin/racoon && echo -n ' racoon'

fi
;;

stop)
/usr/bin/killall racoon && echo -n ' racoon'

;;

*)
echo "Usage: `basename $0` { start | stop }"
exit 64

;;
esac

When the argument is start, the script first checks whether the racoon executable exists,
and if so, it starts the daemon and prints “ racoon” to standard output so an administrator sit-
ting behind the console during boot knows what’s going on. When the argument is stop, all
processes with the name “racoon” get killed unceremoniously. Doing this with the aid of a pid
file would be cleaner, but I’m just a long-time fan of the killall command. If the argument
wasn’t recognized, the script shows how it expects to be executed. The basename executable
between the backticks takes the script name as its argument and strips off the leading path.

Listing B-3 is about the shortest usable startup script possible. Most FreeBSD startup
scripts check in the /etc/rc.conf file whether they should run, usually through a
NAMEOFSERVICE_ENABLE="YES" line. See existing startup scripts in /etc/rc.d/ and /usr/local/
etc/rc.d/ for inspiration. Under FreeBSD 5.x, there is a new “RCng” mechanism that allows
startup scripts to take their configuration information from the /etc/rc.conf file, rather than
just whether they should run at all or not. The new mechanism also handles dependencies, so
services that depend on something else are only started after the service they depend on runs.
See the handbook for more information. However, traditional startup scripts still work as well.

MacOS
MacOS X has several mechanisms to start services during boot. The most appropriate for con-
figuring a manual tunnel at system startup is a shell script in the StartupItems directory.1

There are actually two of those: one in /Library and another in /System/Library. We should
probably use the former. First, we need to create a directory for our shell script:

% sudo mkdir /Library/StartupItems/IPv6Tunnel/
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The actual script needs to have the exact same name as the new directory we just created
for it to reside in: IPv6Tunnel in this case. Listing B-4 shows the script.

Listing B-4. A Shell Script to Set Up an IPv6 Tunnel at System Startup

#!/bin/sh

. /etc/rc.common

case "$1" in

start)
ifconfig gif0 tunnel 192.0.2.1 223.224.225.226
ifconfig gif0 inet6 2001:db8:31:1::2/64
route add -inet6 default 2001:db8:31:1::1
;;

stop)
route delete -inet6 default 2001:db8:31:1::1
ifconfig gif0 inet6 -alias 2001:db8:31:1::2/64
ifconfig gif0 deletetunnel
;;

esac

As is standard operating procedure for shell scripts, the first line specifies the shell that must
be used to run the script. The next line is necessary to include a number of system settings. Then,
the case command looks at the first argument that was passed to the script. If this argument is
start, the tunnel is configured with endpoint addresses and an IPv6 address, and a default route
is set up. If the argument is stop, the opposite happens: the default route, the IPv6 address, and
the tunnel endpoint addresses are removed. The final esac terminates the case earlier. In addition
to the actual script, MacOS also wants to see a file called StartupParameters.plist in the same
directory. Listing B-5 shows the contents of this file.

Listing B-5. The Contents of the StartupParameters.plist File

{
Description = "IPv6 tunnel";
Provides = ("IPv6Tunnel");
Requires = ("Network");
Uses = ("Network");
OrderPreference = "None";
Messages =
{
start = "Starting IPv6 tunnel";
stop = "Stopping IPv6 tunnel";

};
}
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The purpose of this file is to provide the system with information about the new service.
Apart from the obvious description and messages, this is information the system uses to decide
the order in which services are started during boot. In this case, the IPv6Tunnel service will be
started after the network has been initialized. This means that you won’t see the tunnel immedi-
ately after startup if you use a network connection that needs some time to start, such as Airport
(wireless). MacOS 10.4 Tiger is very picky about the file protection mode for the files in Listings
B-4 and B-5. If you set them to read, write, and execute for the owner (root) and read and exe-
cute for group and other, they’ll work just fine:

% sudo chmod 755 /Library/StartupItems/IPv6Tunnel/*

In addition to supporting the more traditional startup mechanisms, MacOS 10.4 has a
new launchd daemon that replaces many other mechanisms, such as the init process and the
inetd daemon. It has many very useful features, especially for starting daemons. So if you plan
on running additional daemons under MacOS Tiger, have a look at the launchd man page.

■Note Although none of the startup scripts listed here was directly copied from an existing one, they do
resemble existing startup scripts because there are only a few ways to accomplish the desired function.
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Postscript

255

After reading the preceding chapters, you’ve learned a lot about IPv6⎯as it is today. But IPv6
is very much a moving target. I’m typing these final thoughts from the terminal room at the end
of the 63rd IETF meeting in Paris, and for me, it has been a week filled with IPv6, both inside
and outside the IPv6-specific working groups.1 A lot of IPv6-related work is still in the pipeline.
The most interesting are mobility in IPv6 (MIPv6), a new way to multihome, and secure neigh-
bor discovery (SEND). But it certainly doesn’t end there.

MIPv6, SEND, and Shim6
The idea behind MIPv6 is that more and more IP-capable hosts aren’t tied to a fixed location.
Laptops and PDAs are an obvious example. Their connectivity changes from moment to
moment and location to location. One moment, such a device may be connected to a Wi-Fi
network, but the next moment, it may move out of reach and switch to a second- or third-
generation mobile data service such as GPRS or UMTS. Mobile IP makes it possible to keep
using the same IP address when switching network connections. There is rudimentary MIP for
IPv4, but MIPv6 is much more ambitious—for instance, it supports mechanisms to optimize
the routing between the mobile node and its correspondents, rather than have these packets
flow through a “home agent.” In most books about IPv6, MIPv6 has a prominent place, but
because the specification isn’t finished yet, I felt I shouldn’t discuss it in this book, which is
about running stuff that’s actually available today. But mobile IP is a fairly hot topic in the
IETF, and we certainly haven’t heard the last of it.

Multihoming in IPv6 is a subject that I’m personally involved with. The current way of
multihoming in IPv4 by injecting an independent address block into BGP won’t work in the
long run, especially in IPv6, where many artificial constraints that exist in IPv4 have been
lifted. The recently concluded multi6 (multihoming in IPv6) working group considered this
problem for a long time, and finally it was decided to go for an approach where hosts have
several addresses, one for each ISP that the site gets reachability from. The idea is that when
one address no longer works, any active sessions and subsequent new sessions that use the
no-longer-working address are transparently moved to a still-working address. Protocols such
as TCP don’t have the capability to change addresses in mid-flight, so to avoid having to
change all transport protocols, this new address agility will be implemented in a new “shim”
layer that sits between the IP layer and upper-layer protocols such as TCP and UDP. A new
shim6 working group was chartered to develop this shim layer. Because work on the shim
layer just started and there is a lot to do, it will be a while before this new way of multihoming
is a reality. But when it is, having two or more connections to the Internet and transparently

1. There are about five different working group sessions scheduled in each timeslot during an IETF
meeting, so the fact that I managed to fill my time with IPv6-related work doesn’t mean everything
that happens in the IETF is IPv6-related.
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switching ongoing communication from one to another will no longer be something that only
medium-sized or larger organizations can afford; even residential users will be able get both a
cable and an ADSL connection and enjoy increased availability.

Last but not least, there is secure neighbor discovery (SEND). IETF work on this was
already concluded before the Paris IETF meeting, so SEND will likely find its way into imple-
mentations sooner rather than later. The idea is to encode the result of a cryptographic hash
operation over the public key in a security certificate in the interface identifier in the lower 64
bits of an IPv6 address. Neighbors can then authenticate the certificate and see if the interface
identifier matches the public key, and thus the certificate, and whether the party they’re com-
municating with is actually the one holding the certificate. Using this procedure, it’s easy to
detect rogue routers and other fraudulent neighbors and reject communication from them.

It’s interesting to see that the extra bits in the IPv6 address are now used to implement
protocols such as SEND in ways that aren’t possible in IPv4. The shim6 work will very likely
use a security mechanism similar to SEND.

The IETF Attitude Toward IPv6
One reality is that the IETF is doing a lot of work on the IPv6 protocol and new protocols that
assume IPv6 as their substrate. When possible, these new protocols are later “back ported” to
IPv4. A good example of this is IPsec. The AH and ESP headers are obviously inspired by the IPv6
“protocol chain” notion. IPv4 doesn’t have a built-in understanding of protocol chains, but with
some extra effort, it can be made to work. On the other hand, a protocol like the multihoming in
IPv6 shim is unlikely to find its way back to IPv4: not only does it use up extra address space,
which isn’t very helpful in IPv4, but it will also likely use the extra space in the IPv6 address for
its security mechanisms.

At the same time, there are people within the IETF that don’t believe that IPv6 will ever
amount to anything. One often-heard criticism is that IPv6 doesn’t solve the routing problem.
That’s true: although we have some more bits to play with, IPv6 routing is essentially identical
to IPv4 routing. Especially interdomain routing with BGP is problematic: ISPs need to have
routers with lots of memory and CPU power just to keep up with the growth of the number of
prefixes that people insert into the collective global Internet routing table. The IETF has a long
track record of moving forward in small steps; there is usually no “rough consensus” to make
bold leaps into uncharted territory. Others claim that IPv6 tries to do too much, and that the
IPng effort should have increased the address length to 64 bits and called it a day. But interest-
ingly, most IPv6 skeptics work for businesses that have support for IPv6 in their products, even
if those skeptics generally don’t work on IPv6 themselves.

For the most part, the skeptics do have a point: IPv6 doesn’t fix all IPv4 shortcomings. How-
ever, in engineering, as in many other aspects of life, there is no such thing as a free lunch. For
instance, there are ways to make routing scalable, but the costs are very high: a more scalable
way to do routing would impose restrictions on how different parts of the network can and can’t
interconnect and make traffic flow through less optimal paths. The way I see it, in general, IPv6
presents a good compromise between improving on IPv4 and limiting harmful side effects. But
more importantly, IPv6 provides many opportunities for future refinement and expansion. You
ain’t seen nothing yet.
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