
cover

file:///E|/__EBOOKS/__PARALLEL/0262571234/start_here.html[2011-2-17 2:04:13]

cover next page >

title: MPI -- the Complete Reference. Vol. 2, The MPI-2
Extensions Scientific and Engineering Computation Series

author: Gropp, William.
publisher: MIT Press

isbn10 | asin: 0262571234
print isbn13: 9780262571234

ebook isbn13: 9780585245911
language: English

subject Parallel programming (Computer science) , Subroutines
(Computer programs)

publication date: 1998
lcc: QA76.642.M65 1998eb

ddc: 004.35
subject: Parallel programming (Computer science) , Subroutines

(Computer programs)

cover next page >

page_i

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_i.html[2011-2-17 2:04:14]

< previous page page_i next page >

Page i

MPIThe Complete Reference

Volume 2, The MPI-2 Extensions

< previous page page_i next page >

cover

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/cover.html[2011-2-17 2:04:14]

cover next page >

title: MPI -- the Complete Reference. Vol. 2, The MPI-2
Extensions Scientific and Engineering Computation Series

author: Gropp, William.
publisher: MIT Press

isbn10 | asin: 0262571234
print isbn13: 9780262571234

ebook isbn13: 9780585245911
language: English

subject Parallel programming (Computer science) , Subroutines
(Computer programs)

publication date: 1998
lcc: QA76.642.M65 1998eb

ddc: 004.35
subject: Parallel programming (Computer science) , Subroutines

(Computer programs)

cover next page >

page_ii

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_ii.html[2011-2-17 2:04:15]

< previous page page_ii next page >

Page ii

Scientific and Engineering Computation
Janusz S. Kowalik, editor

The High Performance Fortran Handbook
by Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr. and Mary E. Zosel, 1993

Using MPI: Portable Parallel Programming with the Message-Passing Interface
by William Gropp, Ewing Lusk, and Anthony Skjellum, 1994

PVM: Parallel Virtual MachineA User's Guide and Tutorial for Network Parallel Computing
by Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, and Vaidy Sunderam, 1994

Enabling Technologies for Petaflops Computing
by Thomas Sterling, Paul Messina, and Paul H. Smith, 1996

An Introduction to High-Performance Scientific Computing
by Lloyd D. Fosdick, Elizabeth R. Jessup, Carolyn J. C. Schauble, and Gitta Domik, 1997

Practical Parallel Programming
by Gregory V. Wilson, 1997

Using PLAPACK
by Robert A. van de Geijn, 1997

Fortran 95 Handbook
by Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T. Smith, and Jerrold J. Wagener, 1997

MPIThe Complete Reference: Volume 1, The MPI Core, second edition
by Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra, 1998

MPIThe Complete Reference: Volume 2, The MPI-2 Extensions
by William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, William Nitzberg, William Saphir,
and Marc Snir, 1998

< previous page page_ii next page >

page_iii

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_iii.html[2011-2-17 2:04:15]

< previous page page_iii next page >

Page iii

MPIThe Complete Reference

Volume 2, The MPI-2 Extensions

William Gropp
Steven Huss-Lederman

Andrew Lumsdaine
Ewing Lusk
Bill Nitzberg

William Saphir
Marc Snir

The MIT Press
Cambridge, Massachusetts

London, England

< previous page page_iii next page >

page_iv

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_iv.html[2011-2-17 2:04:16]

< previous page page_iv next page >

Page iv

ã 1998 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including
photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.

Parts of this book come from MPI-2: Extensions to the Message-Passing Interface by the Message Passing Interface Forum,
ã the University of Tennessee. These sections were reprinted by permission of the University of Tennessee.

This book was set in LATEX by the authors and was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data
MPIthe complete reference/Marc Snir . . . [et. al.]. William Gropp . . . [et al.]. p. cm.(Scientific and engineering computation)
Includes bibliographical references (p.) and index.
Contents: Vol. 1. The MPI coreVol. 2. The MPI-2 extensions.
ISBN 0-262-69215-5 (v. 1: pbk. : alk. paper).ISBN 0-262-69216-3 (v. 2: pbk. : alk. paper).
1. Parallel programming (Electronic computers) 2. Subroutines (Computer programs) I. Snir,
Marc. II. Gropp, William. III. Series.
QA76.642.M65 1998
004'.35dc21
 98-25604
 CIP

< previous page page_iv next page >

page_v

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_v.html[2011-2-17 2:04:16]

< previous page page_v next page >

Page v

Contents

Series Foreword xi

Preface xiii

1
Introduction 1

1.1
MPI-1

1

1.2
MPI-2

2

1.3
MPI Conventions and Design Choices

3

1.3.1
Document Notation

3

1.3.2
Naming Conventions

4

1.3.3
Procedure Specification

5

1.4
Semantic Terms

6

1.5
Function Argument Data Types

8

1.5.1
Opaque Objects

8

1.5.2

10

page_v

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_v.html[2011-2-17 2:04:16]

Array Arguments

1.5.3
State

10

1.5.4
Named Constants

10

1.5.5
Choice

11

1.5.6
Addresses

12

1.5.7
File Offsets

12

1.6
Language Binding

12

1.6.1
Deprecated Names and Functions

12

1.6.2
Fortran Binding Issues

13

1.6.3
C Binding Issues

15

1.6.4
C++ Binding Issues

16

1.7
Processes

20

1.8
Error Handling

21

23

page_v

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_v.html[2011-2-17 2:04:16]

1.9
Implementation Issues

1.9.1
Independence of Basic Runtime Routines

23

1.9.2
Interaction with Signals

24

2
Miscellany 25

2.1
MPI and Threads

25

< previous page page_v next page >

page_vi

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_vi.html[2011-2-17 2:04:17]

< previous page page_vi next page >

Page vi

2.1.1
General

25

2.1.2
Clarifications

27

2.1.3
Initialization

28

2.2
Language Interoperability

34

2.2.1
Introduction

34

2.2.2
Assumptions

34

2.2.3
Initialization

35

2.2.4
Transfer of Handles

35

2.2.5
Status

40

2.2.6
MPI Opaque Objects

41

2.2.7
Attributes

42

2.2.8
Constants

46

page_vi

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_vi.html[2011-2-17 2:04:17]

2.2.9
Interlanguage Communication

47

2.3
The Info Object

48

2.4
Memory Allocation

53

3
Process Creation and Management 57

3.1
Introduction

57

3.2
The MPI-2 Process Model

58

3.2.1
Starting Processes

58

3.2.2
The Runtime Environment

59

3.3
Process Manager Interface

61

3.3.1
Processes in MPI

61

3.3.2
Starting Processes and Establishing Communication

61

3.3.3
Starting Multiple Executables and Establishing Communication

67

3.3.4
Reserved info Keys

70

page_vi

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_vi.html[2011-2-17 2:04:17]

3.3.5
Manager-Worker Example, Using MPI_SPAWN

71

3.4
Establishing Communication

73

3.4.1
Names, Addresses, Ports, and All That

74

3.4.2
Server Routines

76

3.4.3
Client Routines

78

3.4.4
Name Publishing

79

< previous page page_vi next page >

page_vii

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_vii.html[2011-2-17 2:04:18]

< previous page page_vii next page >

Page vii

3.4.5
Reserved Key Values

82

3.4.6
Client/Server Examples

83

3.5
Other Functionality

86

3.5.1
Universe Size

86

3.5.2
Singleton MPI_INIT

87

3.5.3
MPI_APPNUM

88

3.5.4
Releasing Connections

89

3.5.5
Another Way to Establish MPI Communication

90

4
One-Sided Communication 93

4.1
Introduction

93

4.2
Initialization

94

4.2.1
Window Creation

94

97

page_vii

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_vii.html[2011-2-17 2:04:18]

4.2.2
Window Attributes

4.3
Communication Calls

98

4.3.1
Put

99

4.3.2
Get

102

4.3.3
Examples

102

4.3.4
Accumulate Function

106

4.4
Synchronization Calls

108

4.4.1
Fence

112

4.4.2
General Active Target Synchronization

114

4.4.3
Lock

119

4.4.4
Assertions

123

4.4.5
Miscellaneous Clarifications

125

4.5
Examples

125

page_vii

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_vii.html[2011-2-17 2:04:18]

4.6
Error Handling

129

4.6.1
Error Handlers

129

4.6.2
Error Classes

129

4.7
Semantics and Correctness

129

4.7.1
Atomicity

133

4.7.2
Progress

134

4.7.3
Registers and Compiler Optimizations

136

< previous page page_vii next page >

page_viii

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_viii.html[2011-2-17 2:04:19]

< previous page page_viii next page >

Page viii

5
Intercommunicator Collective Operations 139

5.1
Introduction

139

5.2
Collective Operations

141

6
External Interfaces 145

6.1
Introduction

145

6.2
Generalized Requests

146

6.2.1
Examples

151

6.3
Associating Information with Status

154

6.4
Naming Objects

156

6.5
Error Classes, Error Codes, and Error Handlers

160

6.6
Decoding a Datatype

165

6.7
Caching on Windows and on Datatypes

176

6.7.1

176

page_viii

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_viii.html[2011-2-17 2:04:19]

Windows

6.7.2
Datatypes

179

7
I/O 185

7.1
Introduction

185

7.1.1
Definitions

186

7.1.2
Constraints on filetypes and etypes

188

7.2
File Manipulation

189

7.2.1
Opening a File

189

7.2.2
Closing a File

192

7.2.3
Deleting a File

192

7.2.4
Resizing a File

193

7.2.5
Preallocating Space for a File

194

7.2.6
Querying the Size of a File

195

7.2.7

195

page_viii

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_viii.html[2011-2-17 2:04:19]

Querying File Parameters

7.2.8
File Info

196

7.3
File Views

200

7.4
Data Access

203

7.4.1
Data Access Routines

203

< previous page page_viii next page >

page_ix

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_ix.html[2011-2-17 2:04:19]

< previous page page_ix next page >

Page ix

7.4.2
Data Access with Explicit Offsets

206

7.4.3
Data Access with Individual File Pointers

210

7.4.4
Data Access with Shared File Pointers

217

7.4.5
Split Collective Data Access Routines

223

7.5
File Interoperability

230

7.5.1
Datatypes for File Interoperability

232

7.5.2
External Data Representation: external32

234

7.5.3
User-Defined Data Representations

235

7.5.4
Matching Data Representations

241

7.6
Consistency and Semantics

242

7.6.1
File Consistency

242

7.6.2
Random Access versus Sequential-Files

246

page_ix

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_ix.html[2011-2-17 2:04:19]

7.6.3
Progress

246

7.6.4
Collective File Operations

247

7.6.5
Type Matching

247

7.6.6
Miscellaneous Clarifications

247

7.6.7
MPI_Offset Type

248

7.6.8
Logical versus Physical File Layout

248

7.6.9
File Size

248

7.6.10
Consistency and Semantics Examples

249

7.7
I/O Error Handling

254

7.8
I/O Error Classes

255

7.9
Examples

257

7.9.1
Example: I/O to Separate Files

257

7.9.2

258

page_ix

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_ix.html[2011-2-17 2:04:19]

Example: Log File

7.9.3
Example: Writing a Large Matrix to a Single File

259

7.9.4
Example: NAS BT Benchmark

263

7.9.5
Example: Double Buffering with Split Collective I/O

272

8
Language Bindings 275

8.1
C++

275

8.1.1
Overview

275

8.1.2
Design

275

< previous page page_ix next page >

page_x

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_x.html[2011-2-17 2:04:20]

< previous page page_x next page >

Page x

8.1.3
C++ Classes for MPI

276

8.1.4
Class Member Function for MPI

277

8.1.5
Semantics

278

8.1.6
C++ Datatypes

280

8.1.7
Communicators

281

8.1.8
Exceptions

286

8.1.9
Mixed-Language Operability

287

8.1.10
Profiling

287

8.1.11
Cross-Reference

291

8.2
Fortran Support

301

8.2.1
Overview

301

8.2.2
Problems with Fortran Bindings for MPI

302

page_x

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_x.html[2011-2-17 2:04:20]

8.2.3
Basic Fortran Support

310

8.2.4
Extended Fortran Support

310

8.2.5
Additional Support for Fortran Numeric Intrinsic Types

312

9
Conclusions 323

9.1
Extensions to MPI

323

9.2
Implementation and Adoption of MPI-2

325

References 327

Constants Index 329

Function Index 333

Index 339

< previous page page_x next page >

page_xi

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_xi.html[2011-2-17 2:04:21]

< previous page page_xi next page >

Page xi

Series Foreword

The world of modern computing potentially offers many helpful methods and tools to scientists and engineers, but
the fast pace of change in computer hardware, software, and algorithms often makes practical use of the newest
computing technology difficult. The Scientific and Engineering Computation series focuses on rapid advances in
computing technologies, with the aim of facilitating transfer of these technologies to applications in science and
engineering. It will include books on theories, methods, and original applications in such areas as parallelism,
large-scale simulations, time-critical computing, computer-aided design and engineering, use of computers in
manufacturing, visualization of scientific data, and human-machine interface technology.

The series is intended to help scientists and engineers understand the current world of advanced computation and
to anticipate future developments that will affect their computing environments and open up new capabilities and
modes of computation.

This book is about MPI-2, a set of significant extensions to the Message Passing Interface (MPI) specification.
Together with the second edition of MPIThe Complete Reference: Volume 1, The MPI Core, by Marc Snir, Steve
Otto, Steven Huss-Lederman, David W. Walker, and Jack Dongarra (also in this series), it provides an annotated
reference manual for all of MPI. The reader can consult a third book in the series, Using MPI: Portable Parallel
Programming with the Message Passing Interface, by William Gropp, Ewing Lusk, and Anthony Skjellum, for a
tutorial introduction to MPI.

JANUSZ S. KOWALIK

< previous page page_xi next page >

page_xiii

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_xiii.html[2011-2-17 2:04:21]

< previous page page_xiii next page >

Page xiii

Preface

About This Book.

This book describes the new features of MPI that represent the most significant extensions to MPI-1. We repeat the
material already published in the MPI-2 specification document [7], though an attempt to clarify has been made. In
Chapter 1 we cover basic concepts and terms used in this book. Chapter 2 covers miscellaneous matters, such as
the use of MPI with threads and mixed-language programming with MPI functions and objects. In Chapter 3 we
discuss MPI's approach to dynamic process creation and the connection of two independently started MPI
programs to form a single program. Chapter 4 describes MPI's one-sided operations, which extend the MPI
programming model in the direction of shared memory. New extensions to MPI's collective operations are
described in Chapter 5. Chapter 6 contains new MPI features that promote the interaction of MPI programs with
other systems. In Chapter 7 we discuss MPI's operations for specifying parallel I/O. Such operations are
increasingly important for handling II/O bottlenecks. Chapter 8 describes language binding issues that arise when
MPI is used in C++ or Fortran-90 programs. Chapter 9 provides a summary and description of the current (as of
April 1998) status of MPI-2 implementation and adoption.

The companion volume to this book, the second edition of MPIThe Complete Reference: Volume 1, The MPI Core
[23] includes those parts of the MPI-2 standard that are clarifications of MPI-1 definitions or minor extensions to
MPI-1 functionality. This structure enables one to find all the relevant definitions and commentary on a particular
MPI function in a single place.

Neither MPIThe Complete Reference: Volume 1, The MPI Core nor this book are official versions of the MPI
standard; the standards are available from http://www.mpi-forum.org. In the case of any differences between these
books and the standards, the standards take precedence.

MIT Press is maintaining a Web page for this book, by which one can gain access to errata and corrections, should
they be necessary. The URL for this page is http://mitpress.mit.edu/book-home.tcl?isbn=0262571234.

Acknowledgments

Our primary acknowledgment is to the MPI Forum itself, whose hard work at and between meetings led to the
definition of the MPI standard. Those (besides ourselves) who attended at least one meeting are Greg Astfalk,
Robert Babb, Ed

< previous page page_xiii next page >

page_xiv

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_xiv.html[2011-2-17 2:04:22]

< previous page page_xiv next page >

Page xiv

Benson, Rajesh Bordawekar, Pete Bradley, Peter Brennan, Ron Brightwell, Maciej Brodowicz, Eric Brunner, Greg
Burns, Margaret Cahir, Pang Chen, Ying Chen, Albert Cheng, Yong Cho, Joel Clark, Lyndon Clarke, Laurie
Costello, Dennis Cottel, Jim Cownie, Zhenqian Cui, Suresh Damodaran-Kamal, Raja Daoud, Judith Devaney,
David DiNucci, Doug Doefler, Jack Dongarra, Terry Dontje, Nathan Doss, Anne Elster, Mark Fallon, Karl Feind,
Sam Fineberg, Craig Fischberg, Stephen Fleischman, Ian Foster, Hubertus Franke, Richard Frost, Al Geist, Robert
George, David Greenberg, John Hagedorn, Kei Harada, Leslie Hart, Shane Hebert, Rolf Hempel, Tom Henderson,
Alex Ho, Hans-Christian Hoppe, Joefon Jann, Terry Jones, Carl Kesselman, Koichi Konishi, Susan Kraus, Steve
Kubica, Steve Landherr, Mario Lauria, Mark Law, Juan Leon, Lloyd Lewins, Ziyang Lu, Bob Madahar, Peter
Madams, John May, Oliver McBryan, Brian McCandless, Tyce McLarty, Thom McMahon, Harish Nag, Nick
Nevin, Jarek Nieplocha, Ron Oldfield, Peter Ossadnik, Steve Otto, Peter Pacheco, Yoonho Park, Perry Partow,
Pratap Pattnaik, Elsie Pierce, Paul Pierce, Heidi Poxon, Jean-Pierre Prost, Boris Protopopov, James Pruyve, Rolf
Rabenseifner, Joe Rieken, Peter Rigsbee, Tom Robey, Anna Rounbehler, Nobutoshi Sagawa, Arindam Saha, Eric
Salo, Darren Sanders, Eric Sharakan, Andrew Sherman, Fred Shirley, Lance Shuler, A. Gordon Smith, Ian
Stockdale, David Taylor, Stephen Taylor, Greg Tensa, Rajeev Thakur, Marydell Tholburn, Dick Treumann, Simon
Tsang, Manuel Ujaldon, David Walker, Jerrell Watts, Klaus Wolf, Parkson Wong, and Dave Wright.

We also acknowledge the valuable input from many persons around the world who participated in MPI Forum
discussions via e-mail.

The following institutions supported the MPI-2 project through time and travel support for the people listed above:
Argonne National Laboratory; Bolt, Beranek, and Newman; California Institute of Technology; Center for
Computing Sciences; Convex Computer Corporation; Cray Research; Digital Equipment Corporation; Dolphin
Interconnect Solutions, Inc.; Edinburgh Parallel Computing Centre; General Electric Company; German National
Research Center for Information Technology; Hewlett-Packard; Hitachi; Hughes Aircraft Company; Intel
Corporation; International Business Machines; Khoral Research; Lawrence Livermore National Laboratory; Los
Alamos National Laboratory; MPI Software Techology, Inc.; Mississippi State University; NEC Corporation;
National Aeronautics and Space Administration; National Energy Research Scientific Computing Center; National
Institute of Standards and Technology; National Oceanic and Atmospheric Adminstration; Oak Ridge National
Laboratory; Ohio State University; PALLAS GmbH; Pacific

< previous page page_xiv next page >

page_xv

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_xv.html[2011-2-17 2:04:22]

< previous page page_xv next page >

Page xv

Northwest National Laboratory; Pratt & Whitney; San Diego Supercomputer Center; Sanders, A Lockheed-Martin
Company; Sandia National Laboratories; Schlumberger; Scientific Computing Associates, Inc.; Silicon Graphics
Incorporated; Sky Computers; Sun Microsystems Computer Corporation; Syracuse University; The MITRE
Corporation; Thinking Machines Corporation; the United States Navy; the University of Colorado; the University
of Denver; the University of Houston; the University of Illinois; the University of Maryland; the University of
Notre Dame; the University of San Fransisco; the University of Stuttgart Computing Center; and the University of
Wisconsin.

MPI-2 operated on a very tight budget (in reality, it had no budget when the first meeting was announced). The
institutions listed above helped the MPI-2 effort by supporting the efforts and travel of the members of the MPI
Forum. Direct support was given by NSF and DARPA under NSF contract CDA-9115428 for travel by U.S.
academic participants and Esprit under project HPC Standards (21111) for European participants.

< previous page page_xv next page >

page_1

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_1.html[2011-2-17 2:04:23]

< previous page page_1 next page >

Page 1

1
Introduction

In this chapter we summarize the process that led to MPI-2. We also describe notations used in this book and some
MPI conventions and design characteristics that make the rest of the book easier to understand. We address
language binding issues here that are common to all chapters. We conclude with comments on implementation and
runtime issues. Most of the material in this chapter recapitulates terms and definitions contained in the companion
book MPIThe Complete Reference: Volume 1, The MPI Core. It is repeated here for completeness.

1.1 MPI-1

The original MPI standard of 1994, which we call MPI-1, arose from the desire of the parallel computing
community to have a single library interface for the widely used message-passing model of parallel computation.
The intention was that such a specification would be implemented efficiently on a wide variety of platforms.

As an effort to establish a community-based standard, MPI was successful. MPI-1 both standardized existing
practice and incorporated a number of research ideas that had not been part of existing high-performance message-
passing systems. Implementations appeared rapidly, and now MPI is a standard component of the system software
on all parallel computers. A number of freely available implementations exist for heterogeneous workstation
networks as well as for single parallel machines. Many large application codes have been converted to MPI from
older, vendor-specific message-passing interfaces, and the process is accelerating. MPI is now ubiquitous.

The original MPI Forum limited the scope of MPI in order to be able to address a manageable set of topics in the
time it had allocated itself. Important topics that were deliberately omitted included the following:

dynamic processes: MPI programs were assumed to consist of a fixed number of processes, all started
simultaneously by some mechanism external to the MPI program.

input/output: The issue of I/O to files was considered an active area of research, not yet ready for standardization.

one-sided operations: MPI-1 adhered to the strict message-passing programming model, in which data is copied
from the address space of one process to that of another only by a cooperative pair of function calls, one in each
process (send/receive).

< previous page page_1 next page >

page_2

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_2.html[2011-2-17 2:04:23]

< previous page page_2 next page >

Page 2

1.2 MPI-2

As users began to convert their applications to MPI, they found that although MPI was a large and comprehensive
library, they wanted still more functionality:

PVM (Parallel Virtual Machine) users had come to expect dynamic process management, and a number of
applications relied on it. This capability is relatively easy to provide on workstation networks and symmetric
multiprocessors, but difficult on massively parallel processors (MPPs), where both hardware and software
resources may have to be rescheduled. Furthermore, the rise of distributed applications required a standard
mechanism for separately started MPI programs to establish contact and communicate.

The Cray T3D shmem interface promoted the use of one-sided communication.

Parallel file systems from IBM and Intel, as well as experimental I/O interfaces from various research groups,
demonstrated the feasibility and advantages of a portable, high-performance interface that could be used in
multiple I/O environments.

Experience with MPI led users to request a number of convenience features, particularly for mixed language
programming.

Increasing use of C++ and Fortran-90 led to requests for standard C++ bindings for all MPI functions and
recommendations on how to use MPI in Fortran-90 programs.

Implementation of and experience with the use of MPI uncovered several ambiguities in the standard. It was
desirable to clear these up as quickly as possible.

To promote the continued use of MPI and benefit a wide class of parallel programmers, the MPI Forum began
meeting again in March of 1995. The MPI-2 Forum comprised both veterans of the MPI-1 process and many new
participants, representing both vendors that had not been particularly active in MPI-1 and new library and
application writers. The Forum continued operation in the same way as before, encouraging anyone who wished to
attend meetings and posting its e-mail discussions and intermediate documents on the Internet for public
discussion. The result was the document MPI-2: Extensions to the Message-Passing Interface [5], which together
with [4] now constitutes the official MPI standard.

The majority of the Forum's work was in new areas, such as one-sided operations, dynamic process management,
and parallel I/O. Considerable effort was also expended on MPI-1-like features such as improved datatype
handling, C++ bindings for the MPI-1 functions, and the clarification of ambiguities in the MPI-1 standard. In this
book we focus on that part of MPI-2 that breaks new ground. We

< previous page page_2 next page >

page_3

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_3.html[2011-2-17 2:04:24]

< previous page page_3 next page >

Page 3

leave the other material to MPIThe Complete Reference: Volume 1, The MPI Core, published simultaneously with
this book. We shall henceforward refer to that book as Book I. Some material in this book references material in
MPIThe Complete Reference: Volume 1, The MPI Core. This material is indicated by a section number or page
number prefaced with a Roman numeral one. For example, Chapter 2 of MPIThe Complete Reference: Volume 1,
the MPI Core is written as Chapter I-2.

The official documents of the Forum, including the the standard, are available from the MPI Forum Web page at
http://www.mpi-forum.org. Both Postscript and HTML versions are available. Neither MPIThe Complete
Reference: Volume 1, The MPI Core nor this book are official versions of the MPI standard; in the case of any
difference between these books and the standards, the standards take precedence.

1.3 MPI Conventions and Design Choices.

In this section we explain notation used throughout the book to help the reader navigate the various parts of the
MPI standard.

1.3.1 Document Notation

As in the standard itself, we set off with specific notation certain classes of remarks that are not part of the
description of the MPI standard.

Rationale. The rationale for the design choices made in the interface specification is set off in this format. Some
readers may wish to skip these sections, while readers interested in interface design may want to read them
carefully.

Advice to users. Material aimed at users and that illustrates usage is set off in this format. Some readers may wish
to skip these sections, while readers interested in programming in MPI may want to read them carefully.

Advice to implementors. Material that is primarily commentary to implementors is set off in this format. Some
readers may wish to skip these sections, while readers interested in MPI implementations may want to read them
carefully.

< previous page page_3 next page >

page_4

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_4.html[2011-2-17 2:04:24]

< previous page page_4 next page >

Page 4

1.3.2 Naming Conventions

MPI-1 used informal naming conventions. In many cases, MPI-1 names for C functions are of the form
Class_action_subset and in Fortran of the form CLASS_ACTION_SUBSET, but this rule is not uniformly
applied. In MPI-2, an attempt has been made to standardize names of new functions according to the following
rules. In addition, the C++ bindings for MPI-1 functions also follow these rules (see Section 1.6.4). C and Fortran
names for MPI-1 functions have not been changed.

In C, all routines associated with a particular type of MPI object should be of the form Class_action_subset
or, if no subset exists, of the form Class_action. In Fortran, all routines associated with a particular type of
MPI object should be of the form CLASS_ACTION_SUBSET or, if no subset exists, of the form
CLASS_ACTION. In C++, all entities are defined within the MPI namespace and a routine associated with a
particular type of MPI object is a method on Class. Thus, the entire C++ function name is
MPI::Class::Action_subset. If the routine is associated with a certain class, but does not make sense as an object
method, it is a static member function of the class.

If the routine is not associated with a class, the name should be of the form Action_subset in C and
ACTION_SUBSET in Fortran, and in C++ should be scoped in the MPI namespace, MPI::Action_subset.

The names of certain actions have been standardized. In particular, Create creates a new object, Get retrieves
information about an object, Set sets this information, Delete deletes information, Is asks whether or not an object
has a certain property.

These rules are strictly followed by the C++ binding, but are sometimes violated by the C and Fortran bindings,
especially in MPI-1. The most common exceptions are the omission of the Class name from the routine and the
omission of the Action where one can be inferred. In such cases, the language neutral name is the same as for C
and Fortran, but differs from the C++ name. An example of this is the language neutral name of
MPI_FINALIZED, with C name MPI_Finalized and Fortran name MPI_FINALIZED, but a C++ name of
MPI::I_finalized.

Rationale. The naming conventions are often violated so as to have shorter names for common operations. Thus,
MPI_SEND, rather than MPI_COMM_SEND, as would be required by a strict application of the naming
conventions. Also, the MPI-1 Forum did not follow an explicit set of rules so that exceptions are more frequent in
MPI-1 than in MPI-2.

< previous page page_4 next page >

page_5

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_5.html[2011-2-17 2:04:25]

< previous page page_5 next page >

Page 5

MPI identifiers are limited to 30 characters (31 with the profiling interface). This is done to avoid exceeding the
limit on some compilation systems.

1.3.3 Procedure Specification

MPI procedures are specified using a language-independent notation. The arguments of procedure calls are marked
as IN, OUT or INOUT. The meanings of these are:

if the call may use the input value but does not update an argument, it is marked IN,

if the call may update an argument but does not use its input value, it is marked OUT, and

if the call may both use and update an argument, it is marked INOUT.

There is one special caseif an argument is a handle to an opaque object (these terms are defined in Section 1.5.1),
and the object is updated by the procedure call, then the argument is marked OUT. It is marked this way even
though the handle itself is not modifiedwe use the OUT attribute to denote that what the handle references is
updated. Thus, in C++, IN arguments are either references or pointers to const objects. Similarly, a send buffer is
marked as an IN argument and a receive buffer is marked as an OUT argument.

Rationale. The definition of MPI tries to avoid, to the largest extent possible, the use of INOUT arguments,
because such use is error-prone, especially for scalar arguments.

MPI's use of IN, OUT and INOUT does not always translate into the corresponding language concept in bindings
(e.g., INTENT in Fortran 90 bindings or const in C++ bindings). For instance, MPI marks the buffer argument
of a receive call as OUT, but the constant MPI_BOTTOM can be passed to OUT buffer arguments, in which case
the address of the updated variables is carried by the datatype argument (see Section I-3.8). Also,
MPI_STATUS_IGNORE can be passed as the OUT status argument of a receive call, to indicate that no status
need be computed and returned by the call. In C++, IN arguments are either references or pointers to const
objects.

In several cases an argument is used as IN by some processes and OUT by other processes. Such an argument is,
syntactically, an INOUT argument and is marked as such, although semantically it is not used in one call both for
input and for output on a single process.

< previous page page_5 next page >

page_6

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_6.html[2011-2-17 2:04:25]

< previous page page_6 next page >

Page 6

Another frequent situation arises when an argument value is needed only by a subset of the processes. When an
argument is not significant at a process then an arbitrary value can be passed as an argument.

Unless specified otherwise, an argument of type OUT or type INOUT cannot be aliased with any other argument
passed to an MPI procedure. Two arguments are aliased if they refer to the same or overlapping storage locations.
An example of argument aliasing in C appears below. If we define a C procedure like this,

void copyIntBuffer(int *pin, int *pout, int len)
{
 int i;
 for (i=0; i<len; ++i) *pout++ = *pin++;
}

then a call to it in the following code fragment has aliased arguments.

int a [10];
copyIntBuffer(a, a+3, 7);

Although the C language allows this, such usage of MPI procedures is forbidden unless otherwise specified. Note
that Fortran prohibits aliasing of arguments.

All MPI functions are first specified in the language-independent notation. Immediately below this, the ISO C
version of the function is shown followed by a version of the same function in Fortran and then in C++. Fortran in
this book refers to Fortran 90; see Section 1.6.

1.4 Semantic Terms

When discussing MPI procedures the following semantic terms are used.

blocking: A procedure is blocking if return from the procedure indicates the user is allowed to reuse resources
specified in the call.

nonblocking: A procedure is nonblocking if the procedure may return before the operation affected by the
procedure call completes, and before the user is allowed to reuse resources (such as buffers) specified in the call. A
call to a nonblocking procedure starts an operation. The call completes when the procedure returns, but the
operation started may not be completed yet, if the call is nonblocking. The operation completes when all changes in
the calling process state effected by the call have taken place, and the user is allowed to reuse all resources
specified in the

< previous page page_6 next page >

page_7

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_7.html[2011-2-17 2:04:26]

< previous page page_7 next page >

Page 7

call. Thus, a send operation completes when data have been copied out of the sender memory, and the send buffer
can be reused. This completion is an asynchronous event that may occur after the send call returned, while the
sending process executes unrelated code. It may also occur before the communication initiated by the send
operation completes (the data may not have been received yet).

Typically, a request object is associated with an operation when the operation is started by a nonblocking
procedure. The user can use this object to test or wait for the completion of the operation. When the test succeeds
or the wait completes, then the request is completed and the operation completion becomes visible to the calling
process. Note that the word complete is used with respect to operations, requests, and communications, and refers
to a possibly distinct event in each case.

local: A procedure is local if completion of the procedure does not depend on the execution of MPI calls by other
processes.

non-local: A procedure is non-local if completion of the operation may require the execution of some MPI
procedure on another process.

collective: A procedure is collective if all processes in a process group need to invoke the procedure. A collective
call may or may not be synchronizing. If it is, then the completion of the call on any process in the group will
require that all other processes in the group start their matching call. Collective calls over the same communicator
must be executed in the same order by all members of the process group.

predefined: A predefined datatype is a datatype with a predefined (constant) name (such as MPI_INT,
MPI_FLOAT_INT, or MPI_UB) or a datatype constructed with MPI_TYPE_CREATE_F90_INTEGER,
MPI_TYPE_CREATE__F90_REAL, or MPI_-TYPE_CREATE_F90_COMPLEX. The former are named whereas
the latter are unnamed.

derived: A derived datatype is any datatype that is not predefined.

portable: A datatype is portable if it is a predefined datatype or is derived from a portable datatype using only the
type constructors MPI_TYPE_CONTIGUOUS, MPI_TYPE_VECTOR, MPI_TYPE_INDEXED,
MPI_TYPE_INDEXED_BLOCK, MPI_TYPE_CREATE_SUBARRAY, MPI_TYPE_DUP, or
MPI_TYPE_CREATE_DARRAY. Such a datatype is portable because all displacements in the datatype are in
terms of extents of one predefined datatype. Therefore, if such a datatype fits a data layout in one memory, it will
fit the corresponding data layout in another memory if the same declarations were used, even if the two systems
have different architectures. On the other

< previous page page_7 next page >

page_8

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_8.html[2011-2-17 2:04:26]

< previous page page_8 next page >

Page 8

hand, if a datatype was constructed using MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_HVECTOR
or MPI_TYPE_CREATE_STRUCT, then the datatype contains explicit byte displacements (e.g., providing
padding to meet alignment restrictions). These displacements are unlikely to be chosen correctly if they fit data
layout on one memory but are used for data layouts on another process running on a processor with a different
architecture.

equivalent: Two datatypes are equivalent if they appear to have been created with the same sequence of calls (and
arguments) and thus have the same typemap. Two equivalent datatypes do not necessarily have the same cached
attributes or the same names.

1.5 Function Argument Data Types.

Here we discuss the host language datatypes used in calling MPI functions.

1.5.1 Opaque Objects

MPI manages system memory that is used for buffering messages and for storing internal representations of various
MPI objects such as groups, communicators, datatypes, etc. This memory is not directly accessible to the user, and
objects stored there are opaque: their size and structure are not visible to the user. Opaque objects are accessed via
handles that exist in user space. MPI procedures that operate on opaque objects are passed handle arguments to
access these objects. In addition to their use by MPI calls for object access, handles can participate in assignments
and comparisons.

In Fortran, all handles have type INTEGER. In C and C++, a different handle type is defined for each category of
objects. In addition, handles themselves are distinct objects in C++. The C and C++ types must support the use of
the assignment and equality operators.

Advice to implementors. In Fortran, the handle can be an index into a table of opaque objects in a system table; in
C it can be such an index or a pointer to the object. C++ handles can simply wrap up a table index or pointer.

Opaque objects are allocated and deallocated by calls that are specific to each object type. These are listed in the
sections where the objects are described. The calls accept a handle argument of matching type. In an allocate call
this is an OUT argument that returns a valid reference to the object. In a call to deallocate, this is an INOUT
argument that returns with an invalid handle value. MPI provides

< previous page page_8 next page >

page_9

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_9.html[2011-2-17 2:04:27]

< previous page page_9 next page >

Page 9

an invalid handle constant for each object type. Comparisons to this constant are used to test for validity of the
handle.

A call to a deallocate routine invalidates the handle and marks the object for deallocation. The object is not
accessible to the user after the call. However, MPI need not deallocate the object immediately. Any operation
pending (at the time of the deallocate) that involves this object will complete normally; the object will be
deallocated afterwards.

An opaque object and its handle are significant only at the process where the object was created and cannot be
transferred to another process.

MPI provides certain predefined opaque objects and predefined, static handles to these objects. The user must not
free such objects. In C++, this is enforced by declaring the handles to these predefined objects to be
static const.

Rationale. This design hides the internal representation used for MPI data structures, thus allowing similar calls in
C, C++, and Fortran. It also avoids conflicts with the typing rules in these languages, and easily allows future
extensions of functionality. The mechanism for opaque objects used here loosely follows the POSIX Fortran
binding standard [12].

The explicit separation of handles in user space and objects in system space allows space-reclaiming and
deallocation calls to be made at appropriate points in the user program. If the opaque objects were in user space,
one would have to be very careful not to go out of scope before any pending operation requiring that object
completed. The specified design allows an object to be marked for deallocation, the user program can then go out
of scope, and the object itself still persists until any pending operations are complete.

The requirement that handles support assignment/comparison is made since such operations are common. This
restricts the domain of possible implementations. The alternative would have been to allow handles to have been an
arbitrary, opaque type. This would force the introduction of routines to do assignment and comparison, adding
complexity, and was therefore ruled out.

Advice to users. A user may accidently create a dangling reference by assigning to a handle the value of another
handle, and then deallocating the object associated with these handles. Conversely, if a handle variable is
deallocated before the associated object is freed, then the object becomes inaccessible (this may occur, for example,
if the handle is a local variable within a subroutine, and the subroutine is exited before the associated object is
deallocated). It is the user's responsibility

< previous page page_9 next page >

page_10

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_10.html[2011-2-17 2:04:27]

< previous page page_10 next page >

Page 10

to avoid adding or deleting references to opaque objects, except as a result of MPI calls that allocate or deallocate
such objects.

Advice to implementors. The intended semantics of opaque objects is that opaque objects are separate from one
another; each call to allocate such an object copies all the information required for the object. Implementations
may avoid excessive copying by substituting referencing for copying. For example, a derived datatype may contain
references to its components, rather then copies of its components; a call to MPI_COMM_GROUP may return a
reference to the group associated with the communicator, rather than a copy of this group. In such cases, the
implementation must maintain reference counts, and allocate and deallocate objects in such a way that the visible
effect is as if the objects were copied.

1.5.2 Array Arguments

An MPI call may need an argument that is an array of opaque objects. Such an array is accessed via an array of
handles. The array-of-handles is an array with entries that are handles to objects of the same type in consecutive
locations in the array. Whenever such an array is used, an additional len argument is required to indicate the
number of valid entries (unless this number can be derived otherwise). The valid entries are at the beginning of the
array; len indicates how many of them there are, and need not be the size of the entire array. The same approach
is followed for other array arguments. In some cases NULL handles are considered valid entries.

1.5.3 State

MPI procedures use at various places arguments with state types. The values of such a data type are all identified
by names, and no operation is defined on them. For example, the MPI_TYPE_CREATE_SUBARRAY routine has
a state argument order with values MPI_ORDER_C and MPI_ORDER_FORTRAN.

1.5.4 Named Constants

MPI procedures sometimes assign a special meaning to a special value of a basic type argument; for example, tag
is an integer-valued argument of point-to-point communication operations, with a special wild-card value,
MPI_ANY_TAG. Such arguments will have a range of regular values that is a proper subrange of the range of
values of the corresponding basic type; special values (such as MPI_ANY_TAG) will be outside the regular range.
The range of regular values, such as tag, can be queried using the MPI environmental inquiry functions. The
range of other values,

< previous page page_10 next page >

page_11

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_11.html[2011-2-17 2:04:28]

< previous page page_11 next page >

Page 11

such as source, depends on values given by other MPI routines (in the case of source it is the communicator
size).

MPI also provides predefined named constant handles, such as MPI_COMM_-WORLD.

All named constants, with the exceptions noted below for Fortran, can be used in initialization expressions or
assignments.1 These constants do not change values during execution. Opaque objects accessed by constant
handles are defined and do not change value between MPI initialization (MPI_INIT) and MPI completion
(MPI_FINALIZE).

The constants that cannot be used in initialization expressions or assignments in Fortran are:

MPI_BOTTOM
MPI_STATUS_IGNORE
MPI_STATUSES_IGNORE
MPI_ERRCODES_IGNORE
MPI_IN_PLACE
MPI_ARGV_NULL
MPI_ARGVS_NULL

Advice to implementors. In Fortran the implementation of these special constants may require the use of language
constructs that are outside the Fortran standard. Using special values for the constants (e.g., by defining them
through parameter statements) is not possible because an implementation cannot distinguish these values from
legal data. Typically, these constants are implemented as predefined static variables (e.g., a variable in an MPI-
declared COMMON block), relying on the fact that the target compiler passes data by address. Inside the subroutine,
this address can be extracted by some mechanism outside the Fortran standard (e.g., by Fortran extensions or by
implementing the function in C).

1.5.5 Choice.

MPI functions sometimes use arguments with a choice (or union) data type. Distinct calls to the same routine may
pass by reference actual arguments of different types. The mechanism for providing such arguments will differ
from language to language. For Fortran, the book uses <type> to represent a choice variable; for C and C++, we
use void*.

1 They still are not quite the same as language constants. For example, they cannot be used as case labels in
a C switch statement.

< previous page page_11 next page >

page_12

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_12.html[2011-2-17 2:04:28]

< previous page page_12 next page >

Page 12

1.5.6 Addresses

Some MPI procedures use address arguments that represent an absolute address in the calling program. The
datatype of such an argument is MPI_Aint in C, MPI::Aint in C++ and INTEGER
(KIND=MPI_ADDRESS_KIND) in Fortran. The MPI constant MPI_BOTTOM indicates the start of the address
range.

1.5.7 File Offsets

For I/O (defined in MPI-2) there is a need to give the size, displacement, and offset into a file. These quantities
can easily be larger than 32 bits which can be the default size of a Fortran integer. To overcome this, these
quantities are declared to be INTEGER(KIND=MPI_OFFSET_KIND) in Fortran. In C one uses MPI_Offset
whereas in C++ one uses MPI::Offset.

1.6 Language Binding

This section defines the rules for MPI language binding in general and for Fortran, ISO C, and C++, in particular.
(Note that ANSI C has been replaced by ISO C.) Defined here are various object representations, as well as the
naming conventions used for expressing this standard. The actual calling sequences are defined elsewhere.

MPI bindings are for Fortran 90, though they are designed to be usable in Fortran 77 environments as much as
possible.

Since the word PARAMETER is a keyword in the Fortran language, we use the word argument to denote the
arguments to a subroutine. These are normally referred to as parameters in C and C++, however, we expect that C
and C++ programmers will understand the word argument (which has no specific meaning in C/C++), thus
allowing us to avoid unnecessary confusion for Fortran programmers.

Since Fortran is case insensitive, linkers may use either lowercase or uppercase when resolving Fortran names.
Users of case-sensitive languages should avoid the mpi- and pmpi_ prefixes.

1.6.1 Deprecated Names and Functions

A number of chapters refer to deprecated or replaced MPI-1 constructs. These are constructs that continue to be
part of the MPI standard, but that users are recommended to discontinue using, since MPI-2 provides better
solutions. For example, the Fortran binding for MPI-1 functions that have address arguments uses INTEGER. This
is not consistent with the C binding, and causes problems on machines with

< previous page page_12 next page >

page_13

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_13.html[2011-2-17 2:04:29]

< previous page page_13 next page >

Page 13

32-bit INTEGERs and 64-bit addresses. In MPI-2, these functions have new names and new bindings for the
address arguments. The use of the old functions is deprecated. For consistency, here and in a few other cases, new
C functions are also provided, even though the new functions are equivalent to the old functions. The old names are
deprecated. Another example is provided by the MPI-1 predefined datatypes MPI_UB and MPI-LB. They are
deprecated, since their use is awkward and error-prone, while the MPI-2 function
MPI_TYPE_CREATE_RESIZED provides a more convenient mechanism for resizing a datatype.

Table 1.1 provides a list of all of the deprecated constructs. Note that the constants MPI-LB and MPI-UB are
replaced by the function MPI_TYPE_CREATE_RESIZED; this is because their principal use was as input
datatypes to MPI_TYPE_STRUCT to create resized datatypes. Also note that some C typedefs and Fortran
subroutine names are included in this list; they are the types of callback functions.

1.6.2 Fortran Binding Issues.

MPI-1 provided bindings for Fortran 77. MPI-2 retains these bindings but they are now interpreted in the context
of the Fortran 90 standard. MPI can still be used with most Fortran 77 compilers, as noted below. When the term
Fortran is used it means Fortran 90.

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must not declare variables,
parameters, or functions with names beginning with the prefix MPI_. To avoid conflicting with the profiling
interface, programs should also avoid functions with the prefix PMPI_. This is mandated to avoid possible name
collisions.

All MPI Fortran subroutines have a return code in the last argument. A few MPI operations that are functions do
not have the return code argument. The return code value for successful completion is MPI_SUCCESS. Other error
codes are implementation dependent. Error codes are discussed in Section I-7.5.

Constants representing the maximum length of a string are one smaller in Fortran than in C and C++ as discussed
in Section 2.2.8.

Handles are represented in Fortran as INTEGERs. Binary-valued variables are of type LOGICAL.

Array arguments are indexed from one. Address arguments are INTEGERs of kind MPI_ADDRESS_KIND. File
displacements are INTEGERs of kind MPI_OFFSET_KIND.

The MPI Fortran binding is inconsistent with the Fortran 90 standard in several respects. These inconsistencies,
such as register optimization problems, have implications for user codes that are discussed in detail in Section
8.2.2. They are also inconsistent with Fortran 77.

< previous page page_13 next page >

page_14

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_14.html[2011-2-17 2:04:30]

< previous page page_14 next page >

Page 14

Table 1.1 Deprecated functions, constants, and typedefs in MPI.
Deprecated MPI-2 Replacement
MPI-ADDRESS MPI_GET_ADDRESS
MPI_TYPE_HINDEXED MPI_TYPE_CREATE_HINDEXED
MPI_TYPE_HVECTOR MPI_TYPE_CREATE_HVECTOR
MPI_TYPE_STRUCT MPI_TYPE_CREATE_STRUCT
MPI_TYPE_EXTENT MPI_TYPE_GET_EXTENT
MPI_TYPE_UB MPI_TYPE_GET_EXTENT
MPI_TYPE_LB MPI_TYPE_GET_EXTENT
MPI_LB MPI_TYPE_CREATE_RESIZED
MPI_UB MPI_TYPE_CREATE_RESIZED
MPI_ERRHANDLER_CREATE MPI__COMM_CREATE_ERRHANDLER
MPI_ERRHANDLER_GET MPI_COMM_GET_ERRHANDLER
MPI_ERRHANDLER_SET MPI_COMM_SET_ERRHANDLER
MPI_Handler_function MPI_Comm_errhandler_fn
MPI_KEYVAL_CREATE MPI_COMM_CREATE_KEYVAL
MPI_KEYVAL_FREE MPI_COMM_FREE_KEYVAL
MPI_DUP_FN MPI_COMM_DUP_FN
MPI_NULL_COPY_FN MPI_COMM_NULL_COPY_FN
MPI_NULL_DELETE_FN MPI_COMM_NULL_DELETE_FN
MPI_Copy_function MPI_Comm_copy_attr_function
COPY_FUNCTION COMM_COPY_ATTR_FN
MPI_Delete_function MPI_Comm_delete_attr_function
DELETE_FUNCTION COMM_DELETE_ATTR_FN
MPI_ATTR_DELETE MPI_COMM_DELETE_ATTR
MPI_ATTR_GET MPI_COMM_GET_ATTR
MPI_ATTR_PUT MPI_COMM_SET_ATTR

An MPI subroutine with a choice argument may be called with different argument types.

An MPI subroutine with an assumed-size dummy argument may be passed an actual scalar argument.

Many MPI routines assume that actual arguments are passed by address and that arguments are not copied on
entrance to or exit from the subroutine.

< previous page page_14 next page >

page_15

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_15.html[2011-2-17 2:04:30]

< previous page page_15 next page >

Page 15

An MPI implementation may read or modify user data (e.g., communication buffers used by nonblocking
communications) concurrently with a user program executing outside MPI calls.

Several named constants, such as MPI_BOTTOM, MPI_STATUS_IGNORE, and MPI_LERRCODES_IGNORE,
are not ordinary Fortran constants and require a special implementation. See Section 1.5.4 for more information.

Additionally, MPI is inconsistent with Fortran 77 in a number of ways, as noted below.

MPI identifiers exceed 6 characters.

MPI identifiers may contain underscores after the first character.

MPI requires an include file, mpif.h. On systems that do not support include files, the implementation should
specify the values of named constants.

Many routines in MPI-2 have KIND-parameterized integers (e.g., MPI_ADDRESS_-KIND and
MPI_OFFSET_KIND) that hold address information. On systems that do not support Fortran 90-style
parameterized types, INTEGER*8 or INTEGER should be used instead.

The memory allocation routine MPI_ALLOC_MEM can't be usefully used in Fortran without a language extension
that allows the allocated memory to be associated with a Fortran variable.

1.6.3 C Binding Issues

We use the ISO C declaration format. All MPI names have an MPI_ prefix, defined constants are in all capital
letters, and defined types and functions have exactly one capital letter immediately following the prefix. Programs
must not declare variables or functions with names beginning with the prefix MPI_. To support the profiling
interface, programs should not declare functions with names beginning with the prefix PMPI_.

The definition of named constants, function prototypes, and type definitions must be supplied in an include file
mpi.h.

Almost all C functions return an error code. The successful return code will be MPI_SUCCESS, but failure return
codes are implementation dependent (See Section I-7.5).

Type declarations are provided for handles to each category of opaque objects.

Array arguments are indexed from zero.

Logical flags are integers with value 0 meaning false and a non-zero value meaning true

< previous page page_15 next page >

page_16

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_16.html[2011-2-17 2:04:31]

< previous page page_16 next page >

Page 16

Choice arguments are pointers of type void *.

Address arguments are of MPI-defined type MPI_Anit. File displacements are of type MPI_Offset.
MPI_Aint is defined to be an integer of the size needed to hold any valid address on the target architecture.
MPI_Offset is defined to be an integer of the size needed to hold any valid file size on the target architecture.

1.6.4 C++ Binding Issues

There are places in the standard that give rules for C and not for C++. In these cases, the C rule should be applied
to the C++ case, as appropriate. In particular, the values of constants given in the text are the ones for C and
Fortran. In general, it is easy to determine the C++ constant from the C constant. To help C++ users, the first
reference to a constant listed in the index under the C name also has the C++ name in the text. There are also
several C++ types that do not exist in C, including MPI::BOOL, MPI::COMPLEX, MPI::DOUBLE_-COMPLEX,
and MPI::LONG_DOUBLE_COMPLEX. Several C++ types have names that are not easily derivable from the C
name, including MPI::F_COMPLEX, MPI::F_F_DOUBLE_COMPLEX, MPI::TWOINT, MPI::TWOREAL,
MPI::TWODOUBLE_PRECISION, and MPI::TWOINTEGER. There is also the C++ only error handler
MPI::ERRORS_THROW_EXCEPTIONS. Finally, there is no constant comparable to MPI_STATUS_IGNORE.

We use the ANSI C++ declaration format. All MPI names are declared within the scope of a namespace called
MPI and therefore are referenced with an MPI:: prefix. Defined constants are in all capital letters, and class
names, defined types, and functions have only their first letter capitalized. Programs must not declare variables or
functions in the MPI namespace. This is mandated to avoid possible name collisions.

The members of the MPI namespace are those classes corresponding to objects implicitly used by MPI. An
abbreviated definition of the MPI namespace for MPI-1 and its member classes is as follows:

namespace MPI {
class Comm {...};
class Intracomm : public Comm {...};
class Graphcomm : public Intracomm {...};
class Cartcomm : public Intracomm {...};
class Intercomm : public Comm {...};
class Datatype {...};
class Errhandler {...};

< previous page page_16 next page >

page_17

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_17.html[2011-2-17 2:04:31]

< previous page page_17 next page >

Page 17

 class Exception {...};
 class Group {...};
 class Op {...};
 class Request {...};
 class Prequest : public Request {...};
 class Status {...};
};

Additionally, the following classes are defined for MPI-2:

namespace MPI {
class File {...};
class Grequest : public Request {...};
class Info {...};
class Win {...};

Note that there are a small number of derived classes and that virtual inheritance is not used. To the greatest extent
possible, the C++ bindings for MPI functions are member functions of these classes.

The definition of named constants, function prototypes, and type definitions must be supplied in an include file
mpi.h. file.

Advice to implementors. The file mpi.h may contain both the C and C++ definitions. Usually one can simply use
the pre-defined preprocessor symbol (generally --cplusplus, but not required) to see if one is using C++ to
protect the C++ definitions. It is possible that a C compiler will require that the source protected this way be legal
C code. In this case, all the C++ definitions can be placed in a different include file and the #include directive
can be used to include the necessary C++ definitions in the mpi.h file.

C++ functions that create objects or return information usually place the object or information in the return value.
Since the language neutral prototypes of MPI functions include the C++ return value as an OUT parameter,
semantic descriptions of MPI functions refer to the C++ return value by that parameter name (see Section 8.1.11).
The remaining C++ functions return void.

In some circumstances, MPI permits users to indicate that they do not want a return value. For example, the user
may indicate that the status is not to be filled in. Unlike C and Fortran where this is achieved through a special
input value, in

< previous page page_17 next page >

page_18

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_18.html[2011-2-17 2:04:32]

< previous page page_18 next page >

Page 18

C++ this is done by having two bindings where one has the optional argument and one does not.

C++ functions do not return error codes. If the default error handler has been set to
MPI::ERRORS_THROW_EXCEPTIONS, the C++ exception mechanism is used to signal an error by throwing an
MPI::Exception object.

It should be noted that the default error handler (i.e., MPI::ERRORS_ARE_-FATAL) on a given type has not
changed. User error handlers are also permitted. MPI::ERRORS_RETURN simply returns control to the calling
function; there is no provision for the user to retrieve the error code.

User callback functions that return integer error codes should not throw exceptions; the returned error will be
handled by the MPI implementation by invoking the appropriate error handler.

Advice to users. C++ programmers that want to handle MPI errors on their own should use the
MPI::ERRORS_THROW_EXCEPTIONS error handler, rather than MPI::ERRORS_RETURN, which is used for
that purpose in C. Care should be taken using exceptions in mixed language situations.

Opaque object handles must be objects in themselves, and have the assignment and equality operators overridden
to perform semantically like their C and Fortran counterparts.

Array arguments are indexed from zero.

Logical flags are of type bool.

Choice arguments are pointers of type void *.

Address arguments are of MPI-defined integer type MPI::Aint, defined to be an integer of the size needed to hold
any valid address on the target architecture. Analogously, MPI::Offset is an integer to hold file offsets.

Most MPI functions are methods of MPI C++ classes. MPI class names are generated from the language neutral
MPI types by dropping the MPI_ prefix and scoping the type within the MPI namespace. For example,
MPI_DATATYPE becomes MPI::Datatype.

The names of MPI-2 functions generally follow the naming rules given. In some circumstances, the new MPI-2
function is related to an MPI-1 function with a name that does not follow the naming conventions. In this
circumstance, the languageneutral name is analogous to the MPI-1 name even though this gives an MPI-2 name
that violates the naming conventions. The C and Fortran names are the same as the language-neutral name in this
case. However, the C++ names for MPI-1 do reflect the naming rules and can differ from the C and Fortran names.
Thus, the

< previous page page_18 next page >

page_19

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_19.html[2011-2-17 2:04:32]

< previous page page_19 next page >

Page 19

analogous name in C++ to the MPI-1 name is different from the language-neutral name. This results in the C++
name differing from the language-neutral name. An example of this is the language-neutral name of
MPL_FINALIZED and a C++ name of MPI::ls_finalized.

In C++, function typedefs are made publicly within appropriate classes. However, these declarations then
become somewhat cumbersome, as in the following case. The complete typedef for the generalized request query
callback function would look like

namespace MPI {
 class Request {
 // ...
 };

 class Grequest : public MPI::Request {
 // ...
 typedef int Query_function(void* extra_state,
 MPI::Status& status);
 };
};

Rather than including this scaffolding when declaring C++ typedefs, we use an abbreviated form. In particular,
we explicitly indicate the class and namespace scope for the typedef of the function. Thus, the example above is
shown in the text as follows:

typedef int MPI::Grequest::Query_function(void* extra_state,
 MPI::Status& status);

Besides the member functions which constitute the C++ language bindings for MPI, the C++ language interface
has additional functions (as required by the C++ language). In particular, the C++ language interface defines
methods for construction, destruction, copying, assignment, comparison, and mixed-language operability for all
MPI member classes.

The default constructor and destructor are prototyped as follows:

MPI::<CLASS>()

MPI::<CLASS>()

In terms of construction and destruction, opaque MPI user-level objects behave like handles. Default constructors
for all MPI objects except MPI::Status create

< previous page page_19 next page >

page_20

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_20.html[2011-2-17 2:04:33]

< previous page page_20 next page >

Page 20

corresponding MPI::*_NULL handles. That is, when an MPI object is instantiated, comparing it with its
corresponding MPI::*_NULL object will return true. The default constructors do not create new MPI opaque
objects. Some classes have a member function Create() for this purpose.

The destructor for each MPI user-level object does not invoke the corresponding MPI_*_FREE function (if it
exists).

The copy constructor and assignment operator are prototyped as follows:

MPI::<CLASS>(const MPI::<CLASS>& data)

MPI::<CLASS>& MPI::<CLASS>::operator!=(const MPI::<CLASS>& data)

In terms of copying and assignment, opaque MPI user-level objects behave like handles. Copy constructors
perform handle-based (shallow) copies. MPI::Status objects are exceptions to this rule. These objects perform
deep copies for assignment and copy construction.

The comparison operators are prototyped as follows:

bool MPI::<CLASS>::operator==(const MPI::<CLASS>& data) const

bool MPI::<CLASS>::operator!=(const MPI::<CLASS>& data) const

The member function operator==() returns true only when the handles reference the same internal MPI object,
false otherwise. operator!=() returns the boolean complement of operator==(). However, since the Status
class is not a handle to an underlying MPI object, it does not make sense to compare Status instances.
Therefore, the operator==() and operator!=() functions are not defined on the Status class.

Constants are singleton objects and are declared const. Note that not all globally defined MPI objects are
constant. For example, MPI:: COMM_WORLD and MPI::COMM_-SELF are not const.

1.7 Processes

An MPI program consists of autonomous processes, each executing its own code, in an MIMD style. The codes
executed by each process need not be identical. The processes communicate via calls to MPI communication
primitives. Typically, each process executes in its own address space, although shared-memory implementations of
MPI are possible.

< previous page page_20 next page >

page_21

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_21.html[2011-2-17 2:04:33]

< previous page page_21 next page >

Page 21

MPI specifies the behavior of a parallel program assuming that only MPI calls are used. The interaction of an MPI
program with other possible means of communication, I/O, and process management is not specified. Unless
otherwise stated in the specification of the standard, MPI places no requirements on the result of its interaction
with external mechanisms that provide similar or equivalent functionality. This includes, but is not limited to,
interactions with external mechanisms for process control, shared and remote memory access, file system access
and control, interprocess communication, process signaling, and terminal I/O. High-quality implementations should
strive to make the results of such interactions intuitive to users, and attempt to document restrictions where deemed
necessary.

Advice to users. There is no requirement that MPI processes be the same as POSIX processes.

Advice to implementors. Implementations that support such additional mechanisms for functionality supported
within MPI are expected to document how these interact with MPI.

The interaction of MPI. and threads is defined in Section 2.1.

1.8 Error Handling

MPI provides the user with reliable message transmission. A message sent is always received correctly, and the
user does not need to check for transmission errors, time outs, or other error conditions. In other words, MPI does
not provide mechanisms for dealing with failures in the communication system. If the MPI implementation is built
on an unreliable underlying mechanism, then it is the job of the implementor of the MPI subsystem to insulate the
user from this unreliability, or to reflect unrecoverable errors as failures. Whenever possible, such failures will be
reflected as errors in the relevant communication call. Similarly, MPI itself provides no mechanisms for handling
processor failures.

Of course, MPI programs may still be erroneous. A program error can occur when an MPI call is made with an
incorrect argument (e.g., non-existent destination in a send operation, buffer too small in a receive operation, etc.).
This type of error would occur in any implementation. In addition, a resource error may occur when a program
exceeds the amount of available system resources (number of pending messages, system buffers, etc.). The
occurrence of this type of error depends on the amount of available resources in the system and the resource
allocation mechanism used; this may differ from system to system. A high-quality implementation will

< previous page page_21 next page >

page_22

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_22.html[2011-2-17 2:04:34]

< previous page page_22 next page >

Page 22

provide generous limits on the important resources so as to alleviate the portability problem this represents.

In C and Fortran, almost all MPI calls return a code that indicates successful completion of the operation.
Whenever possible, MPI calls return an error code if an error occurred during the call. By default, an error
detected during the execution of the MPI library causes the parallel computation to abort, except for file operations.
However, MPI provides mechanisms for users to change this default and to handle recoverable errors. The user
may specify that no error is fatal, and handle error codes returned by MPI calls by himself or herself. Also, the user
may provide his or her own error-handling routines, which will be invoked whenever an MPI call returns
abnormally. The MPI error handling facilities are described in I-7.5.1 (recall that I-7.5.1 refers to the companion
book, MPI: The Complete Reference, Volume 1). The return values of C++ functions are not error codes. If the
default error handler has been set to MPI::ERRORS_THROW_EXCEPTIONS, the C++ exception mechanism is
used to signal an error by throwing an MPI:: Exception object.

Several factors limit the ability of MPI calls to return with meaningful error codes when an error occurs. MPI may
not be able to detect some errors; other errors may be too expensive to detect in normal execution mode; finally,
some errors may be catastrophic and may prevent MPI from returning control to the caller in a consistent state.

Another subtle issue arises because of the nature of asynchronous communications: MPI calls may initiate
operations that continue asynchronously after the call returns. Thus, the operation may return with a code
indicating successful completion, yet later cause an error exception to be raised. If there is a subsequent call that
relates to the same operation (e.g., a call that verifies that an asynchronous operation has completed) then the error
argument associated with this call will be used to indicate the nature of the error. In a few cases, the error may
occur after all calls that relate to the operation have completed, so that no error value can be used to indicate the
nature of the error (e.g., an error on the receiver in a send with the ready mode). Such an error must be treated as
fatal, since information cannot be returned for the user to recover from it.

MPI does not specify the state of a computation after an erroneous MPI call has occurred. The desired behavior is
that a relevant error code be returned, and the effect of the error be localized to the greatest possible extent. For
example, it is highly desirable that an erroneous receive call will not cause any part of the receiver's memory to be
overwritten beyond the area specified for receiving the message.

< previous page page_22 next page >

page_23

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_23.html[2011-2-17 2:04:34]

< previous page page_23 next page >

Page 23

Implementations may go beyond the MPI standard in supporting in a meaningful manner MPI calls that are defined
by the standard to be erroneous. For example, MPI specifies strict type-matching rules between matching send and
receive operations: it is erroneous to send a floating-point variable and receive an integer. Implementations may go
beyond these type matching rules, and provide automatic type conversion in such situations. It will be helpful to
generate warnings for such non-conforming behavior.

MPI2 defines a way for users to create new error codes as defined in Section 6.5.

1.9 Implementation Issues.

There are a number of areas where an MPI implementation may interact with the operating environment and
system. While MPI does not mandate that any services (such as signal handling) be provided, it does strongly
suggest the behavior to be provided if those services are available. This is an important point in achieving
portability across platforms that provide the same set of services.

1.9.1 Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language environment (such as WRITE in
Fortran and printf () and malloc () in ISO C) and are executed after MPI_INIT and before
MPI_FINALIZE operate independently and that their completion is independent of the action of other processes in
an MPI program.

Note that this in no way prevents the creation of library routines that provide parallel services whose operation is
collective. However, the following program is expected to complete in an ISO C environment regardless of the size
of MPI_COMM_WORLD (assuming that printf () is available at the executing nodes).

int rank;
MPI_Init((void *)0, (void *)0);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
if (rank == 0) printf(Starting program\n);
MPI_Finalize();

The corresponding Fortran and C++ programs are also expected to complete.

An example of what is not required is any particular ordering of the action of these routines when called by several
tasks. For example, MPI makes neither requirements nor recommendations for the output from the following
program (again assuming that I/O is available at the executing nodes).

< previous page page_23 next page >

page_24

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_24.html[2011-2-17 2:04:35]

< previous page page_24 next page >

Page 24

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf (Output from task rank %d\n, rank);

In addition, calls that fail because of resource exhaustion or other error are not considered a violation of the
requirements here (however, they are required to complete, just not to complete successfully).

1.9.2 Interaction with Signals

MPI does not specify the interaction of processes with signals and does not require that MPI be signal safe. The
implementation may reserve some signals for its own use. It is required that the implementation document which
signals it uses, and it is strongly recommended that it not use SIGALRM, SIGFPE, or SIGIO. Implementations
may also prohibit the use of MPI calls from within signal handlers.

In multithreaded environments, users can avoid conflicts between signals and the MPI library by catching signals
only on threads that do not execute MPI calls. High quality single-threaded implementations will be signal safe: an
MPI call suspended by a signal will resume and complete normally after the signal is handled.

< previous page page_24 next page >

page_25

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_25.html[2011-2-17 2:04:35]

< previous page page_25 next page >

Page 25

2
Miscellany

This chapter contains topics that do not fit conveniently into other chapters. The first section deals with the
interaction of threads with MPI. The MPI standard does not mandate thread support, but specifies the behavior of
thread-compliant MPI implementations. New calls are provided for querying and controlling the level of thread
support provided by the MPI library. Regardless of the level of thread support, all implementations must provide
the new thread calls for portability.

The second section deals with interoperability of C, C++ and Fortran language, that is, support for mixed language
parallel programs.

The third section presents the MPI functions that create and manipulate info objects. These objects are used by
many MPI functions to pass optional information.

Finally, the last section deals with the MPI functions for the allocation and deallocation of special memory.

2.1 MPI and Threads

This section specifies the interaction between MPI calls and threads. The section lists minimal requirements for
thread-compliant MPI implementations. MPI may be implemented in environments where threads are not
supported or perform poorly. Therefore, it is not required that all MPI implementations be thread-compliant. This
section also describes functions that can be used for initializing and querying the thread environment. These
functions are supported by all MPI implementations, even if they are not thread-compliant.

This section generally assumes a thread package similar to POSIX threads [15], but the syntax and semantics of
thread calls are not specified herethese are beyond the scope of this document.

2.1.1 General.

In a thread-compliant implementation, an MPI process is a process that may be multithreaded. Each thread can
issue MPI calls; however, threads are not separately addressable: a rank in a send or receive call identifies a
process, not a thread. A message sent to a process can be received by any thread in this process.

Rationale. This model corresponds to the POSIX model of interprocess communication: the fact that a process is
multithreaded, rather than single-threaded, does not affect the external interface of this process. MPI
implementations where MPI processes are POSIX threads inside a single POSIX process are not threadcompliant
by this definition (indeed, their processes are single-threaded).

< previous page page_25 next page >

page_26

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_26.html[2011-2-17 2:04:36]

< previous page page_26 next page >

Page 26

Advice to users. It is the user's responsibility to prevent races when threads within the same application post
conflicting communication calls. The user can make sure that two threads in the same process will not issue
conflicting communication calls by using distinct communicators at each thread.

The two main requirements for a thread-compliant implementation are listed below.

1. All MPI calls are thread-safe. That is, two concurrently running threads may make MPI calls and the outcome
will be as if the calls executed in some order, even if their execution is interleaved.

2. Blocking MPI calls will block the calling thread only, allowing another thread to execute, if available. The
calling thread will be blocked until the event on which it is waiting occurs. Once the blocked communication is
enabled and can proceed, then the call will complete and the thread will be marked runnable, within a finite time. A
blocked thread will not prevent progress of other runnable threads in the same process, and will not prevent them
from executing MPI calls.

Example 2.1 Process 0 consists of two threads. The first thread executes a blocking send call MPI_Send (buff1,
count, type, 0, 0, comm), whereas the second thread executes a blocking receive call MPI_Recv(buff2, count, type,
0, 0, comm, &status). That is, the first thread sends a message that is received by the second thread. This
communication should always succeed. According to the first requirement, the execution will correspond to some
interleaving of the two calls. According to the second requirement, an MPI call can only block the calling thread
and must not prevent progress of the other thread. If the send call went ahead of the receive call, then the sending
thread may block, but this will not prevent the receiving thread from executing. Thus, the receive call will occur.
Once both calls occur, the communication is enabled and both calls will complete. On the other hand, a single-
threaded process that posts a send, followed by a matching receive, may deadlock. (However, using an isend will
not cause deadlock.) The progress requirement for multithreaded implementations is stronger, as a blocked call
cannot prevent progress in other threads.

Advice to implementors. MPI calls can be made thread-safe by executing only one at a time, for example, by
protecting MPI code with one process-global lock. However, blocked operations cannot hold the lock, as this
would prevent progress of other threads in the process. The lock is held only for the duration of an atomic, locally-
completing suboperation such as posting a send or completing a send, and

< previous page page_26 next page >

page_27

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_27.html[2011-2-17 2:04:36]

< previous page page_27 next page >

Page 27

is released in between. Finer locks can provide more concurrency, at the expense of higher locking overheads.
Concurrency can also be achieved by having some of the MPI protocol executed by separate server threads.

2.1.2 Clarifications

Initialization and completion. Exactly one thread per process calls MPI_FINALIZE and this should occur on the
same thread that initialized MPI. We call this thread the main thread. The call should occur only after all the
process threads have reached the state where it is legitimate to call MPI_FINALIZE (see Section I-7.2).

Rationale. This constraint may simplify implementation.

Multiple threads completing the same request. A program in which two threads block, waiting on the same request,
is erroneous. Similarly, the same request cannot appear in the array of requests of two concurrent
MPI_WAIT{ANY|SOME|ALL} calls. In MPI, a request can only be completed once. Any combination of wait or
test which violates this rule is erroneous.

Rationale. This is consistent with the view that a multithreaded execution corresponds to an interleaving of the
MPI calls. In a single-threaded implementation, once a wait is posted on a request the request handle will be
nullified before it is possible to post a second wait on the same handle. With threads, an
MPI_WAIT{ANY|SOME|ALL} may be blocked without having nullified its request(s) so it becomes the user's
responsibility to avoid using the same request in an MPI_WAIT on another thread. This constraint also simplifies
implementation, as only one thread will be blocked on any communication or I/O event.

Probe. A receive call that uses source and tag values returned by a preceding call to MPI_PROBE or
MPI_IPROBE will receive the message matched by the probe call only if there was no other matching receive after
the probe and before that receive. In a multithreaded environment, it is up to the user to enforce this condition
using suitable mutual exclusion logic. This can be enforced by making sure that each communicator is used by only
one thread on each process.

Collective calls. Matching of collective calls on a communicator, window, or file handle is done according to the
order in which the calls are issued at each process. If concurrent threads issue such calls on the same
communicator, window or file

< previous page page_27 next page >

page_28

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_28.html[2011-2-17 2:04:37]

< previous page page_28 next page >

Page 28

handle, it is up to the user to make sure the calls are correctly ordered, using interthread synchronization.

Exception handlers. An exception handler does not necessarily execute in the context of the thread that made the
exception-raising MPI call; the exception handler may be executed by a thread that is distinct from the thread that
will return the error code.

Rationale. The MPI implementation may be multithreaded, so that part of the communication protocol may execute
on a thread that is distinct from the thread that made the MPI call. The design allows the exception handler to be
executed by the thread where the exception occurred.

Interaction with signals and cancellations. The outcome is undefined if a thread that executes an MPI call is
cancelled (by another thread), or if a thread catches a signal while executing an MPI call. However, a thread of an
MPI process may terminate, and may catch signals or be cancelled by another thread when not executing MPI
calls.

Rationale. Few C library functions are signal-safe, and many have cancellation pointspoints where the thread
executing them may be cancelled. The above restriction simplifies implementation (no need for the MPI library to
be asynccancel-safe or async-signal-safe).

Advice to users. Users can catch signals in separate, non-MPI threads (e.g., by masking signals on MPI calling
threads, and unmasking them in one or more nonMPI threads). A good programming practice is to have a distinct
thread blocked in a call to sigwait for each expected user signal. Users must not catch signals used by the MPI
implementation; as each MPI implementation is required to document the signals used internally, users can avoid
these signals.

Advice to implementors. The MPI library should not invoke library calls that are not thread-safe, if multiple threads
execute.

2.1.3 Initialization

The following function may be used to initialize MPI, and initialize the MPI thread environment, instead of
MPI_INIT.

< previous page page_28 next page >

page_29

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_29.html[2011-2-17 2:04:37]

< previous page page_29 next page >

Page 29

MPI_INIT_THREAD(required,provided)
IN required desired level of thread support (integer)
OUT provided provided level of thread support (integer)

int MPI_Init_thread(int *argc, char ***argv, int required,
 int *provided)

MPI_INIT_THREAD (REQUIRED, PROVIDED, IERROR)
 INTEGER REQUIRED, PROVIDED, IERROR

int MPI::Init_thread(int& argc, char**& argv, int required)

int MPI: :Init_thread(int required)

Passing argc and argv is optional in C and C++ (these arguments are not passed in Fortran). In C, this is
accomplished by passing NULL as argument value. In C++, this is accomplished with two separate bindings to
cover these two cases. When argc and argv are supplied, these should be the values passed to main. This is the
same as for MPI_INIT (Chapter I-7).

This call initializes MPI in the same way that a call to MPI_INIT would. In addition, it initializes the thread
environment. The argument required is used to specify the desired level of thread support. The possible values
are listed in increasing order of thread support.

MPI_THREAD_SINGLE: Only one thread will execute.

MPI_THREAD_FUNNELED: The process may be multithreaded, but only the main thread will make MPI calls
(all MPI calls are funneled to the main thread). The main thread is the one that initializes and finalizes MPI.

MPI_THREAD_SERIALIZED: The process may be multithreaded, and multiple threads may make MPI calls, but
only one at a time: MPI calls are not made concurrently from two distinct threads of the same process (all MPI
calls are serialized).

MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with no restrictions.

These values are monotonic; that is, MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED <
MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE.

Note that the C++ names begin with MPI::THREAD rather than MPI_THREAD.

Different processes in MPI_COMM_WORLD may require different levels of thread support.

< previous page page_29 next page >

page_30

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_30.html[2011-2-17 2:04:38]

< previous page page_30 next page >

Page 30

The call returns in provided information about the actual level of thread support that will be provided by MPI. It
can be one of the four values listed above.

The levels of thread support that can be provided by MPI_INIT_THREAD will depend on the implementation, and
may depend on information provided by the user before the program started to execute (e.g., with arguments to
mpiexec). If possible, the call will return provided = required. Failing this, the call will return the least
supported level such that provided > required (thus providing a stronger level of support than required by
the user). Finally, if the user requirement cannot be satisfied, then the call will return in provided the highest
supported level.

A thread-compliant MPI implementation will be able to return provided = MPI_THREAD_MULTIPLE. Such
an implementation may always return provided = MPI_THREAD_MULTIPLE, irrespective of the value of
required. At the other extreme, an MPI library that is not thread-compliant may always return provided =
MPI_THREAD_SINGLE, irrespective of the value of required.

A call to MPI_INIT has the same effect as a call to MPI_INIT_THREAD with required =
MPI_THREAD_SINGLE.

Vendors may provide (implementation dependent) means to specify the levels of thread support available when the
MPI program is started. This will affect the outcome of calls to MPI_INIT and MPI_INIT_THREAD. Suppose, for
example, that an MPI program has been started so that only MPI_THREAD_MULTIPLE is available. Then
MPI_INIT_THREAD will return provided = MPI_THREAD_MULTIPLE, irrespective of the value of
required; a call to MPI_INIT will also initialize the MPI thread support level to MPI_THREAD_MULTIPLE.
Suppose, on the other hand, that an MPI program has been started so that all four levels of thread support are
available. Then, a call to MPI_INIT_THREAD will return provided = required; on the other hand, a call
to MPI_INIT will initialize the MPI thread support level to MPI_THREAD_SINGLE.

Advice to users. Users should require the lowest level of thread support that is compatible with their code. This
leaves the most freedom for optimizations by the MPI implementation.

Rationale. Various optimizations are possible when MPI code is executed singlethreaded, or is executed on
multiple threads, but not concurrently: mutual exclusion code may be omitted. Furthermore, if only one thread
executes, then the MPI library can use library functions that are not thread-safe, without risking conflicts with user
threads. Thus, a lower level of thread support may be associated with a lower overhead for MPI calls. Therefore,
the current design provides the user with

< previous page page_30 next page >

page_31

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_31.html[2011-2-17 2:04:38]

< previous page page_31 next page >

Page 31

a mechanism for requiring the lowest level of thread support that is required by its program.

The model of one communication thread, multiple computation threads fits many applications well. For example, if
the process code is a sequential Fortran/C/C++ program with MPI calls that has been parallelized by a compiler for
execution on an SMP node, in a cluster of SMPs, then the process computation is multithreaded, but MPI calls will
likely execute on a single thread.

The design accommodates a static specification of the thread support level (e.g., with arguments to mpiexec), for
environments that require static binding of libraries, and for compatibility for current multithreaded MPI codes.

Advice to implementors. If provided is not MPI_THREAD_SINGLE then the MPI library should not invoke
C/C++/Fortran library calls that are not thread-safe. For example, in an environment where malloc is not thread-
safe, malloc should not be used by the MPI library.

Some implementors may want to use different MPI libraries for different levels of thread support. They can do so
using dynamic linking and selecting which library will be linked when MPI_INIT_THREAD is invoked. If this is
not possible, then optimizations for lower levels of thread support will occur only when the level of thread support
required is specified at link time.

The following function can be used to query the current level of thread support.

MPI_QUERY_THREAD(provided)
OUT provided provided level of thread support (integer)

int MPI_Query_thread(int *provided)

MPI_QUERY_THREAD (PROVIDED, IERROR)
 INTEGER PROVIDED, IERROR

int MPI:: Query_thread()

The call returns in provided the current level of thread support. This will be the value returned in provided
by MPI_INIT_THREAD, if MPI was initialized by a call to MPI_INIT_THREAD(). If MPI was initialized with
MPI_INIT, then it is as if required was MPI_THREAD_SINGLE in MPI_INIT_THREAD. The value of
provided can be different from this value.

< previous page page_31 next page >

page_32

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_32.html[2011-2-17 2:04:39]

< previous page page_32 next page >

Page 32

MPI_THREAD_MAIN flag
OUT flag true if calling thread is main thread, false otherwise (logical)

int MPI_Is_thread_main(int *flag)

MPI_IS_THREAD_MAIN(FLAG, IERROR)
 LOGICAL FLAG
 INTEGER IERROR

bool MPI:: Is_thread_main ()

This function can be called by a thread to find out whether it is the main thread (the thread that called MPI_INIT or
MPI_INIT_THREAD).

All routines listed in this section must be supported by all MPI implementations.

Rationale. MPI libraries are required to provide these calls even if they do not support threads, so that portable
code that contains invocations to these functions be able to link correctly. MPI_INIT continues to be supported so
as to provide compatibility with current MPI codes.

Advice to users. It is possible to spawn threads before MPI is initialized, but no MPI call other than
MPI_INITIALIZED should be executed by these threads, until MPI_INIT_THREAD is invoked by one thread
(which, thereby, becomes the main thread). In particular, it is possible to enter the MPI execution with a
multithreaded process.

The level of thread support provided is a global property of the MPI process that can be specified only once, when
MPI is initialized on that process (or before). Portable third-party libraries should be written so as to accommodate
any provided level of thread support. Otherwise, their usage will be restricted to specific level(s) of thread support.
If such a library can run only with specific level(s) of thread support, for example, only with
MPI_THREAD_MULTIPLE, then MPI_QUERY_THREAD can be used to check whether the user initialized MPI
to the correct level of thread support and, if not, raise an exception.

Example 2.2 Using a thread to process asynchronous messages.

This program shows how a thread can be created that waits in a receive loop, processing messages as they arrive.
In this example, a message with a tag of zero causes the thread to exit.

< previous page page_32 next page >

page_33

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_33.html[2011-2-17 2:04:40]

< previous page page_33 next page >

Page 33

void receive_thread(void *ptr);
int main(int argc, char **argv)
{
 int provided, rank, data;
 MPI_Comm thread_comm;
 pthread_t thread;
 MPI_Init_thread(0, 0, MPI_THREAD_MULTIPLE, &provided);
 if (provided < MPI_THREAD_MULTIPLE)
 MPI_Abort(MPI_COMM_WORLD, 0);
 /* Create a communicator just for communication
 with the thread */
 MPI_Comm_dup(MPI_COMM_WORLD, &thread_comm);
 MPI_Comm_rank(thread_comm, &rank) ;
 if (rank == 0) {
 pthread_create(&thread, NULL, receive_thread, &thread_comm);
 }
 ...
 /* perform work. Processes with any rank can execute */
 MPI_Send(&data, 1, MPI_INT, 0, 1, thread_comm);
 /* to have process 0 print the value of data */
 /* Tell the receive thread to exit */
 MPI_Send(MPI_BOTTOM, 0, MPI_INT, 0, 0, thread_comm);
 MPI_Finalize();
 return 0;
}
/* thread code */
void receive_thread(void *ptr)
{
 int buf;
 MPI_Comm thread_comm = *(MPI_Comm *)ptr;
 MPI_Status status;

 while (1) {
 MPI_Recv(&buf, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,
 thread_comm, &status);

< previous page page_33 next page >

page_34

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_34.html[2011-2-17 2:04:40]

< previous page page_34 next page >

Page 34

 if (status.MPI_TAG == 0) return;
 printf(Received %d from %d\n, buf, status.MPI_SOURCE);
 }
}

2.2 Language Interoperability

2.2.1 Introduction

It is not uncommon for library developers to use one language to develop an applications library that may be called
by an application program written in a different language. MPI currently supports ISO (previously ANSI) C, C++,
and Fortran bindings. It should be possible to mix these three languages in a program that uses MPI, and pass MPI-
related information across language boundaries.

Moreover, MPI allows the development of client-server code, with MPI communication used between a parallel
client and a parallel server. It should be possible to code the server in one language and the clients in another
language. To do so, communications should be possible between applications written in different languages.

There are several issues that need to be addressed in order to achieve such interoperability.

Initialization: We need to specify how the MPI environment is initialized for all languages.

Interlanguage passing of MPI opaque objects: We need to specify how MPI object handles are passed between
languages. We also need to specify what happens when an MPI object is accessed in one language, to retrieve
information (e.g., attributes) set in another language.

Interlanguage communication: We need to specify how messages sent in one language can be received in another
language.

It is highly desirable that the solution for interlanguage interoperability be extendable to new languages, should
MPI bindings be defined for such languages.

2.2.2 Assumptions.

We assume that conventions exist for programs written in one language to call functions in written in another
language. These conventions specify how to link

< previous page page_34 next page >

page_35

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_35.html[2011-2-17 2:04:41]

< previous page page_35 next page >

Page 35

routines in different languages into one program, how to call functions in a different language, how to pass
arguments between languages, and the correspondence between basic data types in different languages. In general,
these conventions will be implementation-dependent. Furthermore, not every basic datatype may have a matching
type in other languages. For example, C/C++ character strings may not be compatible with Fortran CHARACTER
variables. However, we assume that a Fortran INTEGER, as well as a (sequence associated) Fortran array of
INTEGERs, can be passed to a C or C++ program. We also assume that Fortran, C, and C++ have address-sized
integers. This does not mean that the default-sized integers are the same size as default-sized pointers, but only that
there is some way to hold (and pass) a C address in a Fortran integer. It is also assumed that
INTEGER(KIND=MPI_OFFSET_KIND) can be passed from Fortran to C as MPI_Offset.

2.2.3 Initialization

A call to MPI_INIT or MPI_THREAD_INIT, from any language, initializes MPI for execution in all languages.
The function MPI_FINALIZE finalizes the MPI environments for all languages. The function MPI_ABORT kills
processes, irrespective of the language used by the caller or by the processes killed.

The global MPI environment is the same in all languages: Thus, the functions MPI_INITIALIZED or
MPI_FINALIZED return the same answer in all languages, if called at the same point in the execution;
MPI_COMM_WORLD carries the same information regardless of language: same processes, same environmental
attributes, same error handlers.

Advice to users. The use of several languages in one MPI program may require the use of special options at
compile and/or link time.

Advice to implementors. Implementations may selectively link language-specific MPI libraries only to codes that
need them, so as not to increase the size of binaries for codes that use only one language. The MPI initialization
code needs to perform initialization for a language only if that language library is loaded.

2.2.4 Transfer of Handles

Handles are passed between Fortran and C or C++ by using an explicit C wrapper to convert Fortran handles to C
handles. There is no direct access to C or C++ handles in Fortran. Handles are passed between C and C++ using
overloaded C++ operators called from C++ code. There is no direct access to C++ objects from C.

< previous page page_35 next page >

page_36

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_36.html[2011-2-17 2:04:41]

< previous page page_36 next page >

Page 36

C and Fortran. The type definition MPI_Fint is provided in C/C++ for an integer of the size that matches a Fortran
INTEGER; often, MPI_Fint will be equivalent to int.1

Functions are provided in C to convert from a Fortran handle (which is an integer) to a C handle, and vice versa.
The general form of a Fortran-to-C conversion function is

MPI_<CLASS> MPI_<CLASS>_f2c(MPI_Fint handle)

The token <CLASS> is used to indicate any valid MPI opaque handle name (e.g., Comm or Group). The
function converts valid Fortran handles to valid C handles, null Fortran handles to null C handles; and invalid
Fortran handles to invalid C handles.

Thus,

MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

converts the integer comm to a C handle of type MPI_Comm. If comm is a valid Fortran handle to a communicator,
then MPI_Comm_f2c returns a valid C handle to that same communicator; if comm = MPI_COMM_NULL
(Fortran value), then MPI_Comm_f2c returns a null C handle (with C value MPI_COMM_NULL); if comm is an
invalid Fortran communicator handle, then MPI_Comm_f2c returns an invalid C communicator handle.

The general form of a C-to-Fortran conversion function is

MPI_Fint MPI_<CLASS>_c2f(MPI_<CLASS> handle)

The function converts valid C handles to valid Fortran handles, null C handles to null Fortran handles; and invalid
C handles to invalid Fortran handles.

Thus,

MPI_Fint MPI_Comm_c2f (MPI_Comm comm)

converts comm into a Fortran handle. If comm is a valid C handle to a communicator, then MPI_Comm_c2f returns
a valid Fortran handle to that same communicator; if comm = MPI_COMM_NULL (C value), then
MPI_Comm_c2f returns a null Fortran handle; if comm is an invalid C communicator handle, then
MPI_Comm_f2c returns an invalid Fortran communicator handle.

1 No MPI::Fint was defined; C++ users should use MPI_Fint. This reflects the fact that the there are no
separate Fortran/C++ conversion functions.

< previous page page_36 next page >

page_37

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_37.html[2011-2-17 2:04:42]

< previous page page_37 next page >

Page 37

The conversion functions for the other types of opaque objects are listed below.

MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_File_c2f (MPI_File file)

MPI_Group MPI_Group_f2c (MPI_Fint group)

MPI_Fint MPI_Group_c2f (MPI_Group group)

MPI_Info MPI_Info_f2c (MPI_Fint info)

MPI_Fint MPI_Info_c2f (MPI_Info info)

MPI_Op MPI_Op_f2c (MPI_Fint op)

MPI_Fint MPI_Op_c2f (MPI_Op op)

MPI_Request MPI_Request_f2c (MPI_Fint request)

MPI_Fint MPI_Request_c2f (MPI_Request request)

MPI_Win MPI_Win_f2c (MPI_Fint win)

MPI_Fint MPI_Win_c2f (MPI_Win win)

Note that there are no conversion functions defined in MPI-2 for error handlers. This was an oversight of the MPI
Forum; vendors are likely (but are not required) to provide the following functions:

MPI_Errhandler MPI_Errhandler_f2c (MPI_Fint errhandler)

MPI_Fint MPI_Errhandler_c2f (MPI_Errhandler errhandler)

Example 2.3 The example below illustrates how the Fortran MPI function MPI_TYPE_COMMIT can be
implemented by wrapping the C MPI function MPI_Type_commit with a C wrapper to do handle conversions.
In this example a Fortran C interface is assumed where a Fortran function is all uppercase when referred to from C
and arguments are passed by addresses.

! FORTRAN PROCEDURE
SUBROUTINE MPI_TYPE_COMMIT (DATATYPE, IERR)

< previous page page_37 next page >

page_38

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_38.html[2011-2-17 2:04:42]

< previous page page_38 next page >

Page 38

INTEGER DATATYPE, IERR
CALL MPI_X_TYPE_COMMIT (DATATYPE, IERR)
RETURN
END

/* C wrapper */

void MPI_X_TYPE_COMMIT (MPI_Fint *f_handle, MPI_Fint *ierr)
{
MPI_Datatype datatype;

datatype = MPI_Type_f2c(*f_handle);
*ierr = (MPI_Fint) MPI_Type_commit (&datatype) ;
*f_handle = MPI_Type_c2f (datatype);
return;
}

The same approach can be used for all other MPI functions. The call to MPI_áCLASS⟩_f2c (resp.
MPI_áCLASS⟩_c2f) can be omitted when the handle is an OUT (resp. IN) argument, rather than INOUT.

Rationale. The design here provides a convenient solution for the prevalent case, where a C wrapper is used to
allow Fortran code to call a C library, or C code to call a Fortran library. The use of C wrappers is much more
likely than the use of Fortran wrappers, because it is much more likely that a variable of type INTEGER can be
passed to C than a C handle can be passed to Fortran.

Returning the converted value as a function value rather than through the argument list allows the generation of
efficient inlined code when these functions are simple (e.g., the identity). The conversion function in the wrapper
does not catch an invalid handle argument. Instead, an invalid handle is passed below to the library function,
which, presumably, checks its input arguments.

C and C++. Transfer of opaque objects and handles to opaque objects between C and C++ is supported by the
natural casting, construction, and assignment operations. A C++ binding of MPI provides the necessary definitions
to allow a C++ program to cast a C++ opaque object or handle to and from the corresponding C opaque object or
handle. Assignment and constructors are also provided to create C++ objects from a C MPI handle.

< previous page page_38 next page >

page_39

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_39.html[2011-2-17 2:04:43]

< previous page page_39 next page >

Page 39

Advice to users. The casting and promotion operators return new handles by value. Using these new handles as
INOUT parameters will affect the internal MPI object, but will not affect the original handle from which it was
cast. Thus, if an MPI object is created in C, and freed in C++, then the original C handle is not set to NULL.

Rationale. Providing conversion from C to C++ via constructors and from C++ to C via casting allows the
compiler to make automatic conversions. Calling C from C++ becomes trivial, as does the provision of a C or
Fortran interface to a C++ library.

Example 2.4 In order for a C program to use a C++ library, the C++ library must export a C interface that provides
appropriate conversions before invoking the underlying C++ library call. This example shows a C interface
function that invokes a C++ library call with a C communicator; the communicator is automatically promoted to a
C++ handle when the underlying C++ function is invoked.

// C++ library function prototype
void cpp_lib_call (MPI::Comm& cpp_comm) ;

// Exported C function prototype
extern C void c_interface (MPI_Comm c_comm) ;

void c_interface (MPI_Comm c_comm)
{
// the MPI_Comm (c_comm) is automatically promoted to MPI::Comm
cpp_lib_call (c_comm);
}

Example 2.5 A C library routine is called from a C++ program. The C library routine is prototyped to take an
MPI_Comm as an argument.

// C function prototype
extern C {
void c_lib_call (MPI_Comm c_comm) ;
}

void cpp_function()
{

< previous page page_39 next page >

page_40

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_40.html[2011-2-17 2:04:43]

< previous page page_40 next page >

Page 40

// Create a C++ communicator, and initialize it with a dup of
// MPI::COMM_WORLD
MPI::Intracomm cpp_comm (MPI::COMM_WORLD.Dup()) ;
c_lib_call (cpp_comm);
}

2.2.5 Status

The following two procedures are provided in C to convert from a Fortran status (which is an array of integers) to
a C status (which is a structure), and vice versa. The conversion occurs on all the information in status, including
that which is hidden. That is, no status information is lost in the conversion.

int MPI_Status_f2c (MPI_Fint *f_status, MPI_Status *c_status)

If f_Status is a valid Fortran status, but not the Fortran value of MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE, then MPI_Status_f2c returns in c_status a valid C status with the same
content. If f_status is the Fortran value of MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE, or if
f_status is not a valid Fortran status, then the call is erroneous.

The C status has the same source, tag and error code values as the Fortran status, and returns the same answers
when queried for count, elements, and cancellation. The conversion function may be called with a Fortran status
argument that has an undefined error field, in which case the value of the error field in the C status argument is
undefined.

Two global variables of type MPI_Fint*, MPI_F_STATUS_IGNORE and MPI_F_STATUSES_IGNORE are
declared in mpi.h. They can be used to test, in C, whether f_status is the Fortran value of
MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE, respectively. These are global variables, not C constant
expressions and cannot be used in places where C requires constant expressions. Their value is defined only
between the calls to MPI_INIT and MPI_FINALIZE and should not be changed by user code.

To do the conversion in the other direction, we have the following:

int MPI_Status_c2f (MPI_Status *c_status, MPI_Fint *f_status)

This call converts a C status into a Fortran status, and has a behavior similar to MPI_Status_f2c. That is, the value
of c_status, must not be either MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE.

< previous page page_40 next page >

page_41

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_41.html[2011-2-17 2:04:44]

< previous page page_41 next page >

Page 41

Advice to users. There is no separate conversion function for arrays of statuses since one can simply loop through
the array, converting each status.

Rationale. The handling of MPI_STATUS_IGNORE is required in order to layer libraries with only a C wrapper:
if the Fortran call has passed MPI_STATUS_IGNORE, then the C wrapper must handle this correctly. Note that
this constant need not have the same value in Fortran and C. If MPI_Status_f2c were to handle
MPI_STATUS_IGNORE. then the type of its result would have to be MPI_Status**, which was considered an
inferior solution.

C and C++. The conversion of an MPI_Status in C to or from an MPI::Status in C++ is carried out by the usual
cast, assignment, or construction operations.

2.2.6 MPI Opaque Objects

C, C++ and Fortran MPI opaque objects can be used interchangeably by an application. The behavior is as if there
is only one object, accessed via different handles in each language. For example, an application can cache an
attribute in C or Fortran on MPI_COMM_WORLD and later retrieve it in C++ from MPI: :COMM_WORLD. (In
many implementations there actually is only one object for all languages.)

Example 2.6 In the program below, a datatype is constructed and committed in Fortran and and used for
communication in C. The C program sends a Fortran string (variable of type CHARACTER). This will work, even if
such variables cannot be passed from Fortran to C.

! FORTRAN CODE
CHARACTER C(25)
INTEGER TYPE, IERR
INTEGER (KIND=MPI_ADDRESS_KIND) ADDR

! create an absolute datatype for character array C
CALL MPI_GET_ADDRESS(C, ADDR, IERR)
CALL MPI_TYPE_CREATE_STRUCT(1, 25, ADDR, MPI_CHARACTER, TYPE, IERR)
CALL MPI_TYPE_COMMIT(TYPE, IERR)
CALL C_ROUTINE(TYPE)

/* C code */

void C_ROUTINE(MPI_Fint *ftype)

< previous page page_41 next page >

page_42

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_42.html[2011-2-17 2:04:44]

< previous page page_42 next page >

Page 42

{
MPI_Send (MPI_BOTTOM, 1, MPI_Type_f2c(*ftype), 1, 0, MPI_COMM_WORLD) ;
/* the message sent contains the Fortran character array C */
}

We clarify below some issues that arise when objects are transferred across languages.

2.2.7
Attributes.

Attribute keys declared in one language are associated with copy and delete functions in that language (the
functions provided by the MPI_{TYPE,COMM,WIN}_CREATE_KEYVAL call). When a communicator or
datatype is duplicated, for each attribute, the corresponding copy function is called, using the correct calling
convention for the language of that function; and similarly, for the delete callback function.

Advice to implementors. This requires that attributes be tagged either as C, C++ or Fortran, and that the language
tag be checked in order to use the right calling convention for the callback function.

MPI supports two types of attributes: reference (pointer) attributes and integer attributes. Attribute keys created in
C and C++ are associated with reference attributes (of type void*). Attribute keys created in Fortran are
associated with integer attributes (of type INTEGER(KIND=MPI_ADDRESS_KIND)).

One can associate an integer value with a C-created attribute key by allocating an integer variable to store the
value, and by associating the attribute key with a pointer to that variable. This is the mechanism assumed by MPI
for access to integer attributes in C or C++: When the value of an integer attribute value is set in C or C++ via a
call to MPI_{TYPE,COMM,WIN}-_SET_ATTR, then the attribute_val argument should be a pointer to a variable
holding the integer value. When the value of an integer attribute value is accessed in C or C++, via a call to
MPI_{TYPE,COMM,WIN}_GET_ATTR, then the call returns in attribute-val a pointer to a location where the
integer attribute value is stored.

Conversely, one can associate a reference with a Fortran-created attribute key by interpreting the integer attribute
value as an address. This requires a nonstandard, but fairly common, pointer extension to Fortransee Section 2.4
and Example 2.7. This is the mechanism assumed by MPI for access to reference attributes in Fortran: When the
value of an reference attribute value is set in Fortran, via a call to MPI_{TYPE,COMM,WIN}_SET_ATTR, then
the attribute_val argument should be the

< previous page page_42 next page >

page_43

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_43.html[2011-2-17 2:04:45]

< previous page page_43 next page >

Page 43

integer address of the referenced variable. When the value of a reference attribute value is accessed in Fortran via a
call to MPI_{TYPE,COMM,WIN}_GET_ATTR, then the call returns in attribute_val the address of the referenced
variable.

Predefined integer-valued attributes, such as MPI_TAG_UB, behave as if they were set by a Fortran call. That is,
in Fortran, MPI_COMM_GET_ATTR(MPI_COMM_WORLD, MPI_TAG_UB, val, flag, ierr) will return in val
the upper bound for tag value; in C, MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_TAG_UB, &p, &flag) will
return in P a pointer to an int containing the upper bound for tag value.

Predefined reference attributes, such as MPI_WIN_BASE behave as if they were set by a C call. That is, in
Fortran, MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, val, flag, ierror) will return in val the base address of the
window, converted to an integer. In C, MPI_Win_get_attr(win, MPI_WIN_BASE, &p, &flag) will return in p a
pointer to the window base, cast to (void *).

Rationale. The design is consistent with the behavior specified in MPI_1 for predefined attributes, and ensures that
no information is lost when attributes are passed from language to language.

Advice to implementors. Implementations should tag attributes either as reference attributes or as integer attributes,
according to whether they were set in C or in Fortran. Thus, the right choice can be made when the attribute is
retrieved.

Example 2.7

A. Integer attribute, C to Fortran

C code

void c_attr_set(MPI_Fint *key)
{
 static MPI_Aint i = 4444;
 void *p;
 p = &i;
 MPI_Comm_set_attr(MPI_COMM_SELF, *key, p);
 return ;
}

Fortran code

PROGRAM TEST
USE MPI
INTEGER key, ierr

< previous page page_43 next page >

page_44

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_44.html[2011-2-17 2:04:45]

< previous page page_44 next page >

Page 44

LOGICAL flag
INTEGER(kind = MPI_ADDRESS_KIND) val, xstate

CALL MPI_COMM_CREATE_KEYVAL(MPI_COMM_NULL_COPY_FN, &
 MPI_COMM_NULL_DELETE_FN, key, xstate, ierr)
CALL C_attr_set(key)
CALL MPI_COMM_GET_ATTR(MPI_COMM_SELF, key, val, flag, ierr)
IF(val.NE.4444) CALL ERROR
END

B. Integer attribute, Fortran to C

Fortran code

PROGRAM TEST
USE MPI
INTEGER key, ierr
INTEGER(kind = MPI_ADDRESS_KIND) val, xstate

CALL MPI_COMM_CREATE_KEYVAL(MPI_COMM_NULL_COPY_FN, &
 MPI_COMM_NULL_DELETE_FN, key, xstate, ierr)
val = 55555
CALL MPI_COMM_SET_ATTR(MPI_COMM_SELF, key, val, ierr)
CALL C_get_attr(key)
END

C code

void c_get_attr(MPI_Fint *key)
{
 MPI_Aint *p;
 int flag;
 MPI_Comm_get_attr(MPI_COMM_SELF, *key, &p, &flag) ;
 if (*p != 55555) error() ;
}

The deprecated Fortran attribute-manipulation functions (Section I-5.6.3) use INTEGER attribute values. Attribute
values may be truncated by these functions see Section I-5.6.3.

< previous page page_44 next page >

page_45

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_45.html[2011-2-17 2:04:46]

< previous page page_45 next page >

Page 45

Callback Functions. MPI calls may associate callback functions with MPI objects: error handlers are associated
with communicators and files, attribute copy and delete functions are associated with attribute keys, reduce
operations are associated with operation objects, etc. In a multi-language environment, a function passed in an MPI
call in one language may be invoked by an MPI call in another language. MPI implementations must make sure
that such invocation will use the calling convention of the language the function is bound to.

Advice to implementors. Callback functions need to have a language tag. This tag is set when the callback function
is passed in by the library function (which is presumably different for each language), and is used to generate the
right calling sequence when the callback function is invoked.

Error Handlers. MPI: :ERRORS_THROW_EXCEPTIONS can only be set or retrieved by C++ functions. The
result of retrieving MPI:: ERRORS_THROW_EXCEPTIONS in a non-C++ program is undefined.

If a non-C++ program causes an error that invokes the MPI::ERRORS_THROW_EXCEPTIONS error handler, the
exception will pass up the calling stack until C++ code can catch it. If there is no C++ code to catch it, the behavior
is undefined. In a multithreaded environment or if a nonblocking MPI call throws an exception while making
progress in the background, the behavior is implementation-dependent.

Advice to implementors. Error handlers in C and C++ have a stdargs argument list. It might be useful to provide to
the handler information on the language environment where the error occurred.

Reduce Operations.

Advice to users. Reduce operations receive as one of their arguments the datatype of the operands. Thus, one can
define polymorphic reduce operations that work for C, C++, and Fortran datatypes.

Addresses. Addresses and byte displacements in MPI datatypes are stored internally as address-sized integers.
Some of the deprecated MPI datatype constructor and accessor functions are passing addresses and byte
displacement via INTEGER arguments, in Fortran. When these functions (e.g., MPI_ADDRESS) are used to access
addresses or byte displacements then the address may be truncatedsee SectionI-3.11.

< previous page page_45 next page >

page_46

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_46.html[2011-2-17 2:04:46]

< previous page page_46 next page >

Page 46

2.2.8
Constants

MPI constants have the same value in all languages, unless specified otherwise. This does not apply to constant
handles (MPI_INT, MPI_COMM_WORLD, MPI_ERRORS_RETURN, MPI_SUM, etc.). These handles need to
be converted, as explained in Section 2.2.4. Constants that specify maximum lengths of strings have a value one
less in Fortran than C/C++ since in C/C++ the length includes the null terminating character. Thus, these constants
represent the amount of space which must be allocated to hold the largest possible such string, rather than the
maximum number of printable characters the string could contain.

Advice to users. This definition means that it is safe in C/C++ to allocate a buffer to receive a string using a
declaration like

char name [MPI_MAX_NAME_STRING];-

Also, reference constants such as MPI_BOTTOM, MPI_IN_PLACE, MPI_STATUS_IGNORE, and
MPI_STATUSES_IGNORE may have different values in different languages.

Advice to users. Even though MPI_BOTTOM may have different values in C and Fortran, MPI_GET_ADDRESS
will return the same answer in both languages, and absolute addresses in datatypes will designate the same location
in both languages.

Rationale. A reference constant such as MPI_BOTTOM must be in Fortran the name of a predefined static
variable, for example, a variable in an MPI-declared COMMON block. On the other hand, in C, it is natural to take
MPI_BOTTOM = 0 (Caveat: Defining MPI_BOTTOM = 0 implies that NULL pointer cannot be distinguished
from MPI_BOTTOM; it may be that MPI_BOTTOM = 1 is better). Requiring that the Fortran and C values be the
same will imply that these constants cannot be used in C in initialization expressions, and will complicate the
initialization process.

Advice to implementors. Even if MPI_BOTTOM is different in C and Fortran, one can interpret absolute addresses
stored in datatypes in the same way in both languages. MPI_GET_ADDRESS returns the address of the input
variable; displacements or absolute addresses provided as inputs to datatype constructors are stored as is in the
datatype object. When MPI_BOTTOM is passed as a buffer argument, in C or Fortran, then the buffer address is
taken to be 0.

< previous page page_46 next page >

page_47

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_47.html[2011-2-17 2:04:47]

< previous page page_47 next page >

Page 47

2.2.9
Interlanguage Communication

The type-matching rules for communications in MPI are not changed: the datatype specification for each item sent
should match, in type signature, the datatype specification used to receive this item (unless one of the types is
MPI_PACKED). Also, the type of a message item should match the type declaration for the corresponding
communication buffer location, unless the type is MPI_BYTE or MPI_PACKED. Interlanguage communication is
allowed if it complies with these rules.

Example 2.8 In the example below, a Fortran array is sent from Fortran and received in C.

! FORTRAN CODE
REAL R(5)
INTEGER TYPE, IERR, MYRANK
INTEGER(KIND=MPI_ADDRESS_KIND) ADDR

! create an absolute datatype for array R
CALL MPI_GET_ADDRESS(R, ADDR, IERR)
CALL MPI_TYPE_CREATE_STRUCT(1, 5, ADDR, MPI_REAL, TYPE, IERR)
CALL MPI_TYPE_COMMIT(TYPE, IERR)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, MYRANK, IERR)
IF (MYRANK.EQ.0) THEN
 CALL MPI_SEND(MPI_BOTTOM, 1, TYPE, 1, 0, MPI_COMM_WORLD, IERR)
ELSE
 CALL C_ROUTINE(TYPE)
END IF

/* C code */

void C_ROUTINE(MPI_Fint *fhandle)
{
 MPI_Datatype type;
 MPI_Status status;

 type = MPI_Type_f2c(*fhandle) ;

< previous page page_47 next page >

page_48

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_48.html[2011-2-17 2:04:47]

< previous page page_48 next page >

Page 48

 MPI_Recv(MPI_BOTTOM, 1, type, 0, 0, MPI_COMM_WORLD, &status);
}

MPI implementors may weaken these type-matching rules, and allow messages to be sent with Fortran types and
received with C types, and vice versa, when those types match. That is, if the Fortran type INTEGER is identical to
the C type int, then an MPI implementation may allow data to be sent with datatype MPI_INTEGER and be
received with datatype MP_LINT. However, such a code is not portable.

2.3
The Info Object.

Many of the MPI routines take an info argument, info is an opaque object which consists of (key,value) pairs (both
key and value are strings). A key may have only one value. MPI reserves several keys and requires that if an
implementation uses a reserved key, it must provide the specified functionality. An implementation is not required
to support these keys and may support any others not reserved by MPI. An info object is of type MPI_Info in C,
MPI::Info in C++, and INTEGER in Fortran.

If a function does not recognize a key, it will ignore it, unless otherwise specified. If an implementation recognizes
a key but does not recognize the format of the corresponding value, the result is undefined.

Keys have an implementation-defined maximum length of MPI_MAX_INFO_KEY (MPI::MAX_INFO_KEY in
C++). This is large enough to hold at least least 32 and at most 255 characters (and hence is between 33 and 256 in
C/C++, because of the need for the terminating null; see Section 2.2.8). Values have an implementationdefined
maximum length of MPI_MAX_INFO_VAL (MPI::MAX_INFO_VAL in C++). In Fortran, leading and trailing
spaces are stripped from both. Returned values will never be larger than these maximum lengths. Both key and
value are case-sensitive.

Advice to users. MPI_MAX_INFO_VAL might be very large, so it might not be wise to declare a string of that
size.

Rationale. It may seem somewhat of an overkill to create a new opaque MPI object, and add eight new functions
to MPI, for the mere purpose of manipulating lists of strings. However, neither Fortran nor C provide good support
for variablelength lists of variable length strings: one can code them as one string, using a reserved separator
character, but then one has to prohibit the use of this character in strings (or provide an escape sequence, further
complicating the user interface). Furthermore, such an encoding does not conveniently support the addition, update

< previous page page_48 next page >

page_49

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_49.html[2011-2-17 2:04:48]

< previous page page_49 next page >

Page 49

or deletion of entries. In addition, Fortran implementations may limit string length to 255 or lessthis is often
insufficient for long lists of optional arguments.

Keys have a maximum length because the set of known keys will always be finite and known to the
implementation and because there is no reason for keys to be complex. The small maximum size allows
applications to declare keys of size MPI_MAX_INFO_KEY. The limitation on value sizes is so that an
implementation is not forced to deal with arbitrarily long strings.

When it is an argument to a nonblocking routine, info is parsed before that routine returns, so that it may be
modified or freed immediately after return.

When the descriptions refer to a key or value as being a Boolean, an integer, or a list, they mean the string
representation of these types. An implementation may define its own rules for how info value strings are converted
to other types, but to ensure portability, every implementation must support the following representations. Legal
values for a Boolean must include the strings true and false (all lower case). For integers, legal values must include
string representations of decimal values of integers that are within the range of a standard integer type in the
program. (However, it is possible that not every legal integer is a legal value for a given key.) On positive
numbers, + signs are optional. No space may appear between a + or - sign and the leading digit of a number. For
comma-separated lists, the string must contain legal elements separated by commas. Leading and trailing spaces
are stripped automatically from the types of info values described above and for each element of a comma-
separated list. These rules apply to all info values of these types. Implementations are free to specify a different
interpretation for values of other info keys.

MPI_INFO_CREATE(info)
OUT info info object created (handle)

int MPI_Info_create(MPI_Info *info)

MPI_INFO_CREATE(INFO, IERROR)
 INTEGER INFO, IERROR

static MPI::Info MPI::Info::Create()

MPI_INFO _CREATE creates a new info object. The newly created object contains no key/value pairs.

< previous page page_49 next page >

page_50

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_50.html[2011-2-17 2:04:48]

< previous page page_50 next page >

Page 50

MPI_INFO_SET(info,key,value)
INOUT info info object (handle)
IN key key (string)
IN value value (string)

int MPI_Info_set(MPI_Info info, char *key, char *value)

MPI_INFO_SET(INFO, KEY, VALUE, IERROR)
 INTEGER INFO, IERROR
 CHARACTER*(*) KEY, VALUE

void MPI::Info::Set(const char* key, const char* value)

MPI_INFO_SET adds the (key, value) pair to info, and overrides the value if a value for the same key was
previously set. key and value are null-terminated strings in C. In Fortran, leading and trailing spaces in key and
value are stripped. If either key or value are larger than the allowed maxima, the errors MPI_ERR_INFO_KEY or
MPI_ERR_INFO_VALUE are raised, respectively.

MPI_INFO_DELETE(info,key)
INOUT info info object (handle)
IN key key (string)

int MPI_Info_delete(MPI_Info info, char *key)

MPI_INFO_DELETE(INFO, KEY, IERROR)
 INTEGER INFO, IERROR
 CHARACTER*(*) KEY

void MPI::Info::Delete(const char* key)

MPI_INFO_DELETE deletes a (key,value) pair from info. If key is not defined in info, the call raises an error of
class MPI_ERR_INFO_NOKEY.

< previous page page_50 next page >

page_51

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_51.html[2011-2-17 2:04:49]

< previous page page_51 next page >

Page 51

MPI_INFO_GET(info,key,valuelen,value,flag)

IN
info info object (handle)

IN
key key (string)

IN
valuelen length of value arg (integar)

OUT
value value (string)

OUT
flag true if key defined (logical)

int MPI_Info_get(MPI_Info info, char *key, int valuelen, char *value,
 int *flag)

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)
 INTEGER INFO, VALUELEN, IERROR
 CHARACTER*(*) KEY, VALUE
 LOGICAL FLAG

bool MPI::Info::Get(const char* key, int valuelen, char* value)
 const

This function retrieves the value associated with key in a previous call to MPI_INFO_SET. If such a key exists, it
sets flag to true and returns the value in value, otherwise it sets flag to false and leaves value unchanged, valuelen
is the number of characters available in value. If it is less than the actual size of the value, the value is truncated. In
C, valuelen should be one less than the amount of allocated space to allow for the null terminator.

If the size of key is larger than MPI_MAX_INFO_KEY, the call is erroneous.

MPI_INFO_GET_VALUELEN(info,key,valuelen,flag)

IN
info info object (handle)

IN
key key (string)

OUT
valuelen length of value arg (integer)

OUT
flag true if key defined, false if not (logical)

int MPI_Info_get_valuelen(MPI_Info info, char *key, int *valuelen,
 int *flag)

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)
 INTEGER INFO, VALUELEN, IERROR
 LOGICAL FLAG
 CHARACTER*(*) KEY

< previous page page_51 next page >

page_52

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_52.html[2011-2-17 2:04:49]

< previous page page_52 next page >

Page 52

bool MPI: :Info: :Get_valuelen(const char* key, int&valuelen) const

The function MPI_INFO_GET_VALUELEN retrieves the length of the value associated with key. If key is
defined, valuelen is set to the length of its associated value and flag is set to true. If key is not defined, valuelen is
not touched and flag is set to false. The length returned in C or C++ does not include the end-of-string character.

If key is longer than MPI_MAX_INFO_KEY, the call is erroneous.

MPI_INFO_GET_NKEYS(info,nkeys)

IN
info info object (handle)

OUT
nkeys number of defined keys (integer)

int MPI_Info_get_nkeys (MPI_Info info, int *nkeys)

MPI_INFO_GET_NKEYS (INFO, NKEYS, IERROR)
INTEGER INFO, NKEYS, IERROR
int MPI: :Info:: Get_nkeys () const

MPI_INFO_GET_NKEYS returns the number of currently defined keys in info.

MPI_INFO_GET_NTHKEY(info,n,key)

IN
info info object (handle)

IN
n key number (integer)

OUT
key key (string)

int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)
 INTEGER INFO, N, IERROR
 CHARACTER*(*) KEY

void MPI: :Info:: Get _nthkey(int n, char* key) const

This function returns the nth defined key in info. Keys are numbered 0 N 1 where N is the value returned by
MPI_INFO_GET_NKEYS. All keys between 0 and N 1 are guaranteed to be defined. The number of a given key
does not change as long as info is not modified with MPI_INFO_SET or MPI_INFO_DELETE.

< previous page page_52 next page >

page_53

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_53.html[2011-2-17 2:04:50]

< previous page page_53 next page >

Page 53

MPI_INFO_DUP(info,object(handle)

IN
info info object (handle)

OUT
newinfo info object (handle)

int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)

MPI_INFO_DUP(INFO, NEWINFO, IERROR)
 INTEGER INFO, NEWINFO, IERROR

MPI::Info MPI::Info::Dup() const

MPI_INFO_DUP duplicates an existing info object, creating a new object, with the same (key, value) pairs and the
same ordering of keys.

MPI_INFO_FREE(info)

INOUT
info info object (handle)

int MPI_Info_free(MPI_Info *info)

MPI_INFO_FREE(INFO, IERROR)
 INTEGER INFO, IERROR

void MPI::Info::Free()

This function frees info and sets it to MPI_INFO_NULL (MPI::INFO_NULL, in C++).

The value of an info argument is interpreted each time the info is passed to a routine. Changes to info after return
from the routine do not affect this interpretation.

2.4
Memory Allocation

In some systems, message-passing and remote-memory-access (RMA; see Chapter 4) operations run faster when
accessing specially allocated memory (e.g., memory that is shared by the other processes in the communicating
group on an SMP). MPI provides a mechanism for allocating and freeing such special memory. The use of such
memory for message passing or RMA is not mandatory, and this memory can be

< previous page page_53 next page >

page_54

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_54.html[2011-2-17 2:04:50]

< previous page page_54 next page >

Page 54

used without restrictions as any other dynamically allocated memory. However, implementations may restrict the
use of the MPI_WIN_LOCK and MPI_WIN_UNLOCK functions to windows allocated in such memory (see
Section 4.4.3.)

MPI_ALLOC_MEM(size,info,baseptr)

IN
size size of memory segment in bytes

IN
info info argument (handle)

OUT
baseptr pointer to beginning of memory segment allocated

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)
 INTEGER INFO, IERROR
 INTEGER (KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

void* MPI::Alloc_mem(MPI::Aint size, const MPI::Info& info)

The info argument can be used to provide directives that control the desired location of the allocated memory. Such
a directive does not affect the semantics of the call. Valid info values are implementation-dependent; a null
directive value of info = MPI_INFO_NULL is always valid.

The function MPI_ALLOC_MEM may return an error code of class MPI_ERR_NO_MEM to indicate it failed
because memory is exhausted.

MPI_FREE_MEM (base)

IN
base initial address of memory segment allocated by MPI_ALLOC_MEM

int MPI_Free_mem (void *base)

MPI_FREE_MEM (BASE, IERROR)
 <type> BASE(*)
 INTEGER IERROR

void MPI::Free_mem (void *base)

The function MPI_FREE_MEM may return an error code of class MPI_ERR_BASE to indicate an invalid base
argument.

< previous page page_54 next page >

page_55

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_55.html[2011-2-17 2:04:51]

< previous page page_55 next page >

Page 55

Rationale. The C and C++ bindings of MPI_ALLOC_MEM and MPI_FREE_MEM are similar to the bindings for
the malloc and free C library calls: a call to MPI_Alloc_mem(, &base) should be paired with a call to
MPI_Free_mem(base) (one less level of indirection). Both arguments are declared to be of same type void* so as
to facilitate type casting. The Fortran binding is consistent with the C and C++ bindings: the Fortran
MPI_ALLOC_MEM call returns in baseptr the (integer valued) address of the allocated memory. The base
argument of MPI_FREE_MEM is a choice argument, which passes (a reference to) the variable stored at that
location.

Advice to implementors. If MPI_ALLOC_MEM allocates special memory, then a design similar to the design of C
malloc and free functions must be used, in order to find out the size of a memory segment, when the segment is
freed. If no special memory is used, MPI_ALLOC_MEM simply invokes malloc, and MPI_FREE_MEM invokes
free.

A call to MPI_ALLOC_MEM can be used in shared memory systems to allocate memory in a shared memory
segment.

Example 2.9 Example of use of MPI_ALLOC_MEM, in Fortran with pointer support. We assume 4-byte REALs,
and assume that pointers are address-sized.

REAL A
POINTER (P, A(100,100)) ! no memory is allocated
CALL MPI_ALLOC_MEM(4*100*100, MPI_INFO_NULL, P, IERR)
! memory is allocated
...
A(3,5) = 2.71;
...
CALL MPI_FREE_MEM(A, IERR) ! memory is freed

Since standard Fortran does not support (C-like) pointers, this code is not Fortran 77 or Fortran 90 code. Some
compilers (in particular, at the time of writing, g77 and Fortran compilers for Windows) do not support this code.
Even if a Fortran compiler does not support C-like pointers, it is usually possible to allocate memory in C and pass
the address of the allocated memory to a Fortran routine.

Example 2.10 Same example, in C:

float (* f)[100][100] ;
MPI_Alloc_mem(sizeof(float)*100*100, MPI_INFO_NULL, &f);
...

< previous page page_55 next page >

page_56

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_56.html[2011-2-17 2:04:51]

< previous page page_56 next page >

Page 56

(*f) [5] [3] = 2.71 ;
...
MPI_Free_mem(f) ;

< previous page page_56 next page >

page_57

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_57.html[2011-2-17 2:04:52]

< previous page page_57 next page >

Page 57

3
Process Creation and Management

In this chapter we present MPI's functions for creating new MPI processes from within an MPI program. We also
describe the MPI mechanisms that allow two independently started MPI programs to establish contact and begin to
communicate with one another.

3.1 Introduction

MPI-1 provides an interface that allows processes in a parallel program to communicate with one another. MPI-1
specifies neither how the processes are created nor how they establish communication. Moreover, an MPI-1
application is static; no processes can be added to or deleted from an application after it has been started.

MPI users asked that the MPI-1 model be extended to allow process creation and management after an MPI
application has been started. A major impetus came from the PVM [8] research effort, which provided a wealth of
experience that illustrates the benefits and potential pitfalls of resource control and process management. An early
discussion on one possible approach to dynamic processes in MPI is provided in [9].

The MPI Forum decided not to address resource control in MPI-2 because the members were not able to design a
portable interface that would be appropriate for the broad spectrum of existing and potential resource and process
controllers. Resource control can encompass a wide range of abilities, including adding and deleting nodes from a
virtual parallel machine, reserving and scheduling resources, managing compute partitions of an MPP, and
returning information about available resources. MPI-2 assumes that resource control is provided
externallyprobably by computer vendors in the case of tightly coupled systems, or by a third party software
package when the environment is a cluster of workstations.

The reasons for adding process management to MPI are both technical and practical. Technically, important classes
of message-passing applications require process control. These include task farms, serial applications with parallel
modules, and problems that require a runtime assessment of the number and type of processes that should be
started. On the practical side, users of workstation clusters who are migrating from PVM to MPI may be
accustomed to using PVM's capabilities for process and resource management. The lack of these features is a
practical stumbling block to migration.

< previous page page_57 next page >

page_58

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_58.html[2011-2-17 2:04:52]

< previous page page_58 next page >

Page 58

While process management is essential, all agreed that adding it to MPI should not compromise the portability or
performance of MPI applications. In particular, the Forum identified the following requirements:

The MPI-2 process model must apply to the vast majority of current parallel environments. These include
everything from tightly integrated MPPs to heterogeneous networks of workstations.

MPI must not take over operating system responsibilities. It should instead provide a clean interface between an
application and system software.

MPI must continue to guarantee communication determinism, that is, process management must not introduce
unavoidable race conditions.

MPI-1 programs must work under MPI-2. That is, the MPI-1 static process model must be a special case of the
MPI-2 dynamic model.

The MPI-2 process management model addresses these issues in two ways. First, MPI remains primarily a
communication library. It does not manage the parallel environment in which a parallel program executes, although
it provides a minimal interface between an application and external resource and process managers.

Second, MPI-2 does not change the concept of communicator. Once a communicator is built, it behaves as
specified in MPI-1. A communicator is never changed after being created, and it is always created by using
deterministic collective operations.

3.2 The MPI-2 Process Model

The MPI-2 process model allows for the creation and cooperative termination of processes after an MPI application
has started. It provides a mechanism to establish communication between the newly created processes and the
existing MPI application. It also provides a mechanism to establish communication between two existing MPI
applications, even when one did not start the other.

3.2.1 Starting Processes.

MPI applications may start new processes through an interface to an external process manager, which can range
from a parallel operating system (CMOST) to layered software (POE) to an rsh command (p4).

< previous page page_58 next page >

page_59

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_59.html[2011-2-17 2:04:53]

< previous page page_59 next page >

Page 59

MPI_COMM_SPAWN starts MPI processes and establishes communication with them, returning an
intercommunicator. MPI_COMM_SPAWN_MULTIPLE starts several different binaries (or the same binary with
different arguments), placing them in the same MPI_COMM_WORLD and returning an intercommunicator.

MPI uses the existing group abstraction to represent processes. A process is identified by a (group, rank) pair.

3.2.2 The Runtime Environment

The MPI_COMM_SPAWN and MPI_COMM_SPAWN_MULTIPLE routines provide an interface between MPI
and the runtime environment of an MPI application. The difficulty is that there is an enormous range of runtime
environments and application requirements, and MPI must not be tailored to any particular one. The following are
examples of such environments:

MPP managed by a batch queuing system. Batch queuing systems generally allocate resources before an
application begins, enforce limits on resource use (CPU time, memory use, etc.), and do not allow a change in
resource allocation after a job begins. Moreover, many MPPs have special limitations or extensions, such as a limit
on the number of processes that may run on one processor, or the ability to gang-schedule processes of a parallel
application.

Network of workstations with PVM. PVM allows a user to create a virtual machine out of a network of
workstations. An application may extend the virtual machine or manage processes (create, kill, redirect output, etc.)
through the PVM library. Requests to manage the machine or processes may be intercepted and handled by an
external resource manager.

Network of workstations managed by a load balancing system. A load balancing system may choose the location of
spawned processes based on dynamic quantities, such as load average. The system may transparently migrate
processes from one machine to another when a resource becomes unavailable.

Large Symmetric Multiprocessor (SMP) with Unix. On SMPs, applications are run directly by the user. They are
scheduled at a low level by the operating system. Processes may have special scheduling characteristics (gang-
scheduling, processor affinity, deadline scheduling, processor locking, etc.) and be subject to operating system
resource limits (number of processes, amount of memory, etc.).

MPI assumes the existence of a parallel environment in which an application runs. It does not provide operating
system services, such as a general ability to query

< previous page page_59 next page >

page_60

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_60.html[2011-2-17 2:04:53]

< previous page page_60 next page >

Page 60

what processes are running, to kill arbitrary processes, or to find out properties of the runtime environment (how
many processors, how much memory, etc.).

Complex interaction of an MPI application with its runtime environment should be done through an environment-
specific application programming interface (API). An example of such an API would be the PVM task and
machine management routines,pvm_addhosts, pvm_config, pvm_tasks, etc., perhaps modified to
return an MPI (group,rank) pair when possible. A Condor or PBS API would be another example.

At some low level, obviously, MPI must be able to interact with the runtime system, but the interaction is not
visible at the application level, and the details of the interaction are not specified by the MPI standard.

In many cases, environment-specific information cannot be kept out of the MPI interface without seriously
compromising MPI functionality. Hence, many MPI routines take an info argument that allows an application to
specify environments specific information. There is a tradeoff between functionality and portability, however:
applications that make use of info are not portable.

MPI does not require an underlying virtual machine model, in which there is a consistent global view of an MPI
application and an implicit operating system for managing resources and processes. For instance, processes
spawned by one task may not be visible to another; additional hosts added to the runtime environment by one
process may not be visible in another process; tasks spawned by different processes may not be automatically
distributed over available resources.

Interaction between MPI and the runtime environment is limited to the following areas:

A process may start new processes with MPI_COMM_SPAWN and MPI_COMM_SPAWN_MULTIPLE.

When a process spawns a child process, it may optionally use an info argument to tell the runtime environment
where or how to start the process. This extra information may be opaque to MPI.

An attribute MPI_UNIVERSE_SIZE on MPI_COMM_WORLD tells a program how large the initial runtime
environment is, namely how many processes can usefully be started in all. One can subtract the size of
MPI_COMM_WORLD from this value to find out how many processes may usefully be started in addition to
those already running.

< previous page page_60 next page >

page_61

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_61.html[2011-2-17 2:04:54]

< previous page page_61 next page >

Page 61

3.3 Process Manager Interface

In this section we describe the MPI functions by which an MPI program requests that new MPI processes be started.
The original processes may or may not subsequently communicate with the new processes.

3.3.1 Processes in MPI

A process is represented in MPI by a (group, rank) pair. A (group, rank) pair specifies a unique process, but a process
does not determine a unique (group, rank) pair, since a process may belong to several groups.

3.3.2 Starting Processes and Establishing Communication

The following routine starts a number of MPI processes and establishes communication with them, returning an
intercommunicator.

Advice to users. It is possible in MPI to start a static SPMD or MPMD application by starting one process and having
that process start its siblings with MPI_COMM_SPAWN. This practice is discouraged, however, primarily for reasons
of performance. If possible, one should start all processes at once, as a single MPI application.

MPI_COMM_SPAWN(command,argv,maxprocs,info,root,comm,intercomm,array_of_errcodes)
IN command name of program to be spawned (string, significant only at root)
IN argv arguments to command (array of strings, significant only at root)
IN maxprocs maximum number of processes to start (integer, significant only at root)
IN info a set of key-value pairs telling the runtime system where and how to start the processes

(handle, significant only at root)
IN root rank of processes in which previous arguments are examined (integer)
IN comm intracommunicator containing group of spawning processes (handle)
OUTintercomm intercommunicator between original group and the newly spawned group (handle)
OUTarray_of_errcodesone code per processes (array of integer)

< previous page page_61 next page >

page_62

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_62.html[2011-2-17 2:04:54]

< previous page page_62 next page >

Page 62

int MPI_Comm_spawn(char *command, char **argv, int maxprocs, MPI_Info
 info, int root, MPI_Comm comm, MPI_Comm *intercomm,
 int *array_of_errcodes)

MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,
 ARRAY_OF_ERRCODES, IERROR)
 CHARACTER*(*) COMMAND, ARGV(*)
 INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM,
 ARRAY_OF_ERRCODES(*), IERROR

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,
 const char* argv[], int maxprocs, const MPI::Info& info,
 int root, int array_of_errcodes[]) const

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,
 const char* argv[], int maxprocs, const MPI::Info& info,
 int root) const

MPI_COMM_SPAWN tries to start maxprocs identical copies of the MPI program specified by command,
establishing communication with them and returning an intercommunicator. The spawned processes are referred to
as children, and the processes that spawned them are called the parents.The children have their own
MPI_COMM_WORLD, which is separate from that of the parents. The routine MPL_COMM_SPAWN is
collective over comm and may not return until MPI_INIT has been called in the children. Similarly, MPI_INIT in
the children may not return until all parents have called MPI_COMM_SPAWN. In this sense,
MPI_COMM_SPAWN in the parents and MPI_INIT in the children form a collective operation over the union of
parent and child processes. The intercommunicator returned by MPI_COMM_SPAWN contains the parent
processes in the local group and the child processes in the remote group. The ordering of processes in the local and
remote groups is the same as the ordering of the group of the comm in the parents and of MPI_COMM_WORLD
of the children, respectively. This intercommunicator can be obtained in the children through the function
MPI_COMM_GET_PARENT.

Advice to users. An implementation may automatically establish communication before MPI_INIT is called by the
children. Thus, completion of MPI_COMM_SPAWN in the parent does not necessarily mean that MPI_INIT has
been called in the children (although the returned intercommunicator can be used immediately).

< previous page page_62 next page >

page_63

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_63.html[2011-2-17 2:04:55]

< previous page page_63 next page >

Page 63

The command argument. The command argument is a string containing the name of a program to be spawned. In
C, the string is null-terminated. In Fortran, leading and trailing spaces are stripped. MPI does not specify how to
find the executable or how to determine the working directory. These rules are implementation-dependent and
should be appropriate for the runtime environment. Some of this information can be communicated via the info
argument (See Section 3.3.4).

Advice to implementors. The implementation should use a natural rule for finding executables and determining
working directories. For instance, a homogeneous system with a global file system might look first in the working
directory of the spawning process or might search the directories in a PATH environment variable, as do Unix
shells. An implementation on top of PVM would use PVM's rules for finding executables (usually in
$HOME/pvm3/bin/$). An MPI implementation running under POE on an IBM SP would use POE's method of
finding executables. An implementation should document its rules for finding executables and determining
working directories, and a high-quality implementation should give the user some control over these rules.

If the program named in command does not call MPI_INIT, but instead forks a process that calls MPI_INIT, the
results are undefined. Implementations may allow this practice but are not required to.

Advice to users. MPI does not specify what happens if the program to be started is a shell script and that shell
script starts a program that calls MPI_INIT. Although some implementations may allow this practice, they may
also have restrictions, such as requiring that arguments supplied to the shell script be supplied to the program, or
requiring that certain parts of the environment not be changed.

The argv argument. The argv argument is an array of strings containing arguments that are passed to the program.
The first element of argv is the first argument passed to command, not (as is conventional in some contexts) the
command itself. The argument list is terminated by NULL in C and C++ and an empty string in Fortran. In
Fortran, leading and trailing spaces are always stripped, so that a string consisting of all spaces is considered an
empty string. The constant MPI_ARGV_NULL (MPI::ARGV_NULL in C++) may be used in any language to
indicate an empty argument list. In C and C++, this constant is the same as NULL.

Example 3.1 Examples of argv in C and Fortran..

To run the program ocean with arguments -gridfile and oceanl.grd in C:

< previous page page_63 next page >

page_64

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_64.html[2011-2-17 2:04:55]

< previous page page_64 next page >

Page 64

 char command[] = ocean;
 char *argv[] = [-gridfile, oceanl.grd, NULL};
 MPI_Comm_spawn(command, argv, ...);

If not everything is known at compile time:

 char *command;
 char **argv;
 command =ocean;
 argv = (char **)malloc(3 * sizeof(char *));
 argv[0] = -gridfile;
 argv[1] = ocean1.grd;
 argv[2] = NULL;
 MPI_Comm_spawn(command, argv, ...);

In Fortran:

 CHARACTER*25 command, argv(3)
 command = ' ocean '
 argv(1) = ' -gridfile '
 argv(2) = ' ocean1.grd'
 argv(3) = ' '
 call MPI_COMM_SPAWN(command, argv, ...)

Arguments are supplied to the program if this procedure is allowed by the operating system. In C, the
MPI_COMM_SPAWN argument argv differs from the argv argument of main in two respects. First, it is shifted
by one element. Specifically, argv [0] of main is provided by the implementation and conventionally contains
the name of the program (given by command). The second argument, argv [1], of main corresponds to argv[0] in
MPI_COMM_SPAWN, argv[2] of main corresponds to argv[1] of MPI_COMM_SPAWN, and so on. Second,
argv of MPI_COMM_SPAWN must be null-terminated, so that its length can be determined. Passing an argv of
MPI_ARGV_NULL to MPI_COMM_SPAWN results in main receiving argc of 1 and an argv whose element
0 is (conventionally) the name of the program.

If a Fortran implementation supplies routines that allow a program to obtain its arguments, the arguments may be
available through that mechanism. In C, if the operating system does not support arguments appearing in argv of
main(), the MPI implementation may add the arguments to the argv that is passed to MPI_INIT.

< previous page page_64 next page >

page_65

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_65.html[2011-2-17 2:04:56]

< previous page page_65 next page >

Page 65

The maxprocs argument. MPI tries to spawn maxprocs processes. If it is unable to do so, it raises an error of
class MPI_ERR_SPAWN.

An implementation may allow the info argument to change the default behavior such that, if the implementation is
unable to spawn all maxprocs processes, it may spawn a smaller number of processes instead of raising an error.
In principle, the info argument may specify an arbitrary set {mi : 0 < mi < maxprocs} of allowed values for the
number of processes spawned. The set {mi} does not necessarily include the value maxprocs. If an
implementation is able to spawn one of these allowed numbers of processes, MPI_COMM_SPAWN returns
successfully and the number of spawned processes, m, is given by the size of the remote group of intercomm. If
m is less than maxprocs, reasons why the other processes were not spawned are given in
array_of_errcodes as described below. If it is not possible to spawn one of the allowed numbers of
processes, MPI_COMM_SPAWN raises an error of class MPI_ERR_SPAWN.

A spawn call with the default behavior is called hard. A spawn call for which fewer than maxprocs processes may
be returned is called soft.See Section 3.3.4 for more information on the soft key for info.

Advice to users. By default, requests are hard and MPI errors are fatal. Hence, by default, there will be a fatal error
if MPI cannot spawn all the requested processes. To obtain the behavior spawn as many processes as possible, up
to N the user should do a soft spawn, where the set of allowed values {mi} is {0N}. However, this strategy is not
completely portable, since implementations are not required to support soft spawning.

The info argument. The info argument to all of the routines in this chapter is an opaque handle of type
MPI_lnfo in C, MPI::lnfo in C++, and INTEGER in Fortran. It is a container for a number of user-specified
(key,value) pairs, where key and value are strings (null-terminated char* in C, character*(*) in Fortran).
Routines that create and manipulate the info argument are described in Section 2.3.

For the SPAWN calls, info provides additional (and possibly implementationdependent) instructions to MPI and
the runtime system on how to start processes. An application may pass MPI_INFO_NULL in C or Fortran, or
MPI::INFO_NULL in C++. Portable programs not requiring detailed control over process locations should use
MPI_INFO_NULL.

MPI does not specify the content of the info argument, except to reserve a number of special key values (see
Section 3.3.4). The info argument is quite flexible and can even be used, for example, to specify the executable
and its command-line arguments. In this case the command argument to MPI_COMM_SPAWN can be

< previous page page_65 next page >

page_66

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_66.html[2011-2-17 2:04:56]

< previous page page_66 next page >

Page 66

empty. This capability follows from the fact that MPI does not specify how an executable is found, and the info
argument can tell the runtime system where to find the executable (empty string). Of course, such a program will
not be portable across MPI implementations.

The root argument. All arguments before the root argument are examined only on the process whose rank in
comm is equal to root. The value of these arguments on other processes is ignored.

The array_of_errcodes argument. The array_of_errcodes is an array of length maxprocs in which
MPI reports the status of each process that MPI was requested to start. If all maxprocs processes were spawned,
array_of_errcodes is filled in with the value MPI_SUCCESS. If only m (0 < m < maxprocs) processes are
spawned, m of the entries will contain MPI_SUCCESS and the rest will contain an implementationspecific error
code indicating the reason MPI could not start the process. MPI does not specify which entries correspond to failed
processes. An implementation may, for instance, fill in error codes in one-to-one correspondence with a detailed
specification in the info argument. These error codes all belong to the error class MPI_ERR_SPAWN if there
was no error in the argument list. In C or Fortran, an application may pass MPI_ERRCODES_IGNORE if it is not
interested in the error codes. In C++ this constant does not exist, and the array_of_errcodes argument may
be omitted from the argument list.

Advice to implementors. MPI_ERRCODES_IGNORE in Fortran is a special type of constant, like MPI_BOTTOM.
See the discussion in Section 1.5.4.

MPI_COMM_GET_PARENT(parent)

OUT
parent the parent communicator (handle)

int MPI_Comm_get_parent(MPI_Comm *parent)

MPI_COMM_GET_PARENT (PARENT, IERROR)
 INTEGER PARENT, IERROR

static MPI::Intercomm MPI::Comm::Get_parent()

If a process was started with MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE,
MPI_COMM_GET_PARENT returns theparent intercommunicator

< previous page page_66 next page >

page_67

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_67.html[2011-2-17 2:04:57]

< previous page page_67 next page >

Page 67

of the current process. This parent intercommunicator is created implicitly inside of MPI_INIT and is the same
intercommunicator returned by SPAWN in the parents.

If the process was not started by MPI_COMM_SPAWN, MPI_COMM_GET_PARENT returns
MPI_COMM_NULL.

After the parent communicator is freed or disconnected, the function MPI_COMM_GET_PARENT returns
MPI_COMM_NULL.

Advice to users. MPI_COMM_GET_PARENT returns a handle to a single intercommunicator. Calling
MPI_COMM_GET_PARENT a second time returns a handle to the same intercommunicator. Freeing the handle
with MPI_COMM_DISCONNECT or MPI_COMM_FREE will cause other references to the intercommunicator to
become invalid. Note that calling MPI_COMM_FREE on the parent communicator is not useful.

Rationale. The Forum wished to create a constant MPI_COMM_PARENT similar to MPI_COMM_WORLD.
Unfortunately, such a constant cannot be used (syntactically) as an argument to MPI_COMM_DISCONNECT,
which is explicitly allowed.

3.3.3 Starting Multiple Executables and Establishing Communication

While MPI_COMM_SPAWN is sufficient for most cases, it does not allow the spawning of multiple binaries or of
the same binary with multiple sets of arguments. The following routine spawns multiple binaries or the same binary
with multiple sets of arguments, establishing communication with them and placing them in the same
MPI_COMM_WORLD.

MPI_COMM_SPAWN_MULTIPLE(count,array_of_commands,array_of
_argv,array_of_maxprocs,array_of _info, root,
comm,intercomm, array_of_errcodes)
INcount number of commands (positive integer, significant to MPI

only at root see advice to users)
INarray_of_commandsprograms to be executed (array of strings, significant only at

root)
INarray_of_argv arguments for commands (array of array of strings,

significant only at root)
INarray_of_maxprocsmaximum number of processes to start for each command

(array of integer, significant only at root)
INarray_of_info info objects telling the runtime system where and how to start

processes (array of handles, significant only at root)

(table continued on next page)

< previous page page_67 next page >

page_68

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_68.html[2011-2-17 2:04:57]

< previous page page_68 next page >

Page 68

(table continued from previous page)

IN root rank of processes in which previous arguments are
examined (integer)

IN comm intracommunicator containing group of spawning processes
(handle)

OUTintercomm intercommunicator between original group and newly
spawned group (handle)

OUTarray_of_errcodesone error code per processes (array of integer)

int MPI_Comm_spawn_multiple(int count, char **array_of_commands,
 char ***array_of_argv, int *array_of_maxprocs,
 MPI_Info *array_of_info, int root, MPI_Comm_comm,
 MPI_Comm *intercomm, int *array_of_errcodes)

MPI_COMM_SPAWN_MULTIPLE (COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,
 ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,
 ARRAY_OF_ERRCODES, IERROR)
 INTEGER COUNT, ARRAY_OF_INFO(*), ARRAY_OF_MAXPROCS(*), ROOT,
 COMM, INTERCOMM, ARRAY_OF_ERRCODES (*), IERROR
 CHARACTER* (*) ARRAY_OF_COMMANDS (*), ARRAY_OF_ARGV(COUNT, *)

MPI::Intercomm MPI::Intracomm::Spawn_multiple(int count,
 const char* array_of_commands [], const char** array_of_argv [],
 const int array_of_maxprocs [], const MPI:: Info array_of_info[],
 int root, int array_of_errcodes [])

MPI::Intercomm MPI::Intracomm::Spawn_multiple(int count,
 const char* array_of_commands [], const char** array_of_argv [],
 const int array_of_maxprocs [], const MPI:: Info array_of_info [],
 int root)

MPI_COMM_SPAWN_MULTIPLE is identical to MPI_COMM_SPAWN except that there are multiple
executable specifications. The first argument, count, gives the number of specifications. The next four arguments
are simply arrays of the corresponding arguments in MPI_COMM_SPAWN. For the Fortran version of
array_of_argv, the element array_of_argv(i,j) is the jth argument to the ith command.

Rationale. This approach may seem backwards to Fortran programmers who are familiar with Fortran's column-
major ordering. However, it is necessary in order to allow MPI_COMM_SPAWN to sort out arguments. Note that
the leading dimension of array_of_argv must be the same as count.

< previous page page_68 next page >

page_69

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_69.html[2011-2-17 2:04:58]

< previous page page_69 next page >

Page 69

Advice to users. The argument count is interpreted by MPI only at the root, as is array_of_argv. Since the leading
dimension of array_of_argv is count, a nonpositive value of count at a nonroot node could theoretically cause a
runtime bounds check error, even though array_of_argv should be ignored by the subroutine. If such an error
happens, the user should explicitly supply a reasonable value of count on the nonroot nodes.

In any language, an application may use the constant MPI_ARGVS_NULL (MPI::_ARGVS_NULL in C++) to
specify that no arguments should be passed to any commands. This constant is likely to be (char ***)0 in C. The
effect of setting individual elements of array_of_argv to MPI_ARGV_NULL is not defined. To specify arguments
for some commands but not others, the commands without arguments should have a corresponding argv whose first
element is null ((char *)0 in C and empty string in Fortran).

All of the spawned processes have the same MPI_COMM_WORLD. Their ranks in MPI_COMM_WORLD
correspond directly to the order in which the commands are specified in MPI_COMM_SPAWN_MULTIPLE.
Assume that m1 processes are generated by the first command, m2 by the second, etc. The processes corresponding
to the first command have ranks 0,1,...,m1-1. The processes in the second command have
ranksm1,m1+1,...,m1+m2-1. The process second command have ranks. The 1. The processes in the third have
ranks m1+m2,m1+m2+1...,m1+m2+m3-1,etc.

Advice to users. Calling MPI_COMM_SPAWN multiple times would create many sets of children with different
MPI_COMM_WORLDs, whereas MPI_COMM_SPAWN_MULTIPLE creates children with a single
MPI_COMM_WORLD. Hence the two methods are not completely equivalent. For performance reasons, the user
should call MPI_COMM_SPAWN_MULTIPLE instead of calling MPI_COMM_SPAWN several times. Spawning
several things at once may be faster than spawning them sequentially. Moreover, in some implementations,
communication between processes spawned at the same time may be faster than communication between processes
spawned separately.

The array_of_errcodes argument is a one-dimensional array of size where ni is the ith element of
array_of_maxprocs. Command number i corresponds to the ni contiguous slots in this array from element

 Error codes are treated as for MPI_COMM_SPAWN.

< previous page page_69 next page >

page_70

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_70.html[2011-2-17 2:04:59]

< previous page page_70 next page >

Page 70

Example 3.2 Examples of array_of_argv in C and Fortran

To run the program ocean with arguments -gridfile and ocean1.grd and the program atmos with argument
atmos.grd in C:

 char *array_of_commands[2] = {ocean, atmos};
 char **array_of_argv[2];
 char *argv0[] = {-gridfile, ocean1.grd, (char *)0};
 char *argv1[] = {atmos.grd, (char *)0};
 array_of_argv[0] = argv0;
 array_of_argv[1] = argv1;
 MPI_Comm_spawn_multiple(2, array_of_commands, array_of_argv,
 ...);

In Fortran:

 CHARACTER*25 commands(2), array_of_argv(2,3)
 commands(1) = ' ocean '
 array_of_argv(1, 1) =' -gridfile '
 array_of_argv(1,2) =' ocean1.grd'
 array_of_argv(1, 3) = ' '

 commands(2) = ' atmos '
 array_of_argv(2, 1) = ' atmos.grd '
 array_of_argv(2, 2) = ' '

 call MPI_COMM_SPAWN_MULTIPLE(2, commands, array_of_argv, ...)

3.3.4 Reserved info keys

The MPI Forum decided, after some effort, not to try to define a universal process manager interface, because of
the great variety of process managers. Instead, the info argument to MPI_SPAWN is used to communicate
information to the process manager, thus allowing nonstandard (and hence nonportable) parameters. Nevertheless,
to encourage as much portability as possible, the following small set of info keys is reserved. An implementation is
not required to interpret these keys; but if it does, it must provide the functionality described.

host: Value is a hostname. The format of the hostname is determined by the implementation.

arch: Value is an architecture name. Valid architecture names and their meanings are determined by the
implementation.

< previous page page_70 next page >

page_71

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_71.html[2011-2-17 2:04:59]

< previous page page_71 next page >

Page 71

wdir: Value is the name of a directory on a machine on which the spawned process(es) execute(s). This directory is
made the working directory of the executing process(es). The format of the directory name is determined by the
implementation.

path: Value is a directory or set of directories where the implementation should look for the executable. The format
of path is determined by the implementation.

file: Value is the name of a file in which additional information is specified. The format of the filename and
internal format of the file are determined by the implementation.

soft: Value specifies a set of numbers which are allowed values for the number of processes that
MPI_COMM_SPAWNand other such routines may create. The format of the value is a comma-separated list of
Fortran-90 triplets each of which specifies a set of integers and which together specify the set formed by the union
of these sets. Negative values in this set and values greater than maxprocs are ignored. MPI will spawn the largest
number of processes it can, consistent with some number in the set. The order in which triplets are given is not
significant.

By Fortran-90 triplets, we mean the following:

1. a means a.

2. a:b means a,.

3. a:b:c means a,a+c,a+2c,...,a+ck, where for c > 0, k is the largest integer for which a+ck < b and for c < 0, k is
the largest integer for which a+ck<b. If b > a, then c must be positive. If b < a, then c must be negative.

Examples:

1. a:b gives a range between a and b.

2. 0:N gives full soft functionality.

3. 1,2,4,8,16,32,64,128,256,512,1024,2048,4096 allows a power of two number of processes.

4. 2:10000:2 allows an even number of processes.

5. 2:10:2,7 allows 2,4, 6,7,8, or 10 processes.

/* manager */
#include mpi.h
int main(int argc, char **argv)
{

< previous page page_71 next page >

page_72

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_72.html[2011-2-17 2:05:00]

< previous page page_72 next page >

Page 72

int world_size, universe_size, *universe_sizep, flag;
MPI_Comm everyone; /* intercommunicator */
char worker_program[100];

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

if (world_size != 1)
 error(Top heavy with management);

MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,
 &universe_sizep, &flag);
if (!flag) {
 printf(This MPI does not support UNIVERSE_SIZE.);
 printf(How many processes total?);
 scanf(%d, &universe_size);
} else
 universe_size = *universe_sizep;
if (universe_size == 1)
 error(No room to start workers);

/*
* Now spawn the workers. Note that there is a runtime
* determination of what type of worker to spawn, and presumably
* this calculation must be done at run time and cannot be
* calculated before starting the program. If everything is
* known when the application is first started, it is generally
* better to start them all at once in a single MPI_COMM_WORLD.
*/

choose_worker_program(worker_program);
MPI_Comm_spawn(worker_program, MPI_ARGV_NULL, universe_size-1,
 MPI_INFO_NULL, 0, MPI_COMM_SELF, &everyone,
 MPI_ERRCODES_IGNORE);
/*
* Parallel code here. The communicator everyone can be used
* to communicate with the spawned processes, which have ranks
* 0,...,MPI_UNIVERSE_SIZE-1 in the remote group of the

< previous page page_72 next page >

page_73

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_73.html[2011-2-17 2:05:00]

< previous page page_73 next page >

Page 73

 * intercommunicator everyone. An MPI_Bcast using this
 * communicator will broadcast just to the workers.
 */

 MPI_Finalize();
 return 0;
}

/* worker */

#include mpi.h
int main(int argc, char **argv)
{
 int size;
 MPI_Comm parent;
 MPI_Init(&argc, &argv);
 MPI_Comm_get_parent(&parent);
 if (parent == MPI_COMM_NULL) error(No parent!);
 MPI_Comm_remote_size(parent, &size);
 if (size != 1) error(Something's wrong with the parent);

 /*
 * Parallel code here.
 * The manager is represented as the process with rank 0 in (the
 * remote group of) MPI_COMM_PARENT. If the workers need to
 * communicate among themselves, they can use MPI_COMM_WORLD.
 */

 MPI_Finalize();
 return 0;
}

3.4 Establishing Communication

This section discusses functions that establish communication between two sets of MPI processes that do not share
a communicator.

< previous page page_73 next page >

page_74

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_74.html[2011-2-17 2:05:01]

< previous page page_74 next page >

Page 74

Some situations in which these functions are useful are the following:

Two parts of an application that are started independently need to communicate.

A visualization tool wants to attach to a running process.

A server wants to accept connections from multiple clients. Both clients and server may be parallel programs.

In each of these situations, MPI must establish communication channels where none existed before and where no
parent/child relationship exists. The routines described in this section establish communication between the two
sets of processes by creating an MPI intercommunicator, where the two groups of the intercommunicator are the
original sets of processes.

Establishing contact between two groups of processes that do not share an existing communicator is a collective
but asymmetric process. One group of processes indicates its willingness to accept connections from other groups
of processes. We call this group the (parallel) server even if this is not a client/server type of application. The other
group connects to the server; we call it the client.

Advice to users. While the names client and server are used throughout this section, MPI does not guarantee the
traditional robustness of client/server systems. The functionality described in this section is intended to allow two
cooperating parts of the same application to communicate with one another. For instance, a client that gets a
segmentation fault and dies or one that doesn't participate in a collective operation may cause a server to crash or
hang.

3.4.1 Names, Addresses, Ports, and All That

Almost all of the complexity in MPI client/server routines addresses the question How does the client find out how
to contact the server? The difficulty, of course, is that no communication channel exists between them, yet they
must somehow agree on a rendezvous point where they will establish communicationCatch 22.

Agreeing on a rendezvous point always involves a third party. The third party may itself provide the rendezvous
point or may communicate rendezvous information from server to client. Complicating matters might be the fact
that a client may not really care which server it contacts, only that it be able to get in touch with one that can
handle its request.

Ideally, MPI can accommodate a wide variety of runtime systems while retaining the ability to write simple
portable code. The following should be compatible with MPI:

< previous page page_74 next page >

page_75

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_75.html[2011-2-17 2:05:01]

< previous page page_75 next page >

Page 75

The server resides at a well-known Internet address host: port.

The server prints out an address to the terminal, and the user gives this address to the client program.

The server places the address information on a nameserver,

The server to which the client connects is actually a broker, acting as a middleman between the client and the real
server.

Since MPI does not require a nameserver, not all implementations will be able to support all of the above
scenarios. However, MPI provides an optional nameserver interface and is compatible with external nameservers.

A port_name is a system-supplied string that encodes a low-level network address at which a server can be
contacted. Typically this is an IP address and a port number, but an implementation is free to use any protocol. The
server establishes a port_name with the MPL_OPEN_PORT routine. It accepts a connection to a given port with
MPI_COMM_ACCEPT. A client uses port_name to connect to the server.

By itself, the port_name mechanism is completely portable, but it may be clumsy to use because of the necessity
to communicate port_name to the client. It is more convenient if a server can specify that it is known by an
application-supplied service_name so that the client can connect to that service_-name without knowing
the port_-name.

An MPI implementation may allow the server to publish a (port_name, service_name) pair
withMPI_PUBLISH_-NAME and may allow the client to retrieve the port name from the service name with
MPL_LOOKUP_NAME. This approach allows three levels of portability, with increasing levels of functionality.

1. Applications that do not rely on the ability to publish names are the most portable. Typically, the port_name
must be transferred by hand from server to client.

2. Applications that use the MPI_PUBLISH_NAME mechanism are completely portable among implementations
that provide this service. To be portable among all implementations, these applications should have a fall-back
mechanism that can be used when names are not published.

3. Applications may ignore MPI's name publishing functionality and use their own mechanism (possibly system
supplied) to publish names. This approach allows arbitrary flexibility but is not portable.

< previous page page_75 next page >

page_76

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_76.html[2011-2-17 2:05:02]

< previous page page_76 next page >

Page 76

3.4.2
Server Routines.

A server makes itself available with two routines. First, it must call MPI_OPEN_PORT to establish a port at which
it may be contacted. Second, it must call MPI_COMM_ACCEPT to accept connections from clients.

MPI_OPEN_PORT info, port_name)

IN
info implementation-specific information on how to establish an address (handle)

OUT
port_name newly established port (string)

int MPI_Open_port(MPI_Info info, char *port_name)

MPI_OPEN_PORT(INFO, PORT_NAME, IERROR) -
 CHARACTER*(*) PORT_NAME
 INTEGER INFO, IERROR

void MPI::0pen_port(const MPI::Info& info, char* port_name)

This function establishes a network address, encoded in the port_name string, at which the server will be able to
accept connections from clients. The port_name is supplied by the system, possibly using information in the
info argument.

MPI copies a system-supplied port name into port_name The port_name argument identifies the newly
opened port and can be used by a client to contact the server. The maximum size string that may be supplied by the
system is MPL_MAX_PORT_-NAME (MPI::MAX_PORT_NAME in C++).

Advice to users. The system copies the port name into port_name The application must pass a buffer of
sufficient size to hold this value.

The port name is essentially a network address. It is unique within the communication universe to which it belongs
(determined by the implementation) and may be used by any client within that communication universe. For
instance, if it is an Internet (host: port) address, it will be unique on the Internet. If it is a low-level switch
address on an IBM SP, it will be unique to that SP.

Advice to implementors. These examples are not meant to constrain implementations. A port_name could, for
instance, contain a user name or the name of a batch job, as long as it is unique within some well-defined
communication domain. The

< previous page page_76 next page >

page_77

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_77.html[2011-2-17 2:05:02]

< previous page page_77 next page >

Page 77

larger the communication domain, the more useful MPI's client/server functionality will be.

The precise form of the address is implementation defined. For instance, an Internet address may be a host name or
IP address or anything that the implementation can decode into an IP address. A port name may be reused after it is
freed with MPI_CLOSE_PORT and released by the system.

Advice to implementors. Since the user may type in port_name by hand, it is useful to choose a form that is easily
readable and does not have embedded spaces.

One can use info to tell the implementation how to establish the address. It may, and usually will, be
MPI_INFO_NULL in order to get the implementation defaults. There are no reserved keys.

MPI_CLOSE_PORT(port_name)

IN
port_name a port (string)

int MPI_Close_port(char *port_name)

MPI_CLOSE_PORT (PORT_NAME, IERROR)
 CHARACTER*(*) PORT_NAME
 INTEGER IERROR

void MPI::Close_port(const char* port_name)

This function releases the network address represented by port_name

MPI_COMM_ACCEPT(port_name, info, root, comm, newcomm)

IN
port_nameport name (string, used only on root)

IN
info implementation-dependent information (handle, used only on

root)

IN
root rank in comm of root node (integer)

IN
comm intracommunicator over which call is collective (handle)

OUT
newcomm intercommunicator with client as remote group (handle)

< previous page page_77 next page >

page_78

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_78.html[2011-2-17 2:05:03]

< previous page page_78 next page >

Page 78

int MPI_Comm_accept(char *port_name, MPI_Info info, int root,
 MPI_Comm comm, MPI_Comm *newcomm)

MPI_COMM_ACCEPT (PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
 CHARACTER*(*) PORT_NAME
 INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI::Intercomm MPI::Intracomm::Accept(const char* port_name,
 const MPI::Info& info, int root) const

MPI_COMM_ACCEPT establishes communication with a client. It is collective over the calling communicator. It
returns an intercommunicator that allows communication with the client.

The port_name must have been established through a call to MPI_OPEN_PORT.

The argument info is an implementation-defined string that may allow fine control over the
MPI_COMM_ACCEPT call.

Note that MPI_COMM_ACCEPT is a blocking call. A user may implement a nonblocking accept by issuing an
MPI_COMM_ACCEPT in a separate thread.

3.4.3
Client Routines

The client side has only one routine.

MPI_COMM_CONNECT(port_name, info, root, comm, newcomm)

IN
port_namenetwork address (string, used only on root)

IN
info implementation-dependent information (handle, used only on

root)

IN
root rant in comm of root node (integer)

IN
comm intracommunicator over which call is collective (handle)

OUT
newcomm intercommunicator with server as remote group (handle)

int MPI_Comm_connect(char *port_name, MPI_Info info, int root,
 MPI_Comm comm, MPI_Comm *newcomm)

MPI_COMM_CONNECT (PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)
 CHARACTER*(*) PORT_NAME
 INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

< previous page page_78 next page >

page_79

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_79.html[2011-2-17 2:05:03]

< previous page page_79 next page >

Page 79

MPI::Intercomm MPI::Intracomm::Connect(const char* port_name,
 const MPI::Info¨ info, int root) const

This routine establishes communication with a server specified by port_name. It is collective over the calling
communicator and returns an intercommunicator in which the remote group participated in an
MPI_COMM_ACCEPT

If the named port does not exist (or has been closed), MPI_COMM_CONNECT raises an error of class
MPI_ERR_PORT.

If the port exists but does not have a pending MPI_COMM_ACCEPT, the connection attempt will eventually time
out after an implementation-defined time or succeed when the server calls MPI_COMM_ACCEPT. In the case of
a time out, MPI_COMM_CONNECT raises an error of class MPI_ERR_PORT.

Advice to implementors. The time out period may be arbitrarily short or long. However, a high-quality
implementation will try to queue connection attempts so that a server can handle simultaneous requests from
several clients. A high-quality implementation may also provide a mechanism, through the info arguments to
MPI_OPEN_PORT, MPI_COMM_ACCEPT and/or MPI_COMM_CONNECT, for the user to control timeout and
queuing behavior.

MPI provides no guarantee of fairness in servicing connection attempts. That is, connection attempts are not
necessarily satisfied in the order they were initiated, and competition from other connection attempts may prevent
a particular connection attempt from being satisfied.

The port_name argument is the address of the server. It must be the same as the name returned by
MPI_OPEN_PORT on the server. Some freedom is allowed here: an implementation may accept equivalent forms
of port_name For instance, if port_name is (hostname:port), an implementation may accept
(ip_address:port) as well.

3.4.4
Name Publishing

The routines in this section provide a mechanism for publishing names. A pair, (service_name, port_name),
is published by the server and may be retrieved by a client using the service_name only. An MPI
implementation defines the scope of the service_name, that is, the domain over which the service_name
can be retrieved. If the domain is the empty set (i.e., if no client can retrieve the information), we say that name
publishing is not supported. Implementations should document how the scope is determined. High-quality
implementations will give some control to users

< previous page page_79 next page >

page_80

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_80.html[2011-2-17 2:05:04]

< previous page page_80 next page >

Page 80

through the info arguments to name-publishing functions. Examples are given in the descriptions of individual
functions.

MPI_PUBLISH_NAME(service_name, info, port_name)

IN
service_name a service name to associate with the port (string)

IN
info implementation-specific information (handle)

IN
port_name a port name (string)

int MPI_Publish_name(char *service_name, MPI_Info info,
 char *port_name)

MPI_PUBLISH_NAME (SERVICE_NAME, INFO, PORT_NAME, IERROR)
 INTEGER INFO, IERROR
 CHARACTER* (*) SERVICE_NAME, PORT_NAME

void MPI::Publish_name(const char* service_name,
 const MPI::Info& info, const char* port_name)

This routine publishes the pair (port_name, service_name) so that an application may retrieve a system-supplied
port_name using a well-known service_name.

The implementation must define the scope of a published service name, that is, the domain over which the service
name is unique and, conversely, the domain over which the (port name, service name) pair may be retrieved. For
instance, a service name may be unique to a job (where job is defined by a distributed operating system or batch
scheduler), unique to a machine, or unique to a Kerberos realm. The scope may depend on the info argument to
MPI_PUBLISH_NAME.

MPI permits publishing more than one service_name for a single port_name. On the other hand, if service_name
has already been published within the scope determined by info, the behavior of MPI_PUBLISH_NAME is
undefined. An MPI implementation may, through a mechanism in the info argument to MPI_PUBLISH_NAME,
provide a way to allow multiple servers with the same service in the same scope. In this case, an implementation-
defined policy will determine which of several port names is returned by MPI_LOOKUP_NAME.

Note that while service_name has a limited scope, determined by the implementation, port_name always has global
scope within the communication universe used by the implementation (i.e., it is globally unique).

The port_name argument should be the name of a port established by MPI_OPEN_PORT and not yet deleted by
MPI_CLOSE_PORT. If it is not, the result is undefined.

< previous page page_80 next page >

page_81

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_81.html[2011-2-17 2:05:05]

< previous page page_81 next page >

Page 81

Advice to implementors. In some cases, an MPI implementation may use a name service that a user can also access
directly. In this case, a name published by MPI could easily conflict with a name published by a user. In order to
avoid such conflicts, MPI implementations should mangle service names so that they are unlikely to conflict with
user code that makes use of the same service. Such name mangling will, of course, be completely transparent to the
user.

The following situation is problematic but unavoidable if we wish to allow implementations to use nameservers.
Suppose multiple instances of ocean are running on a machine. If the scope of a service name is confined to a job,
multiple oceans can coexist. If an implementation provides site_wide scope, however, multiple instances are not
possible, because all calls to MPI_PUBLISH_NAME after the first may fail. There is no universal solution to this
problem. To handle these situations, a high-quality implementation should make it possible to limit the domain over
which names are published.

MPI_UNPUBLISH_NAME(service_name, info, port_name)

IN
service_name a service name (string)

IN
info implementation-specific information (handle)

IN
port_name a port name (string)

int MPI_Unpublish_name(char *service_name, MPI_Info info, char *port_name)

MPI_UNPUBLISH_NAME (SERVICE_NAME, INFO, PORT_NAME, IERROR)
 INTEGER INFO, IERROR
 CHARACTER* (*) SERVICE_NAME, PORT_NAME

void MPI::Unpublish_name(const char* service_name,
 const MPI::Info& info, const char* port_name)

This routine unpu blishes a service name that has been previously published. Attempting to unpublish a name that
has not been published or has already been unpublished raises an error of class MPI_ERR_SERVICE.

All published names must be unpublished before the corresponding port is closed and before the publishing process
exits. The behavior of MPI_UNPUBLISH_NAME is implementation-dependent when a process tries to unpublish a
name that it did not publish.

< previous page page_81 next page >

page_82

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_82.html[2011-2-17 2:05:05]

< previous page page_82 next page >

Page 82

If the info argument was used with MPI_PUBLISH_NAME to tell the implementation how to publish names, the
implementation may require that info passed to MPI_UNPUBLISH_NAME contain information to tell the
implementation how to unpublish a name.

MPI_LOOKUP_NAME(service_name,info, port_name)

IN
service_name a service name (string)

IN
info implementation-specific information (handle)

IN
port_name a port name (string)

int MPI_Lookup_name (char *service_name, MPI_Info info, char *port_name)

MPI_LOOKUP_NAME (SERVICE_NAME, INFO, PORT_NAME, IERROR)
 CHARACTER* (*) SERVICE_NAME, PORT_NAME
 INTEGER INFO, IERROR

void MPI:: Lookup_name (const char* service_name,
 const MPI::Info& info, char* port_name)

This function retrieves a port_name published by MPI_PUBLISH_NAME with service_name. If service_name
has not been published, it raises an error of class MPI_ERR_-NAME. The application must supply a port_name
buffer large enough to hold the largest possible port name (see the preceding discussion under MPI_OPEN_-
PORT).

If an implementation allows multiple entries with the same service_name within the same scope, a particular
port_name is chosen in a way determined by the implementation.

If the info argument was used with MPI_PUBLISH_NAME to tell the implementation how to publish names, a
similar info argument may be required for MPI_LOOKUP_-NAME.

3.4.5
Reserved Key Values

The following key values are reserved. An implementation is not required to interpret these key values; but if it
does, it must provide the functionality described.

ip_port: Value contains IP port number at which to establish a port. (Reserved for MPI_OPEN_PORT only.)

< previous page page_82 next page >

page_83

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_83.html[2011-2-17 2:05:06]

< previous page page_83 next page >

Page 83

ip_address: Value contains IP address at which to establish a port. If the address is not a valid IP address of
the host on which the MPI_OPEN_PORT call is made, the results are undefined. (Reserved for MPI_OPEN_PORT
only.)

3.4.6
Client/Server Examples

Example 3.3 The following example shows the simplest way to use the client/server interface. It does not use
service names at all.

On the server side:

char myport[MPI_MAX_PORT_NAME];
MPI_Comm intercomm;
/* ... */
MPI_Open_port(MPI_INFO_NULL, myport);
printf(port name is: %s\n, myport);

MPI_Comm_accept(myport, MPI_INFO_NULL, 0, MPI_COMM_SELF,
 &intercomm);
/* do something with intercomm */

The server prints out the port name to the terminal, and the user must type it in when starting up the client
(assuming the MPI implementation supports stdin such that this works).

On the client side:

MPI_Comm intercomm;
char name[MPI_MAX_PORT_NAME];
printf(enter port name:);
gets(name);
MPI_Comm_connect(name, MPI_INFO_NULL, O, MPI_COMM_SELF,
 &intercomm);

Example 3.4 In this example, the ocean application is the server side of a coupled ocean-atmosphere climate
model. It assumes that the MPI implementation publishes names.

MPI_Open_port(MPI_INFO_NULL, port_name);
MPI_Publish_name(ocean, MPI_INFO_NULL, port_name);

MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF,

< previous page page_83 next page >

page_84

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_84.html[2011-2-17 2:05:06]

< previous page page_84 next page >

Page 84

 &intercomm);
/* do something with intercomm */
MPI_Unpublish_name(ocean, MPI_INFO_NULL, port_name);

On the client side:

MPI_Lookup_name(ocean, MPI_INFO_NULL, port_name);
MPI_Comm_connect(port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF,
 &intercomm);

Example 3.5 This is a simple client-server example. The server accepts only a single connection at a time and
serves that connection until it receives a message with tag 1, that is, until the client requests to be disconnected. A
message with tag 0 tells the server to exit. The server is a single process.

#include mpi.h
int main(int argc, char **argv)
{
 MPI_Comm client;
 MPI_Status status;
 char port_name[MPI_MAX_PORT_NAME];
 double buf[MAX_DATA];
 int size, again;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 if (size != 1) error(FATAL, Server too big);
 MPI_Open_port(MPI_INFO_NULL, port_name);
 printf(server available at %s\n,port_name);
 while (1) {
 MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,
 &client);
 again = 1;
 while (again) {
 MPI_Recv(buf, MAX_DATA, MPI_DOUBLE,
 MPI_ANY_SOURCE, MPI_ANY_TAG, client, &status);
 switch (status.MPI_TAG) {
 case 0: MPI_Comm_free(&client);
 MPI_Close_port(port_name);

< previous page page_84 next page >

page_85

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_85.html[2011-2-17 2:05:07]

< previous page page_85 next page >

Page 85

 MPI_Finalize();
 return 0;
 case 1: MPI_Comm_disconnect(&client);
 again = 0;
 break;
 case 2: /* do something */
 ...
 default:
 /* Unexpected message type */
 MPI_Abort(MPI_COMM_WORLD, 1);
 }
 }
 }
}

Here is the client.

#include mpi.h
int main(int argc, char **argv)
{
 MPI_Comm server;
 double buf[MAX_DATA];
 char port_name[MPI_MAX_PORT_NAME];

 MPI_Init(&argc, &argv);
 strcpy(port_name, argv[1]);/* assume server's name is
 cmd-line arg */

 MPI_Comm_connect(port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,
 &server);

 while (!done) {
 tag = 2; /* Action to perform */
 MPI_Send(buf, n, MPI_DOUBLE, 0, tag, server);
 /* etc */
 }
 MPI_Send(buf, 0, MPI_DOUBLE, 0, 1, server);
 MPI_Comm_disconnect(&server);
 MPI_Finalize();

< previous page page_85 next page >

page_86

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_86.html[2011-2-17 2:05:07]

< previous page page_86 next page >

Page 86

 return 0;
}

3.5
Other Functionality.

In this section we discuss the remaining MPI features for dynamic process management.

3.5.1
Universe Size

Many dynamic MPI applications are expected to exist in a static runtime environment, in which resources have
been allocated before the application is run, When one of these quasi-static applications is run, the user (or
possibly a batch system) will usually specify a number of processes to start and a total number of processes that
are expected. An application needs to know how many slots there are, that is, how many processes it should spawn.

MPI provides the attribute MPI_UNIVERSE_SIZE (MPI::UNIVERSE_SIZE in C++) on MPI_COMM_WORLD
that allows the application to obtain this information in a portable manner. This attribute indicates the total number
of processes that are expected. In Fortran, the attribute is the integer value. In C, the attribute is a pointer to the
integer value. An application typically subtracts the size of MPI_COMM_WORLD from MPI_UNIVERSE_SIZE
to find out how many processes it should spawn. MPI_UNIVERSE_SIZE is initialized in MPI_INIT and is not
changed by MPI. If defined, it has the same value on all processes of MPI_COMM_WORLD.
MPI_UNIVERSE_SIZE is determined by the application startup mechanism in a way not specified by MPI. (The
size of MPI_COMM_WORLD is another example of such a parameter.)

Possibilities for how MPI_UNIVERSE_SIZE might be set include

A -universe_size argument to a program that starts MPI processes, such as mpiexec (see Section I-7.1).

Automatic interaction with a batch scheduler to figure out how many processors have been allocated to an
application.

An environment variable set by the user.

Extra information passed to MPI_COMM_SPAWN through the info argument.

An implementation must document how MPI_UNIVERSE_SIZE is set. If an implementation does not support the
ability to set MPI_UNIVERSE_SIZE, the attribute MPI_UNIVERSE_SIZE is not set.

< previous page page_86 next page >

page_87

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_87.html[2011-2-17 2:05:08]

< previous page page_87 next page >

Page 87

MPI_UNIVERSE_SIZE is a recommendation, not necessarily a hard limit. For instance, some implementations
may allow an application to spawn 50 processes per processor, if requested. However, the user probably only wants
to spawn only one process per processor.

MPI_UNIVERSE_SIZE is assumed to have been specified when an application was started and is, in essence, a
portable mechanism to allow the user to pass to the application (through the MPI process startup mechanism, such
as mpiexec) a piece of critical runtime information. Note that no interaction with the runtime environment is
required. If the runtime environment changes size while an application is running, MPI_UNIVERSE_SIZE is not
updated, and the application must find out about the change through direct communication with the runtime
system.

3.5.2
Singleton MPI_INIT

A high-quality implementation will allow any process (including those not started with a parallel application
mechanism) to become an MPI process by calling MPI_INIT. Such a process can then connect to other MPI
processes by using the MPI_COMM_ACCEPT and MPI_COMM_CONNECT routines, or spawn other MPI
processes. MPI does not mandate that this facility (a program can become a singleprocess MPI program, no matter
how it was originally started), but strongly encourages it where technically feasible.

Advice to implementors. To start an MPI-1 application with more than one process requires special coordination.
The processes must be started at the same time; they also must have a mechanism to establish communication.
Either the user or the operating system must take special steps beyond simply starting processes.

When an application enters MPI_INIT, clearly it must be able to determine whether these special steps were taken.
MPI-1 does not say what happens if these special steps were not taken; presumably this situation is treated as an
error in starting the MPI application. MPI-2 recommends the following behavior.

If a process enters MPI_INIT and determines that no special steps were taken (i.e., it has not been given the
information to form an MPI_COMM_WORLD with other processes), it succeeds and forms a singleton MPI
program (i.e., one in which MPI_COMM_WORLD has size 1).

In some implementations, MPI may not be able to function without an MPI environment. For example, MPI may
require that demons be running, or MPI may not be able to work at all on the front-end of an MPP. In this case, an
MPI implementation may either

< previous page page_87 next page >

page_88

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_88.html[2011-2-17 2:05:08]

< previous page page_88 next page >

Page 88

1. create the environment (e.g., start a demon) or

2. raise an error if it cannot create the environment and the environment has not been started independently.

A high-quality implementation will try to create a singleton MPI process and not raise an error.

3.5.3
MPI_APPNUM

MPI has a predefined attribute MPI_APPNUM (MPI::APPNUM in C++) of MPI_COMM_WORLD. In Fortran,
the attribute is an integer value. In C, the attribute is a pointer to an integer value. If a process was spawned with
MPI_COMM_SPAWN_MULTIPLE, the command number MPI_APPNUM generated the current process.
Numbering starts from zero. If a process was spawned with MPI_COMM_SPAWN, it will have MPI_APPNUM
equal to zero.

If the process was started not by a spawn call, but by an implementation-specific startup mechanism that can
handle multiple process specifications, MPI_APPNUM should be set to the number of the corresponding process
specification. In particular, if it is started with

mpiexec specO : spec1 : spec2

MPI_APPNUM should be set to the number of the corresponding specification.

If an application was not spawned with MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE, and if
MPI_APPNUM doesn't make sense in the context of the implementation-specific startup mechanism,
MPI_APPNUM is not set.

MPI implementations may optionally provide a mechanism to override the value of MPI_APPNUM through the
info argument. MPI reserves the following key for all SPAWN calls.

appnum: Value contains an integer that overrides the default value for MPI_APPNUM in the child.

Rationale. When a single application is started, it is able to figure out how many processes there are by looking at
the size of MPI_COMM_WORLD. On the other hand, an application consisting of multiple subapplications, each
of which is a single-program-multiple-data parallel (SPMD) program, has no general mechanism to find out how
many subapplications there are and to which subapplication the process belongs.

< previous page page_88 next page >

page_89

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_89.html[2011-2-17 2:05:09]

< previous page page_89 next page >

Page 89

3.5.4
Releasing Connections

Before a client and server connect, they are independent MPI applications. An error in one does not affect the
other. After a connection is established with MPI_COMM_CONNECT and MPI_COMM_ACCEPT, however, an
error in one may affect the other. Hence, it is desirable that a client and server be able to disconnect so that an
error in one will not affect the other. Similarly, it might be desirable for a parent and child to disconnect so that
errors in the child do not affect the parent, or vice versa.

Two processes are connected if there is a communication path (direct or indirect) between them. More precisely:

1. Two processes are connected if

(a) they both belong to the same communicator (interor-orintra-, including MPI_COMM_WORLD),

(b) they have previously belonged to a communicator that was freed with MPI_COMM_FREE instead of
MPI_COMM_DISCONNECT, or

(c) they both belong to the group of the same window or filehandle.

2. If A is connected to B and B to C, then A is connected to C.

Two processes are disconnected (also independent) if they are not connected.

By the above definitions, connectivity is a transitive property, and divides the universe of MPI processes into
disconnected (independent) sets (equivalence classes) of processes.

Processes that are connected but don't share the same MPI_COMM_WORLD may become disconnected
(independent) if the communication path between them is broken by using MPI_COMM_DISCONNECT.

The following additional rules apply to MPI functions:

MPI_FINALIZE is collective over a set of connected processes.

MPI_ABORT does not abort independent processes. As in MPI-1, it may abort all processes in
MPI_COMM_WORLD (ignoring its comm argument). Additionally, it may abort connected processes, though it
makes a best attempt to abort only the processes in comm.

If a process terminates without calling MPI_FINALIZE, independent processes are not affected, but the effect on
connected processes is not defined.

< previous page page_89 next page >

page_90

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_90.html[2011-2-17 2:05:10]

< previous page page_90 next page >

Page 90

MPI_COMM_DISCONNECT(comm)

INOUT
comm communicator (handle)

int MPI_Comm_disconnect(MPI_Comm *comm)

MPI_COMM_DISCONNECT(COMM, IERROR)
 INTEGER COMM, IERROR

void MPI::Comm::Disconnect()

This function waits for all pending communication on comm to complete internally, deallocates the communicator
object, and sets the handle to MPI_COMM_NULL. It is a collective operation. It may not be called with the
communicator MPI_COMM_WORLD or MPI_COMM_SELF.

MPI_COMM_DISCONNECT may be called only if all communication is complete and matched, so that buffered
data can be delivered to its destination. This requirement is the same as for MPI_FINALIZE.

MPI_COMM_DISCONNECT has the same action as MPI_COMM_FREE, except that it waits for pending
communication to finish internally and enables the guarantee about the behavior of disconnected processes.

Advice to users. To disconnect two processes the user may need to call MPI_COMM_DISCONNECT,
MPI_WIN_FREE, and MPI_FILE_CLOSE to remove all communication paths between the two processes. Note
that it may be necessary to disconnect several communicators (or to free several windows or files) before two
processes are completely independent.

Rationale. It would be nice to be able to use MPI_COMM_FREE instead, but that function explicitly does not wait
for pending communication to complete.

3.5.5
Another Way to Establish MPI Communication.

If two MPI programs do not share a communicator but have established non-MPI communication via a socket, the
socket can be used to bootstrap MPI communication.

< previous page page_90 next page >

page_91

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_91.html[2011-2-17 2:05:10]

< previous page page_91 next page >

Page 91

MPI_COMM_JOIN(fd, intercomm)

IN
fd socket file descriptor

OUT
intercomm new intercommunicator (handle)

int MPI_Comm_join(int fd, MPI_Comm *intercomm)

MPI_COMM_JOIN(FD, INTERCOMM, IERROR)
 INTEGER FD, INTERCOMM, IERROR

static MPI::Intercomm MPI::Comm::Join(const int fd)

MPI_COMM_JOIN is intended for MPI implementations that exist in an environment supporting the Berkeley
Socket interface [18, 21]. Implementations that exist in an environment not supporting Berkeley Sockets should
provide the entry point for MPI_COMM_JOIN and should return MPI_COMM_NULL.

This call creates an intercommunicator from the union of two MPI processes that are connected by a socket.
MPI_COMM_JOIN should succeed if the local and remote processes have access to the same implementation-
defined MPI communication universe.

Advice to users. An MPI implementation may require a specific communication medium for MPI communication,
such as a shared-memory segment or a special switch. In this case, it may not be possible for two processes to
successfully join even if there is a socket connecting them and they are using the same MPI implementation.

Advice to implementors. A high-quality implementation will attempt to establish communication over a slow
medium if its preferred one is not available. If implementations do not do so, they must document why they cannot
do MPI communication over the medium used by the socket (especially if the socket is a TCP connection).

fd is a file descriptor representing a socket of type SOCK_STREAM (a two-way reliable byte-stream connection).
Nonblocking I/O and asynchronous notification via SIGIO must not be enabled for the socket. The socket must be
in a connected state. The socket must be quiescent when MPI_COMM_JOIN is called (see below). The application
must create the socket by using standard socket API calls.

< previous page page_91 next page >

page_92

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_92.html[2011-2-17 2:05:11]

< previous page page_92 next page >

Page 92

MPI_COMM_JOIN must be called by the process at each end of the socket. It does not return until both processes
have called MPI_COMM_JOIN. The two processes are referred to as the local and remote processes.

MPI uses the socket to bootstrap creation of the intercommunicator, and for nothing else. Upon return from
MPI_COMM_JOIN, the file descriptor will be open and quiescent (see below).

If MPI is unable to create an intercommunicator, but is able to leave the socket in its original state with no pending
communication, it succeeds and sets intercomm to MPI_COMM_NULL.

The socket must be quiescent before MPI_COMM_JOIN is called and after MPI_COMM_JOIN returns. More
specifically, on entry to MPI_COMM_JOIN, a read on the socket will not read any data that was written to the
socket before the remote process called MPI_COMM_JOIN. On exit from MPI_COMM_JOIN, a read will not read
any data that was written to the socket before the remote process returned from MPI_COMM_JOIN. It is the
responsibility of the application to ensure the first condition, and the responsibility of the MPI implementation to
ensure the second. In a multithreaded application, either the application must ensure that one thread does not access
the socket while another is calling MPI_COMM_JOIN, or it must call MPI_COMM_JOIN concurrently.

Advice to implementors. MPI is free to use any available communication path(s) for MPI messages in the new
communicator; the socket is used only for the initial handshaking.

MPI_COMM_JOIN uses non-MPI communication to do its work. The interaction of non-MPI communication with
pending MPI communication is not defined. Therefore, the result of calling MPI_COMM_JOIN on two connected
processes (see Section 3.5.4 for the definition of connected) is undefined.

The returned communicator may be used to establish MPI communication with additional processes, through the
usual MPI communicator-creation mechanisms.

< previous page page_92 next page >

page_93

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_93.html[2011-2-17 2:05:11]

< previous page page_93 next page >

Page 93

4
One-Sided Communication

In this chapter we describe the extension that most dramatically modifies the programming model of MPI-1. One-
sided communication significantly expands the set of parallel algorithms that can be expressed in MPI.

4.1
Introduction

Remote Memory Access (RMA) extends the communication mechanisms of MPI by allowing one process to
specify all communication parameters, both for the sending side and for the receiving side. This mode of
communication facilitates the coding of some applications with dynamically changing data access patterns where
the data distribution is fixed or slowly changing. In such a case, each process can compute what data it needs to
access or update at other processes. However, processes may not know which data items in their own memories
need to be accessed or updated by remote processes, and may not even know the identity of these processes. Thus,
the transfer parameters are all available only on one side. Regular send/receive communication requires matching
operations by sender and receiver. In order to issue the matching operations, an application needs to distribute the
transfer parameters. This may require all processes to participate in a time-consuming global computation, or to
periodically poll for potential communication requests to receive and act upon. The use of RMA communication
mechanisms avoids the need for global computations or explicit polling. A generic example of this nature is the
execution of an assignment of the form A = B(map), where map is a permutation vector, and A, B and map
are distributed in the same manner.

Message-passing communication achieves two effects: communication of data from sender to receiver and
synchronization of sender with receiver. The RMA design separates these two functions. Three communication
calls are provided:MPI_PUT (remote write), MPI_GET (remote read), and MPI_ACCUMULATE(remote update).
A larger number of synchronization calls are provided that support different synchronization styles. The design is
similar to that of weakly coherent memory systems: correct ordering of memory accesses has to be imposed by the
user, using synchronization calls; the implementation can delay communication operations until the
synchronization calls occur, for efficiency.

The design of the RMA functions allows implementors to take advantage, in many cases, of fast communication
mechanisms provided by various platforms, such as coherent or noncoherent shared memory, DMA engines,
hardware-supported put/get operations, communication coprocessors, etc.

< previous page page_93 next page >

page_94

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_94.html[2011-2-17 2:05:12]

< previous page page_94 next page >

Page 94

It is important to note that the MPI one-sided operations do not provide a sharedmemory programming model or
support for direct shared-memory programming.

This chapter is organized as follows. First, the concept of a memory window is introduced, along with the routines
used to create and free the MPI object representing a collection of windows. Next, the RMA communication
routines are described, along with some examples of their use. All RMA communication routines are nonblocking.
This is followed by the RMA synchronization calls (recall that with RMA, we wish to synchronize many RMA
communication calls with a single synchronization step, so the send/receive completion routines such as
MPI_WAIT are not appropriate). Finally, a careful description of the semantics and correct use of the RMA
operations is described; this makes precise what happens when, for example, several processes access the same
remote window.

The major new concepts in this chapter are those of a window (Section 4.2), access and exposure epochs of
windows, and RMA synchronization (both in Section 4.4).

We shall denote by origin the process that performs the RMA call, and by target the process in which the memory
is accessed. Thus, in a put operation, source=origin and destination=target; in a get operation, source=target and
destination=origin.

4.2
Initialization

Before any RMA operation may be used, MPI must be informed what parts of a process's memory will be used
with RMA operations and what other processes may access that memory. Just as an MPI communicator is used to
identify both the processes, as well as providing a separate context, in send-receive operations, a window object
(MPI_Win in C) identifies the memory and processes that one-sided operations may act on. Just as for
communicators, the user may define many overlapping window objects.

4.2.1
Window Creation

The initialization operation allows each process in an intracommunicator group to specify, in a collective operation,
a window in its memory that is made accessible to accesses by remote processes. The call returns an opaque object
that represents the group of processes that own and access the set of windows, and the attributes of each window,
as specified by the initialization call.

< previous page page_94 next page >

page_95

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_95.html[2011-2-17 2:05:12]

< previous page page_95 next page >

Page 95

MPI_WIN_CREATE(base,size,disp_unit,info,comm,win)

IN
base initial address of window (choice)

IN
size size of window in bytes (nonnegative integer)

IN
disp_unit local unit size for displacements, in bytes (positive integer)

IN
info info argument (handle)

IN
comm communicator (handle)

OUT
win window object returned by the call (handle)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit,
 MPI_Info info, MPI_Comm comm, MPI_Win *win)

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)
 <type> BASE(*)
 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE
 INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

static MPI::Win MPI::Win::Create(const void* base, MPI::Aint size,
 int disp_unit, const MPI::Info& info, const MPI::Intracomm& comm)

This is a collective call executed by all processes in the group of comm. It returns a window object that can be
used by these processes to perform RMA operations. Each process specifies a window of existing memory that it
exposes to RMA accesses by the processes in the group of comm. The window consists of size bytes, starting at
address base. A process may elect to expose no memory by specifying size = 0.

The displacement unit argument is provided to facilitate address arithmetic in RMA operations: the target
displacement argument of an RMA operation is scaled by the factor disp_unit specified by the target process, at
window creation.

Note that the object represented by MPI_Win is a collection of

windows, not an individual window.

Rationale. The window size is specified using an address-sized integer, so as to allow windows that span more than
4 GB of address space. (Even if the physical memory size is less than 4 GB, the address range may be larger than 4
GB, if addresses are not contiguous.)

Advice to users. Common choices for disp_unit are 1 (no scaling), and (C syntax) sizeof(type). for a window that
consists of an array of elements of type type. The latter choice will allow one to use array indices in RMA calls,
and have those scaled correctly to byte displacements, even in a heterogeneous environment.

< previous page page_95 next page >

page_96

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_96.html[2011-2-17 2:05:13]

< previous page page_96 next page >

Page 96

The info argument provides optimization hints to the runtime system about the expected usage pattern of the
window. The following info key is predefined:

no_locks: if set to true, then the implementation may assume that the local window is never locked (by a call to
MPI_WIN_LOCK). This implies that this window is not used for 3-party communication, and RMA can be
implemented with no (or less) asynchronous agent activity at this process.

The various processes in the group of comm may specify completely different target windows, in location, size,
displacement units and info arguments. As long as all the get, put, and accumulate accesses to a particular
process fit their specific target window this should pose no problem. The same area in memory may appear in
multiple windows, each associated with a different window object. However, concurrent communications to
distinct, overlapping windows may lead to erroneous results. See Section 4.7 for more details.

Advice to users. A window can be created in any part of the process memory. However, on some systems, the
performance of windows in memory allocated by MPI_ALLOC_MEM (Section 2.4) will be better. Also, on some
systems, performance is improved when window boundaries are aligned at natural boundaries (word, double-word,
cache line, page frame, etc.).

Advice to implementors. In cases where RMA operations use different mechanisms in different memory areas (e.g.,
load/store in a shared-memory segment, and an asynchronous handler in private memory), the
MPI_WIN_CREATE call needs to figure out which type of memory is used for the window. To do so, MPI
maintains, internally, the list of memory segments allocated by MPI_ALLOC_MEM, or by other, implementation
specific, mechanisms, together with information on the type of memory segment allocated. When a call to
MPI_WIN_CREATE occurs, MPI checks which segment contains each window, and decides, accordingly, which
mechanism to use for RMA operations.

Vendors may provide additional, implementation-specific mechanisms to allow such memory to be used for static
variables.

Implementors should document any performance impact of window alignment.

MPI_WIN_FREE (win)
INOUT win window object (handle)

< previous page page_96 next page >

page_97

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_97.html[2011-2-17 2:05:14]

< previous page page_97 next page >

Page 97

int MPI_Win_free(MPI_Win *win)

MPI_WIN_FREE(WIN, IERROR)
 INTEGER WIN, IERROR

void MPI::Win::Free()

MPI_WIN_FREE frees the window object win and returns a null handle (equal to MPI_WIN_NULL in C and
Fortran and MPI::WIN_NULL in C++). This is a collective call executed by all processes in the group associated
with win. MPI_WIN_FREE (win) can be invoked by a process only after it has completed its involvement in RMA
communications on window object win: that is, the process has called MPI_WIN_FENCE, or called
MPI_WIN_WAIT to match a previous call to MPI_WIN_POST, or called MPI_WIN_COMPLETE to match a
previous call to MPI_WIN_START, or called MPI_WIN_UNLOCK to match a previous call to
MPI_WIN_LOCK. When the call returns, the window memory can be freed.

Advice to implementors. MPI_WIN_FREE requires a barrier synchronization: no process can return from free until
all processes in the group of win have called free. This requirement ensures that no process will attempt to access a
remote window (e.g., with lock/unlock) after it was freed.

4.2.2
Window Attributes.

The following three attributes are cached with a window object when the window object is created. The values of
these attributes refer to the local window.

MPI_WIN_BASE; window base address

MPI_WIN_SIZE: window size, in bytes

MPI_WIN_DISP_UNIT: displacement unit associated with the window

The C++ names for these constants begin with MPI::WIN instead of MPI_WIN.

In C, calls to MPI_Win_get_attr(win, MPI_WIN_BASE, &base, &flag),MPI_WIN_get_attr(win, MPI_WIN_SIZE,
&size, &flag) and MPI_Win_get_attr(win, MPI_WIN_DISP_UNIT, &disp_unit, &flag)) will return in base a
pointer to the start of the window win, and will return in size and disp_unit pointers to the size and displacement
unit of the window, respectively, and similarly in C++.

In Fortran, calls to MPI_WIN_GET_ATTR (win, MPI_WIN_BASE,base,flag,ierror), MPI_WIN_GET_ATTR(win,
MPI_WIN_SIZE, size, flag, ierror) and MPI_WIN_GET_ATTR(win, MPI_WIN_DISP_UNIT, disp_unit, flag,
ierror) will return in base, size and disp_unit the (integer representation of) the base address, the size

< previous page page_97 next page >

page_98

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_98.html[2011-2-17 2:05:14]

< previous page page_98 next page >

Page 98

and the displacement unit of the window win, respectively. (The window attribute access functions are defined in
Section 6.7.)

The other window attribute, namely the group of processes attached to the window, can be retrieved using the call
below.

MPI_WIN_GET_GROUP(win,group)

IN
win window object (handle)

OUT
group group of processes which share access to the window (handle)

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)
 INTEGER WIN, GROUP, IERROR

MPI::Group MPI::Win::Get_group() const

MPI_WIN_GET_GROUP] returns a duplicate of the group of the communicator used to create the window object
associated with win. The group is returned in group.

4.3
Communication Calls

MPI supports three RMA communication calls: MPI_PUT transfers data from the caller's memory (origin) to the
target memory; MPI_GET transfers data from the target memory to the caller's memory; and
MPI_ACCUMULATE updates locations in the target memory, for example, by adding to these locations values
sent from the caller's memory. These operations are nonblocking: the call initiates the transfer, but the transfer may
continue after the call returns. The transfer is completed, both at the origin and at the target, when a subsequent
synchronization call is issued by the caller on the involved window object. These synchronization calls are
described in Section 4.4.

The local communication buffer of an RMA call should not be updated, and the local communication buffer of a
get call should not be accessed after the RMA call, until the subsequent synchronization call completes.

Rationale. The rule above is more lenient than for message passing, where we do not allow two concurrent sends,
with overlapping send buffers. Here, we allow

< previous page page_98 next page >

page_99

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_99.html[2011-2-17 2:05:15]

< previous page page_99 next page >

Page 99

two concurrent puts with overlapping send buffers. The reasons for this relaxation are

1. Users do not like that restriction, which is not very natural (it prohibits concurrent reads).

2. Weakening the rule does not prevent efficient implementation, as far as we know.

3. Weakening the rule is important for performance of RMA: we want to associate one synchronization call with as
many RMA operations as possible. If puts from overlapping buffers cannot be concurrent, then we need to
needlessly add synchronization points in the code.

It is erroneous to have concurrent conflicting accesses to the same memory location in a window; if a location is
updated by a put or accumulate operation, then this location cannot be accessed by a load or another

RMA operation until the updating operation has completed at the target. There is one exception to this rule;
namely, the same location can be updated by several concurrent accumulate calls, the outcome being as if these
updates occurred in some order. In addition, a window cannot concurrently be updated by a put or accumulate
operation and by a local store operation, even if these two updates access different locations in the window. The
last restriction enables more efficient implementations of RMA operations on many systems. These restrictions are
described in more detail in Section 4.7.

The calls use general datatype arguments to specify communication buffers at the origin and at the target. Thus, a
transfer operation may also gather data at the source and scatter it at the destination. However, all arguments
specifying both communication buffers are provided by the caller.

For all three calls, the target process may be identical with the origin process;that is, a process may use RMA
operation to move data in its memory.

Rationale. The choice of supporting self-communication is the same as for message passing. It simplifies some
coding, and is very useful with accumulate operations, to allow atomic updates of local variables.

4.3.1
Put

The execution of a put operation is similar to the execution of a send by the origin process and a matching receive
by the target process. The obvious difference is that all arguments are provided by one callthe call executed by the
origin process.

< previous page page_99 next page >

page_100

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_100.html[2011-2-17 2:05:15]

< previous page page_100 next page >

Page 100

MPI_PUT(origin_addr,origin_count,origin_datatype,target_rank,target_disp,
target_count, target_datatype, win)

IN
origin_addr initial address of origin buffer (choice)

IN
origin_count number of entries in origin buffer (nonnegative integer)

IN
origin_datatype datatype of each entry in origin buffer (handle)

IN
target_rank rank of target (nonnegative integer)

IN
target_disp displacement from start of window to target buffer (nonnegative integer)

IN
target_count number of entries in target buffer (nonnegative integer)

IN
target_datatype datatype of each entry in target buffer (handle)

IN
win window object used for communication (handle)

int MPI_Put(void *origin_addr, int origin_count, MPI_Datatype
 origin_datatype, int target_rank, MPI_Aint target_disp, int
 target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
 TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)
 <type> ORIGIN_ADDR(*)
 INTEGER (KIND=MPI_ADDRESS_KIND) TARGET_DISP
 INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
 TARGET_DATATYPE, WIN, IERROR

void MPI: :Win: :Put(const void8 origin_addr, int origin_count, const
 MPI::Datatype& origin_datatype, int target_rank, MPI::Aint
 target_disp, int target_count, const MPI::Datatype&
 target_datatype) const

MPI_PUT transfers origin_count successive entries of the type specified by the origin_datatype, starting at address
origin_addr on the origin node to the target node specified by the win, target_rank pair. The data are written in
the target buffer at address target_addr = window_base + target_disp´disp_unit, where
window_base and disp-unit are the base address and window displacement unit specified at window object
initialization, by the target process.

The target buffer is specified by the arguments target_count and target_datatype.

The data transfer is the same as that which would occur if the origin process executed a send operation with
arguments origin_addr, origin_count, origin_datatype, target_rank, tag, comm, and the target
process executed a receive operation with

< previous page page_100 next page >

page_101

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_101.html[2011-2-17 2:05:16]

< previous page page_101 next page >

Page 101

arguments target_addr, target_count, target_datatype, source, tag, comm, where target_addr is the target buffer
address computed as explained above, and comm is a communicator for the group of win.

The communication must satisfy the same constraints as for a similar messagepassing communication. The
target_datatype may not specify overlapping entries in the target buffer. The message sent must fit, without
truncation, in the target buffer. Furthermore, the target buffer must fit in the target window.

The target_datatype argument is a handle to a datatype object defined at the origin process. However, this object is
interpreted at the target process: the outcome is as if the target datatype object was defined at the target process, by
the same sequence of calls used to define it at the origin process. The target datatype must contain only relative
displacements, not absolute addresses. The same holds for get and accumulate.

Advice to users. The target_datatype argument is a handle to a datatype object that is defined at the origin process,
even though it defines a data layout in the target process memory. This causes no problems in a homogeneous
environment, or in a heterogeneous environment, if only portable datatypes are used (portable datatypes are defined
in Section 1.4).

The performance of a put transfer can be significantly affected, on some systems, by the choice of window location
and the shape and location of the origin and target buffer: transfers to a target window in memory allocated by
MPI_ALLOC_MEM may be much faster on shared memory systems; transfers from contiguous buffers will be
faster on most, if not all, systems; the alignment of the communication buffers may also impact performance.

Advice to implementors. A high-quality implementation will attempt to prevent remote accesses to memory outside
the window that was exposed by the process, both for debugging purposes and for protection with client-server
codes that use RMA. That is, a high-quality implementation will check, if possible, window bounds on each RMA
call, and raise an MPI exception at the origin call if an out-of-bound situation occurred. Note that the condition
can be checked at the origin. Of course, the added safety achieved by such checks must be weighed against the
added cost of such checks.

< previous page page_101 next page >

page_102

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_102.html[2011-2-17 2:05:17]

< previous page page_102 next page >

Page 102

4.3.2

MPI_GET(origin_addr,origin_count,origin_datatype,target_rank,target_disp,
target_count,target_datatype,win)

OUT
origin_addr initial address of origin buffer (choice)

IN
origin_count number of entries in origin buffer (nonnegative integer)

IN
origin_datatypedatatype of each entry in origin buffer (handle)

IN
target_rank rank of target (nonnegative integer)

IN
target_disp displacement from window start to the beginning of the target buffer

(nonnegative integer)

IN
target_count number of entries in target buffer (nonnegative integer)

IN
target_datatypedatatype of each entry in target buffer (handle)

IN
win window object used for communication (handle)

int MPI_Get(void *origin_addr, int
 origin_count,MPI_Datatype origin_datatype,int target_rank, MPI_Aint target_disp, int
 target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,
 TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)
 <type> ORIGIN_ADDR(*)
 INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP
 INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT
 TARGET_DATATYPE, WIN, IERROR

void MPI: : Win:: Get (void *origin_addr, int origin_count,
 const MPI: :Datatype& origin_datatype, int target_rank,
 MPI::Aint target_disp, int target_count,
 const MPI: :Datatype& target_datatype) const

MPI_GET is similar to MPI_PUT, except that the direction of data transfer is reversed. Data are copied from the target memory to the
origin. The origin_datatype may not specify overlapping entries in the origin buffer. The target buffer must be contained within
the target window, and the copied data must fit, without truncation, in the origin buffer.

4.3.3
Examples

Example 4.1 We show how to implement the generic indirect assignment A = B(map), where A, B and map have the same
distribution, and map is a permutation.

< previous page page_102 next page >

page_103

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_103.html[2011-2-17 2:05:17]

< previous page page_103 next page >

Page 103

To simplify, we assume a block distribution with equal size blocks. That is, we assume that the arrays A, B, and
map are represented by subranges on each processor. Process 0 has the first n/size entries, process 1 has the
second n/size entries, and so on (size is the size of the communicator and n is the global size of the vector). In
order to emphasize that the arrays in each process contain only the local part, the variable names Alocal,
Blocal, and mapLocal are used.

These examples use MPI_WIN_FENCE to complete the RMA operations. The reason for the fence before the get
is discussed in Section 4.4.

SUBROUTINE MAPVALS(Alocal, Blocal, mapLocal, m, comm, p)
USE MPI
INTEGER m, mapLocal(m), comm, p
REAL Alocal(m), Blocal(m)

INTEGER otype(p), oindex(m), & ! used to construct origin datatypes
 ttype(p), tindex(m), & ! used to construct target datatypes
 count(p), total(p), &
 win, ierr
INTEGER(KIND=MPI_ADDRESS_KIND) sizeofreal

! This part does the work that depends on the locations of B.
! Can be reused while this does not change

CALL MPI_TYPE_SIZE(MPI_REAL, sizeable, err)
CALL MI_WIN_CREATE(Blocal, m*sizeofreal, sizeofreal, &
 MPI_INFO_NULL, comm, win, ierr)

! This part does the work that depends on the value of mapLocal and
! the locations of the arrays.
! Can be reused while these do not change

! Compute number of entries to be received from each process

DO i=1,p
 count(i) = 0
END DO
DO i=1,m
 j = mapLocal(i)/m+1

< previous page page_103 next page >

page_104

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_104.html[2011-2-17 2:05:18]

< previous page page_104 next page >

Page 104

 count(j) = count(j)+1
END DO

total(1) = 0
DO i=2,p
 total(i) = total(i-1) + count(i-1)
END DO

DO i=1,p
 count(i) = 0
END DO

! compute origin and target indices of entries.
! entry i at current process is received from location
! k at process (j-1), j = 1..p and k = 1..m,
! and mapLocal(i) = (j-1)*m + (k-1).

DO i=1,m
 j = mapLocal(i)/m+1
 k = MOD(mapLocal(i),m)+1
 count(j) = count(j)+1
 oindex(total(j) + count(j)) = i
 tindex(total(j) + count(j)) = k
END DO

! create origin and target datatypes for each get operation
DO i=1,p
 CALL MPI_TYPE_INDEXED_BLOCK(count(i), 1, oindex(total(i)+1), &
 MPI_REAL, otype(i), ierr)
 CALL MPI_TYPE_COMMIT(otype(i), ierr)
 CALL MPI_TYPE_INDEXED_BLOCK(count(i), 1, tindex(total(i)+1), &
 MPI_REAL, ttype(i), ierr)
 CALL MPI_TYPE_COMMIT(ttype(i), ierr)
END DO

! this part does the assignment itself
CALL MPI_WIN_FENCE(0, win, ierr)
DO i=1,p

< previous page page_104 next page >

page_105

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_105.html[2011-2-17 2:05:18]

< previous page page_105 next page >

Page 105

 CALL MPI_GET(Alocal, 1, otype(i), i-1, 0, 1, ttype(i), win, ierr)
END DO
CALL MI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)
DO i=1,p
 CALL MPI_TYPE_FREE(otype(i), ierr)
 CALL MPI_TYPE_FREE(ttype(i), ierr)
END DO
RETURN
END

Example 4.2 A simpler version can be written that does not require that a datatype be built for the target buffer by
using a separate get call for each entry. This code is much simpler, but usually much less efficient, for large arrays.

SUBROUTINE MAPVALS(Alocal, Blocal, mapLocal, m, comm, p)
USE MPI
INTEGER m, mapLocal(m), comm, p
REAL Alocal(m), Blocal(m)
INTEGER win, ierr
INTEGER(KIND=MPI_ADDRESS_KIND) sizeofreal

CALL MPI_TYPE_SIZE(MPI_REAL, sizeofreal, ierr)
CALL MPI_WIN_CREATE(Blocal, m*sizeofreal, sizeofreal, &
 MPI_INFO_NULL, comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)
DO i=1,m
 j = mapLocal(i)/p
 k = MOD(mapLocal(i),p)
 CALL MPI_GET(Alocal(i), 1, MPI_REAL, j, k, 1, MPI_REAL, win, ierr)
END DO
CALL MPI_WIN_FENCE(0, win, ierr)
CALL MPI_WIN_FREE(win, ierr)
RETURN
END

< previous page page_105 next page >

page_106

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_106.html[2011-2-17 2:05:19]

< previous page page_106 next page >

Page 106

4.3.4
Accumulate Function.

It is often useful in a put operation to combine the data moved to the target process with the data that resides at that
process, rather then replacing the data there. This allows, for example, the accumulation of a sum by having all
involved processes add their contribution to the sum variable in the memory of one process.

MPI_ACCUMULATE(origin_addr, origin_count, origin_datatype,
target_rank, target_disp, target_count, target_datatype, op,
win)

IN
origin_addr initial address of buffer (choice)

IN
origin_count number of entries in buffer (nonnegative integer)

IN
origin_datatypedatatype of each buffer entry (handle)

IN
target_rank rank of target (nonnegative integer)

IN
target_disp displacement from start of window to beginning of target

buffer (nonnegative integer)

IN
target_count number of entries in target buffer (nonnegative integer)

IN
target_datatypedatatype of each entry in target buffer (handle)

IN
op reduce operation (handle)

IN
win window object (handle)

int MPI_Accumulate(void *origin_addr, int origin_count,
 MPI_Datatype origin_datatype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE,
 TARGET_RANK, TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN,
 IERROR)
 <type> ORIGIN_ADDR(*)
 INTEGER (KIND=MPI_ADDRESS_KIND) TARGET_DISP
 INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,
 TARGET_DATATYPE, OP, WIN, IERROR

void MPI:: Win:: Accumulate (const void* origin_addr, int origin_count
 const MPI:: Datatype& origin_datatype, int target_rank, MPI::Aint
 target_disp, int target_count,
 const MPI::Datatype& target_datatype, const MPI::Op& op) const

< previous page page_106 next page >

page_107

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_107.html[2011-2-17 2:05:20]

< previous page page_107 next page >

Page 107

This function accumulates the contents of the origin buffer (as defined by origin_addr, origin_count and
origin_datatype) to the buffer specified by arguments target_count and target_datatype, at offset target_disp, in the
target window specified by target_rank and win, using the operation op This is like MPI_PUT except that data is
combined into the target area instead of overwriting it.

Any of the predefined operations for MPI_REDUCE can be used. User-defined functions cannot be used. For
example, if op is MPI_SUM, each element of the origin buffer is added to the corresponding element in the target,
replacing the former value in the target.

Each datatype argument must be either a predefined datatype or a derived datatype, where all basic components are
of the same predefined datatype. Both origin and target datatype arguments must be constructed from the same
predefined datatype. The operation op applies to elements of that predefined type. target_datatype must not specify
overlapping entries, and the target buffer must fit in the target window.

In addition, a new predefined operation, MPI_REPLACE (MPI::REPLACE in C++), is defined. It corresponds to
the associative function f(a,b)=b; that is, the current value in the target memory is replaced by the value supplied
by the origin.

Advice to users. In the simplest case, MPI_PUT is a special case of MPI_ACCUMULATE, with the operation
MPI_REPLACE. Note, however, that MPI_PUT and MPI_ACCUMULATE have different constraints on
concurrent updates (see Section 4.7).

Example 4.3 We want to compute Si:map(i)=jA(i).. The arrays A, B and map are distributed in the same manner.
We write the simple version.

SUBROUTINE SUM(Alocal, Blocal, mapLocal, m, comm, p)
USE MPI
INTEGER m, mapLocal(m), comm, p, win, ierr
INTEGER(KIND=MPI_ADDRESS_KIND) sizeofreal
REAL Alocal(m), Blocal(m)

CALL MPI_TYPE_SIZE(MPI_REAL, sizeofreal, ierr)
CALL MPI_WIN_CREATE(Blocal, m*sizeofreal, sizeofreal, &
 MPI_INFO_NULL, comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)
DO i=1,m

< previous page page_107 next page >

page_108

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_108.html[2011-2-17 2:05:20]

< previous page page_108 next page >

Page 108

 j = mapLocal(i)/p
 k =MOD(mapLocal(i) ,p)
 CALL MPI_ACCUMULATE(Alocal(i), 1, MPI_REAL, j, k, 1, MPI_REAL, &
 MPI_SUM, win, ierr)
END DO
CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)
RETURN
END

This code is identical to the code in Example 4.2 except that a call to get has been replaced by a call to
accumulate. (Note that, if mapLocal is one-to-one, then the code computes B = A(map-1), which is the reverse
assignment to the one computed in that previous example.) In a similar manner, in Example 4.1, we can replace the
call to get by a call to accumulate, thus performing the computation with only one communication between any
two processes.

4.4
Synchronization Calls

RMA communications fall in two categories:

active target communication, where data is moved from the memory of one process to the memory of another, and
both are explicitly involved in the communication. This communication pattern is similar to message passing,
except that all the data transfer arguments are provided by one process, and the second process only participates in
the synchronization.

passive target communication, where data is moved from the memory of one process to the memory of another,
and only the origin process is explicitly involved in the transfer. Thus, two origin processes may communicate by
accessing the same location in a target window. The process that owns the target window may be distinct from the
two communicating processes, in which case it does not participate explicitly in the communication. This
communication paradigm is closest to a shared-memory model, where shared data can be accessed by all processes,
irrespective of location.

RMA communication calls with argument win must occur at a process only within an access epoch for win. Such
an epoch starts with an RMA synchronization call

< previous page page_108 next page >

page_109

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_109.html[2011-2-17 2:05:21]

< previous page page_109 next page >

Page 109

on win; it proceeds with zero or more RMA communication calls (MPI_PUT, MPI_GET or
MPI_ACCUMULATE) on win it completes with another synchronization call on win. This allows users to amortize
one synchronization with multiple data transfers and provide implementors more flexibility in the implementation
of RMA operations.

Distinct access epochs for win at the same process must be disjoint. On the other hand, epochs pertaining to
different win arguments may overlap.

In active target communication, a target window can be accessed by RMA operations only within an exposure
epoch. Such an epoch is started and completed by RMA synchronization calls executed by the target process.
Distinct exposure epochs at a process on the same window must be disjoint, but such an exposure epoch may
overlap with exposure epochs on other windows or with access epochs for the same or other win arguments. There
is a one-to-one matching between access epochs at origin processes and exposure epochs on target processes:
RMA operations issued by an origin process for a target window will access that target window during the same
exposure epoch if and only if they were issued during the same access epoch.

In passive target communication the target process does not execute RMA synchronization calls, and there is no
concept of an exposure epoch.

Local operations or other MPI calls may also occur during an epoch.

MPI provides three synchronization mechanisms:

1. The MPI_WIN_FENCE collective synchronization call supports a simple synchronization pattern that is often
used in parallel computations: namely a loosely synchronous model, where global computation phases alternate
with global communication phases. This mechanism is most useful for loosely synchronous algorithms where the
graph of communicating processes changes very frequently, or where each process communicates with many
others.

This call is used for active target communication. An access epoch at an origin process or an exposure epoch at a
target process are started and completed by calls to MPI_WIN_FENCE. A process can access windows at all
processes in the group of win during such an access epoch, and the local window can be accessed by all processes
in the group of win during such an exposure epoch.

2. The four functions MPI_WIN_START, MPI_WIN_COMPLETE, MPI_WIN_POST and MPI_WIN_WAIT can
be used to restrict synchronization to the minimum: only pairs of communicating processes synchronize, and they
do so only when a synchronization is needed to correctly order RMA accesses to a window with respect to local
accesses to that same window. This

< previous page page_109 next page >

page_110

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_110.html[2011-2-17 2:05:21]

< previous page page_110 next page >

Page 110

mechanism may be more efficient when each process communicates with few (logical) neighbors, and the
communication graph is fixed or changes infrequently.

These calls are used for active target communication. An access epoch is started at the origin process by a call to
MPI_WIN_START and is terminated by a call to MPI_WIN_COMPLETE. The start call has a group argument
that specifies the group of target processes for that epoch. An exposure epoch is started at the target process by a
call to MPI_WIN_POST and is completed by a call to MPI_WIN_WAIT. The post call has a group argument that
specifies the set of origin processes for that epoch.

3. Finally, shared and exclusive locks are provided by the two functions MPI_WIN_LOCK and
MPI_WIN_UNLOCK. Lock synchronization is useful for MPI applications that emulate a shared-memory model
via MPI calls; for example, in a billboard model, where processes can, at random times, access or update different
parts of the billboard.

These two calls provide passive target communication. An access epoch is started by a call to MPI_WIN_LOCK
and terminated by a call to MPI_WIN_UNLOCK. Only one target window can be accessed during that epoch with
win.

Figure 4.1 illustrates the general synchronization pattern for active target communication. The synchronization
between post and start ensures that the put call of the origin process does not start until the target process
exposes the window (with the post call); the target process will expose the window only after preceding local
accesses to the window have completed. The synchronization between complete and wait ensures that the put
call of the origin process completes before the window is unexposed (with the wait call). The target process will
execute following local accesses to the target window only after the wait returned.

Figure 4.1 shows operations occurring in the natural temporal order implied by the synchronizations: the post
occurs before the matching start and complete occurs before the matching wait. However, such strong
synchronization is more than needed for correct ordering of window accesses. The semantics of MPI calls allow
weak synchronization, as illustrated in Figure 4.2. The access to the target window is delayed until the window is
exposed, after the post. However, the start may complete earlier; the put and complete may also
terminate earlier, if put data is buffered by the implementation. The synchronization calls order correctly window
accesses, but do not necessarily synchronize other operations. This weaker synchronization semantic allows for
more efficient implementations.

< previous page page_110 next page >

page_111

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_111.html[2011-2-17 2:05:23]

< previous page page_111 next page >

Page 111

Figure 4.1
Active target communication. Dashed arrows represent

synchronizations (ordering of events).

Figure 4.3 illustrates the general synchronization pattern for passive target communication. The first origin process
communicates data to the second origin process, through the memory of the target process; the target process is not
explicitly involved in the communication. The lock and unlock calls ensure that the two RMA accesses do not
occur concurrently. However, they do not ensure that the put by origin 1 will precede the get by origin 2.

< previous page page_111 next page >

page_112

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_112.html[2011-2-17 2:05:24]

< previous page page_112 next page >

Page 112

Figure 4.2
Active target communication, with weak synchronization.

Dashed arrows represent synchronizations (ordering of
events).

4.4.1
Fence

MPI_WIN_FENCE(assert,win)

IN
assert program assertion (integer)

IN
win window object (handle)

int MPI_Win_fence(int assert, MPI_Win win)

MPI_WIN_FENCE(ASSERT, WIN, IERROR)
 INTEGER ASSERT, WIN, IERROR

void MPI::Win::Fence(int assert) const

< previous page page_112 next page >

page_113

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_113.html[2011-2-17 2:05:25]

< previous page page_113 next page >

Page 113

Figure 4.3
Passive target communication. Dashed arrows represent synchronizations (ordering

of events).

< previous page page_113 next page >

page_114

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_114.html[2011-2-17 2:05:26]

< previous page page_114 next page >

Page 114

The MPI call MPI_WIN_FENCE(assert, win) synchronizes RMA calls on win. The call is collective on the group
of win. All RMA operations on win originating at a given process and started before the fence call will complete at
that process before the fence call returns. They will be completed at their target before the fence call returns at the
target. RMA operations on win started by a process after the fence call returns will access their target window only
after MPI_WIN_FENCE has been called by the target process.

The call completes an RMA access epoch if it was preceded by another fence call and the local process issued
RMA communication calls on win between these two calls. The call completes an RMA exposure epoch if it was
preceded by another fence call and the local window was the target of RMA accesses between these two calls. The
call starts an RMA access epoch if it is followed by another fence call and by RMA communication calls issued
between these two fence calls. The call starts an exposure epoch if it is followed by another fence call and the local
window is the target of RMA accesses between these two fence calls. Thus, the fence call is equivalent to calls to a
subset of post, start, complete, wait.

A fence call usually entails a barrier synchronization: a process completes a call to MPI_WIN_FENCE only after
all other processes in the group entered their matching call. However, a call to MPI_WIN_FENCE that is known
not to end any epoch (in particular, a call with assert = MPI_MODE_NOPRECEDE) does not necessarily act as a
barrier.

The assert argument is used to provide assertions on the context of the call that may be used for various
optimizations. This is described in Section 4.4.4. A value of assert = 0 is always valid.

Advice to users. Calls to MPI_WIN_FENCE should both precede and follow calls to put, get or accumulate that are
synchronized with fence calls.

4.4.2
General Active Target Synchronization

MPI_WIN_START(group, assert, win)

IN
group group of target processes (handle)

IN
assert program assertion (integer)

IN
win window object (handle)

int MPI_WIN_start(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)

< previous page page_114 next page >

page_115

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_115.html[2011-2-17 2:05:27]

< previous page page_115 next page >

Page 115

 INTEGER GROUP, ASSERT, WIN, IERROR

void MPI::Win::Start(const MPI::Group& group, int assert) const

MPI_WIN_START starts an RMA access epoch for win. RMA calls issued on win during this epoch must access
only windows at processes in group. Each process in group must issue a matching call to MPI_WIN_POST. RMA
accesses to each target window will be delayed, if necessary, until the target process executed the matching call to
MPI_WIN_POST. MPI_WIN_START is allowed to block until the corresponding MPI_WIN_POST calls are
executed, but is not required to.

The assert argument is used to provide assertions on the context of

the call that may be used for various optimizations. This is described in Section 4.4.4. A value of assert = 0 is
always valid.

MPI_WIN_COMPLETE(win)

IN
win window object (handle)

int MPI_Win_complete(MPI_Win win)

MPI_WIN_COMPLETE(WIN, IERROR)
 INTEGER WIN, IERROR

void MPI: :Win: :Complete() const

MPI_WIN_COMPLETE completes an RMA access epoch on win started by a call to MPI_WIN_START. All
RMA communication calls issued on win during this epoch will have completed at the origin when the call returns.

MPI_WIN_COMPLETE enforces completion of preceding RMA calls at the origin, but not at the target. A put or
accumulate call may not have completed at the target when it has completed at the origin.

Consider the sequence of calls in the example below.

Example 4.4

MPI_Win_start(group, flag, win);
MPI_Put(...,win);
MPI_Win_complete(win);

The call to MPI_WIN_COMPLETE does not return until the put call has completed at the origin; and the target
window will be accessed by the put operation

< previous page page_115 next page >

page_116

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_116.html[2011-2-17 2:05:27]

< previous page page_116 next page >

Page 116

only after the call to MPI_WIN_START has matched a call to MPI_WIN_POST by the target process. This still
leaves much choice to implementors. The call to MPI_WIN_START can block until the matching call to
MPI_WIN_POST occurs at all target processes. One can also have implementations where the call to
MPI_WIN_START is nonblocking, but the call to MPI_PUT blocks until the matching call to MPI_WIN_POST
occurred; or implementations where the first two calls are nonblocking, but the call to MPI_WIN_COMPLETE
blocks until the call to MPI_WIN_POST occurred; or even implementations where all three calls can complete
before any target process called MPI_WIN_POSTthe data put must be buffered, in this last case, so as to allow the
put to complete at the origin ahead of its completion at the target. However, once the call to MPI_WIN_POST is
issued, the sequence above must complete, without further dependencies.

MPI_WIN_POST(group,assert,win)

IN
group group of origin processes (handle)

IN
assert program assertion (integer)

IN
win window object (handle)

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)
 INTEGER GROUP, ASSERT, WIN, IERROR

void MPI::Win::Post(const MPI::Group& group, int assert) const

MPI_WIN_POST starts an RMA exposure epoch for the local window associated with win. Only processes in
group should access the window with RMA calls on win during this epoch. Each process in group must issue a
matching call to MPI_WIN_-START. MPI_WIN_POST does not block.

MPI_WIN_WAIT(win)

IN
win window object (handle)

int MPI_Win_wait(MPI_Win win)

MPI_WIN_WAIT(WIN, IERROR)
 INTEGER WIN, IERROR

< previous page page_116 next page >

page_117

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_117.html[2011-2-17 2:05:28]

< previous page page_117 next page >

Page 117

Figure 4.4
Active target communication. Dashed arrows represent synchronizations and solid

arrows represent data transfer.

void MPI::Win::Wait() const

Completes an RMA exposure epoch started by a call to MPI_WIN_POST on win. This call matches calls to
MPI_WIN_COMPLETE(win) issued by each of the origin processes that were granted access to the window during
this epoch. The call to MPI_WIN_WAIT will block until all matching calls to MPI_WIN_COMPLETE have
occurred. This guarantees that all these origin processes have completed their RMA accesses to the local window.
When the call returns, all these RMA accesses will have completed at the target window.

Figure 4.4 illustrates the use of these four functions. Process 0 puts data in the windows of processes 1 and 2 and
process 3 puts data in the window of process 2. Each start call lists the ranks of the processes whose windows will
be accessed; each post call lists the ranks of the processes that access the local window. The figure illustrates a
possible timing for the events, assuming strong synchronization; in a weak synchronization, the start, put or
complete calls may occur ahead of the matching post calls.

MPI_WIN_TEST(win,flag)

IN
win window object (handle)

OUT
flag success flag (logical)

< previous page page_117 next page >

page_118

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_118.html[2011-2-17 2:05:28]

< previous page page_118 next page >

Page 118

int MPI_Win_test(MPI_Win win, int *flag)

MPI_WIN_TEST(WIN, FLAG, IERROR)
 INTEGER WIN, IERROR
 LOGICAL FLAG

bool MPI::Win::Test() const

This is the nonblocking version of MPI_WIN_WAIT. It returns flag = true if MPI_-WIN_WAIT would return, flag
= false otherwise. The effect of return of MPI_WIN_TEST with flag = true is the same as the effect of a return of
MPI_WIN_WAIT. If flag = false is returned, then the call has no visible effect.

MPI_WIN_TEST should be invoked only where MPI_WIN_WAIT can be invoked.

Once the call has returned flag = true on a window object, it must not be invoked on that window until that
window object is posted again.

The rules for matching of post and start calls and for matching complete and wait call can be derived from the
rules for matching sends and receives, by considering the following (partial) model implementation. Assume that
window win is associated with a hidden communicator wincomm, used for communication by the processes of win.

MPI_WIN_POST(group,0,win): initiate a nonblocking send with tag tag0 to each process in group, using
wincomm. No need to wait for the completion of these sends.

MPI_WIN_START(group,0,win): initiate a nonblocking receive with tag0 from each process in group, using
wincomm. An RMA access to a window in target process i is delayed until the receive from i is completed.

MPI_WIN_COMPLETE(win): initiate a nonblocking send with tag tag1 to each process in the group of the
preceding start call. No need to wait for the completion of these sends.

MPI_WIN_WAIT(win): initiate a nonblocking receive with tag tag1 from each process in the group of the
preceding post call. Wait for the completion of all receives.

No races can occur in a correct program: each of the sends matches a unique receive, and vice versa.

Rationale. The design for general active target synchronization requires the user to provide complete information
on the communication pattern, at each end of a communication link: each origin specifies a list of targets, and each
target

< previous page page_118 next page >

page_119

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_119.html[2011-2-17 2:05:30]

< previous page page_119 next page >

Page 119

specifies a list of origins. This provides maximum flexibility (hence, efficiency) for the implementor: each
synchronization can be initiated by either side, since each knows the identity of the other. This also provides
maximum protection from possible races. On the other hand, the design requires more information than RMA
needs, in general: in general, it is sufficient for the origin to know the rank of the target, but not vice versa. Users
that want more anonymous communication will be required to use the fence or lock mechanisms.

Advice to users. Assume a communication pattern that is represented by a directed graph G = < V, E >, with the
vertices V = {0,,n 1} and edges E defined by ij Î E if origin process i accesses the window at target process j. Then
each process i issues a call to MPI_WIN_POST(ingroupi,), followed by a call to MPI_WIN_START(outgroupi,),
where outgroupi = {j : ij Î E} and ingroupi = {j : ji Î E}. A call is a no-op, and can be skipped, if the group
argument is empty. After the communications calls, each process that issued a start will issue a complete. Finally,
each process that issued a post will issue a wait.

Note that each process may call MPI_WIN_POST or MPI_WIN_START with a group argument that has different
members.

4.4.3
Lock

The most general window synchronization mechanism is provided by the following two routines.

MPI_WIN_LOCK(lock_type,rank,assert,win)

IN
lock_type either MPI_LOCK_EXCLUSIVE or

MPI_LOCK_SHARED (state)

IN
rank rank of locked window (nonnegative integer)

IN
assert program assertion (integer)

IN
win window object (handle)

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)
 INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

void MPI::Win::Lock(int lock_type, int rank, int assert) const

< previous page page_119 next page >

page_120

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_120.html[2011-2-17 2:05:30]

< previous page page_120 next page >

Page 120

Starts an RMA access epoch. Only the window at the process with rank rank can be accessed by RMA operations
on win during that epoch.

MPI_WIN_UNLOCK(rank,win)

IN
rank rank of window (nonnegative integer)

IN
win window object (handle)

int MPI_Win_unlock(int rank, MPI_Win win)

MPI_WIN_UNLOCK(RANK, WIN, IERROR)
 INTEGER RANK, WIN, IERROR

void MPI::Win::Unlock(int rank) const

MPI_WIN_UNLOCK completes an RMA access epoch started by a call to MPI_-WIN_LOCK(,win). RMA
operations issued during this period will have completed both at the origin and at the target when the call returns.

Locks are used to protect accesses to the locked target window effected by RMA calls issued between the lock and
unlock call, and to protect local load/store accesses to a locked local window executed between the lock and
unlock call. Accesses that are protected by an exclusive lock will not be concurrent at the window site with other
accesses to the same window that are lock protected. Accesses that are protected by a shared lock will not be
concurrent at the window site with accesses protected by an exclusive lock to the same window.

It is erroneous to have a window locked and exposed (in an exposure epoch) concurrently. That is, a process may
not call MPI_WIN_LOCK to lock a target window if the target process has called MPI_WIN_POST and has not
yet called MPI_WIN_WAIT; it is erroneous to call MPI_WIN_POST while the local window is locked. Similarly,
it is erroneous to call MPI_WIN_FENCE while a window is locked, or to lock a window while it is exposed as a
result of a call to MPI_WIN_FENCE.

Rationale. An alternative is to require MPI to enforce mutual exclusion between exposure epochs and locking
periods. But this would entail additional overheads when locks or active target synchronization do not interact in
support of those rare interactions between the two mechanisms. The programming style that we encourage here is
that a window object (set of windows) is used with only one synchronization mechanism at a time, with shifts
from one mechanism to another being rare and involving global synchronization.

< previous page page_120 next page >

page_121

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_121.html[2011-2-17 2:05:31]

< previous page page_121 next page >

Page 121

Advice to users. Users need to use explicit synchronization code in order to enforce mutual exclusion between
locking periods and exposure epochs on a window.

Implementations may restrict the use of RMA communication that is synchronized by lock calls to windows in
memory allocated by MPI_ALLOC_MEM (Section 2.4). Locks can be used portably only with such memory.

Rationale. The implementation of passive target communication when memory is not shared requires an
asynchronous agent. Such an agent can be implemented more easily, and can achieve better performance, if
restricted to specially allocated memory. It can be avoided altogether if shared memory is used. It seems natural to
impose restrictions that allow one to use shared memory for third-party communication in shared-memory
machines.

The downside of this decision is that passive target communication cannot be used without taking advantage of
nonstandard Fortran features: namely, the availability of C-like pointers; these are not supported by some Fortran
compilers (g77 and Windows/NT compilers, at the time of writing). Also, passive target communication cannot be
portably targeted to COMMON blocks, or other statically declared Fortran arrays.

Consider the sequence of calls in the example below.

Example 4.5

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, assert, win)
MPI_Put(..., rank, ..., win)
MPI_Win_unlock(rank, win)

The call to MPI_WIN_UNLOCK will not return until the put transfer has completed at the origin and at the target.
This still leaves much freedom to implementors. The call to MPI_WIN_LOCK may block until an exclusive lock
on the window is acquired; or, the call MPI_WIN_LOCKmay not block, while the call to MPI_PUT blocks until a
lock is acquired; or, the first two calls may not block, while MPI_-WIN_LOCK blocks until a lock is acquiredthe
update of the target window is then postponed until the call to MPI_WIN_UNLOCK occurs. However, if the call
to MPI_WIN_LOCK is used to lock a local window, then the call must block until the lock is acquired, since the
lock may protect local load/store accesses to the window issued after the lock call returns.

< previous page page_121 next page >

page_122

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_122.html[2011-2-17 2:05:31]

< previous page page_122 next page >

Page 122

Example 4.6 Using lock to update a shared array.

In this example, one process (rank = 0) has an array of size entries. All processes in the communicator
update values in this array, reading the next entry in the array.

This first program fragment shows how the process owning the array Local defines its window.

int *Local;
MPI_Win win;
...
MPI_Alloc_mem(size * sizeof(int), MPI_INFO_NULL, &Local);
for (i=0; i<size; i++)
 Local[i] = 0;
MPI_Win_create(Local, size*sizeof(int) sizeof(int),
 MPI_INFO_NULL, comm, &win);
MPI_Win_free(&win);
MPI_Free_mem(Local);

Note that this process will wait in MPI_Win_free until all of the other processes have called MPI_Win_free. Also
note the use of MPI_Alloc_mem to acquire the memory that the window uses; this is necessary for portability
though some implementations may not require it.

The following code is executed by all of the other processes in communicator comm. Each process computes a
value myresult and adds this into the array Local on process zero. The process then fetches a new value from
the array Local and goes to the next iteration of the loop. Note that the value obtained with MPI_Get cannot be
used until the end of the access epoch that was started with MPI_Win_-lock. This code also uses
MPI_LOCK_EXCLUSIVE to ensure that only one process is accessing Local (the memory on process 0 attached
to the window) at a time. Finally, the code takes care not to execute an accumulate and a get to the same location
in memory within the access epoch. This would be a conflicting access and is prohibited.

MPI_Win win;
int i, myrank, curval;
...
MPI_Win_create(MPI_BOTTOM, 0, sizeof(int), MPI_INFO_NULL, comm,
 &win);
for (i=0; i<size; i++) {

< previous page page_122 next page >

page_123

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_123.html[2011-2-17 2:05:32]

< previous page page_123 next page >

Page 123

 myresult = function_to_to_compute(i);
 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, win);
 /* Add myresult into the ith location of Local on process 0 */
 MPI_Accumulate(&myresult, 1, MPI_INT,
 0, i, 1, MPI_INT, MPI_SUM, win);
 /* Get Local[myrank] */
 if (i != myrank)
 MPI_Get(&curval, 1, MPI_INT, 0, myrank, 1, MPI_INT, win);
 MPI_Win_unlock(0, win);
 /* After the unlock we can use the data that
 we have fetched with get */
 if (i != myrank)
 printf(Current value of Local [%d] is %d\n,
 myrank, curval);
 }
MPI_Win_free(&win);

4.4.4
Assertions.

The assert argument in the calls MPI_WIN_POST, MPI_WIN_START, MPI_WIN_-FENCE and
MPI_WIN_LOCK is used to provide assertions on the context of the call that may be used to optimize
performance. The assert argument does not change program semantics if it provides correct information about the
programit is erroneous to provide incorrect information. Users may always specify assert = 0 to indicate a general
case to indicate that no guarantees are made.

Advice to users. Many implementations may not take advantage of the information in assert; some of the
information is relevant only for noncoherent, shared-memory machines. Users should consult their implementation
manual to find which information is useful on each system. On the other hand, applications that provide correct
assertions whenever applicable are portable and will take advantage of assertion specific optimizations, whenever
available.

Advice to implementors. Implementations can always ignore the assert argument. Implementors should document
which assert values are significant on their implementation.

assert is the bit-vector OR of zero or more of the following integer constants: MPI_MODE_NOCHECK,
MPI_MODE_NOSTORE, MPI_MODE_NOPUT,

< previous page page_123 next page >

page_124

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_124.html[2011-2-17 2:05:33]

< previous page page_124 next page >

Page 124

MPI_MODE_NOPRECEDE and MPI_MODE_NOSUCCEED. The significant options are listed below, for each
call.

Advice to users. C/C++ users can use bit vector or (|) to combine these constants; Fortran 90 users can use the bit-
vector IOR intrinsic. Fortran 77 users can use (nonportably) bit vector IOR on systems that support it.
Alternatively, Fortran users can portably use integer addition to OR the constants (each constant should appear at
most once in the addition!).

MPI_WIN_START:

MPI_MODE_NOCHECK: the matching calls to MPI_WIN_POST have already completed on all target processes
when the call to MPI_WIN_START is made. The nocheck option can be specified in a start call if and only if it is
specified in each matching post call. This is similar to the optimization of ready-send that may save a handshake
when the handshake is implicit in the code. (However, ready-send is matched by a regular receive, whereas both
start and post must specify the nocheck option.)

MPI_WIN_POST:

MPI_MODE_NOCHECK: the matching calls to MPI_WIN_START have not yet occurred on any origin processes
when the call to MPI_WIN_POST is made. The nocheck option can be specified by a post call if and only if it is
specified by each matching start call.

MPI_MODE_NOSTORE: the local window was not updated by local stores (or local get or receive calls) since the
last synchronization. This may avoid the need for cache synchronization at the post call.

MPI_MODE_NOPUT: the local window will not be updated by put or accumulate calls after the post call, until the
next (wait) synchronization. This may avoid the need for cache synchronization at the wait call.

MPI_WIN_FENCE:

MPI_MODE_NOSTORE: the local window was not updated by local stores (or local get or receive calls) since the
last synchronization.

MPI_MODE_NOPUT: the local window will not be updated by put or accumulate calls after the fence call, until
the ensuing (fence) synchronization.

< previous page page_124 next page >

page_125

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_125.html[2011-2-17 2:05:34]

< previous page page_125 next page >

Page 125

MPI_MODE_NOPRECEDE: the fence does not complete any sequence of locally issued RMA calls. If this
assertion is given by any process in the window group, then it must be given by all processes in the group.

MPI_MODE_NOSUCCEED: the fence does not start any sequence of locally issued RMA calls. If the assertion is
given by any process in the window group, then it must be given by all processes in the group.

MPI_WIN_LOCK:

MPI_MODE_NOCHECK: no other process holds, or will attempt to acquire a conflicting lock, while the caller
holds the window lock. This is useful when mutual exclusion is achieved by other means, but the coherence
operations that may be attached to the lock and unlock calls are still required.

The C++ names of the above-defined constants begin with MPI::MODE instead of MPI_MODE.

Advice to users. Note that the nostore and noprecede flags provide information on what happened before the call;
the noput and nosucceed flags provide information on what will happen after the call.

4.4.5
Miscellaneous Clarifications

Once an RMA routine completes, it is safe to free any opaque objects passed as argument to that routine. For
example, the datatype argument of a MPI_PUT call can be freed as soon as the call returns, even though the
communication may not be complete.

As in message passing, datatypes must be committed before they can be used in RMA communication.

4.5 Examples

Example 4.7 The following example shows a generic loosely synchronous, iterative code that uses fence
synchronization. The window at each process consists of array A, which contains the origin and target buffers of
the put calls.

...
while(!converged(A)){
 update(A);
 MPI_Win_fence(MPI_MODE_NOPRECEDE, win);

< previous page page_125 next page >

page_126

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_126.html[2011-2-17 2:05:34]

< previous page page_126 next page >

Page 126

for(i=0; i < toneighbors; i++)
 MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],
 todisp[i], 1, totype[i], win);
MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);
}

The same code could be written with get, rather than put. Note that, during the communication phase, each window
is concurrently read (as origin buffer of puts) and written (as target buffer of puts). This is permissible, provided
that there is no overlap between the target buffer of a put and another communication buffer.

Example 4.8 This is the same generic example, with more overlap of computation and communication. We assume
that the update phase is broken in two subphases: the first, where the boundary, which is involved in
communication, is updated, and the second, where the core, which neither use nor provide communicated data, is
updated.

...
while(!converged(A)){
 update_boundary(A);
 MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);
 for(i=0; i < fromneighbors; i++)
 MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],
 fromdisp[i], 1, fromtype[i], win);
 update_core(A);
 MPI_Win_fence(MPI_MODE_NOSUCCEED, win);
 }

The get communication can be concurrent with the core update, since they do not access the same locations, and
the local update of the origin buffer by the get call can be concurrent with the local update of the core by the
update_core call. In order to get similar overlap with put communication we would need to use separate
windows for the core and for the boundary. This is required because we do not allow local stores to be concurrent
with puts on the same, or on overlapping, windows.

Example 4.9 This is the same code as in Example 4.7, rewritten using post-start-complete-wait.

...
while(!converged(A)){

< previous page page_126 next page >

page_127

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_127.html[2011-2-17 2:05:35]

< previous page page_127 next page >

Page 127

update(A);
MPI_Win_post(fromgroup, 0, win);
MPI_Win_start(togroup, 0, win);
for(i=0; i < toneighbors; i++)
 MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],
 todisp[i], 1, totype[i], win);
MPI_Win_complete(win);
MPI_Win_wait(win);
}

Example 4.10 This is the same example, with split phases, as in Example 4.8.

...
while(!converged(A)){
 update_boundary(A);
 MPI_Win_post(togroup, MPI_MODE_NOPUT, win);
 MPI_Win_start(fromgroup, 0, win);
 for(i=0; i < fromneighbors; i++)
 MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],
 fromdisp[i], 1, fromtype[i], win);
 update_core(A);
 MPI_Win_complete(win);
 MPI_Win_wait(win);
 }

Example 4.11 A checkerboard, or double-buffer communication pattern, that allows more
computation/communication overlap. Array A0 is updated using values of array A1, and vice versa. We assume
that communication is symmetric: if process A gets data from process B, then process B gets data from process A.
Window win i consists of array Ai.

...
if (!converged(A0,A1))
 MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT),
 win0);
MPI_Barrier(comm0);
/* the barrier is needed because the start call inside the
loop uses the nocheck option */
while(!converged(A0, A1){

< previous page page_127 next page >

page_128

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_128.html[2011-2-17 2:05:36]

< previous page page_128 next page >

Page 128

/* communication on A0 and computation on A1 */
update2(A1, A0); /* local update of A1 that depends on
 A0 (and A1) */
MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win0);
for(i=0; i < neighbors; i++)
 MPI_Get(&tobuf0[i], 1, totype0[i], neighbor[i],
 fromdisp0[i], 1, fromtype0[i], win0);
update1(A1); /* local update of A1 that is
 concurrent with communication that updates A0 */
MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT),
 win1);
MPI_Win_complete(win0);
MPI_Win_wait(win0);

/* communication on A1 and computation on A0 */
update2(A0, A1); /* local update of A0 that depends on
 A1(and A0)*/
MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win1);
for(i=0; i< neighbors; i++)
 MPI_Get(&tobuf1[i], 1, totype1[i], neighbor[i],
 fromdisp1[i], 1, fromtype1[i], win1);
update1(A0); /* local update of A0 that depends on A0 only,
 concurrent with communication that updates A1 */
if (!converged(A0,A1))
 MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT),
 win0);
MPI_Win_complete(win1);
MPI_Win_wait(win1);
}

A process posts the local window associated with win0 before it completes RMA accesses to the remote windows
associated with win1. When the wait(win1) call returns, then all neighbors of the calling process have posted
the windows associated with win0. Conversely, when the wait(win0) call returns, then all neighbors of the
calling process have posted the windows associated with win. Therefore, the nocheck option can be used with the
calls to MPI_WIN_START.

Put calls can be used, instead of get calls, if the area of array A0 (resp. A1) used by the update(A1, A0) (resp.
update(A0, A1)) call is disjoint from the area

< previous page page_128 next page >

page_129

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_129.html[2011-2-17 2:05:36]

< previous page page_129 next page >

Page 129

modified by the RMA communication. On some systems, a put call may be more efficient than a get call, as it
requires information exchange only in one direction.

4.6 Error Handling

4.6.1 Error Handlers

Errors occurring during calls to MPI_WIN_CREATE(,comm,) cause the error handler currently associated with
comm to be invoked. All other RMA calls have an input win argument. When an error occurs during such a call,
the error handler currently associated with win is invoked.

The default error handler associated with win is MPI_ERRORS_ARE_FATAL. Users may change this default by
explicitly associating a new error handler with win (see Section I7.5.1).

4.6.2 Error Classes.

The following new error classes are defined:

MPI_ERR_WIN invalid win argument
MPI_ERR_BASE invalid base argument
MPI_ERR_SIZE invalid size argument
MPI_ERR_DISP invalid disp argument
MPI_ERR_LOCKTYPE invalid locktype argument
MPI_ERR_ASSERT invalid assert argument
MPI_ERR_RMA_CONFLICT conflicting accesses to window
MPI_ERR_RMA_SYNC wrong synchronization of RMA calls

4.7 Semantics and Correctness

The description of one-sided operations has not yet addressed exactly what happens when, for example, several
processes access the same target window. This section provides a more precise description of the semantics of
RMA operations, and is particularly important for understanding exactly what happens (and what is allowed in
MPI1) with several processes accessing the same window, both with and without MPA2 RMA operations.

The semantics of RMA operations are best understood by assuming that the system maintains a separate public
copy of each window, in addition to the original location in process memory (the private window copy). There is
only one instance of each variable in process memory, but a distinct public copy of the variable for

< previous page page_129 next page >

page_130

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_130.html[2011-2-17 2:05:37]

< previous page page_130 next page >

Page 130

Figure 4.5
Schematic description of window

each window that contains it. A load accesses the instance in process memory (this includes MPI sends). A store
accesses and updates the instance in process memory (this includes MPI receives), but the update may affect other
public copies of the same locations. A get on a window accesses the public copy of that window. A put or
accumulate on a window accesses and updates the public copy of that window, but the update may affect the
private copy of the same locations in process memory, and public copies of other overlapping windows. This is
illustrated in Figure 4.5.

The following rules specify the latest time at which an operation must complete at the origin or the target. The
update performed by a get call in the origin process memory is visible when the get operation is complete at the
origin (or earlier); the update performed by a put or accumulate call in the public copy of the target window is
visible when the put or accumulate has completed at the target (or earlier). The rules also specify the latest time at
which an update of one window copy becomes visible in another overlapping copy.

1. An RMA operation is completed at the origin by the ensuing call to MPI_WIN_COMPLETE,
MPI_WIN_FENCE or MPI_WIN_UNLOCK that synchronizes this access at the origin.

2. If an RMA operation is completed at the origin by a call to MPI_WIN_FENCE then the operation is completed
at the target by the matching call to MPI_WIN_FENCE by the target process.

< previous page page_130 next page >

page_131

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_131.html[2011-2-17 2:05:38]

< previous page page_131 next page >

Page 131

3. If an RMA operation is completed at the origin by a call to MPI_WIN_COMPLETE then the operation is
completed at the target by the matching call to MPI_WIN_WAIT by the target process.

4. If an RMA operation is completed at the origin by a call to MPI_WIN_UNLOCK then the operation is
completed at the target by that same call to MPI_WIN_UNLOCK.

5. An update of a location in a private window copy in process memory becomes visible in the public window
copy at the latest when an ensuing call to MPI_WIN_POST, MPI_WIN_FENCE, or MPI_WIN_UNLOCK is
executed on that window by the window owner.

6. An update by a put or accumulate call to a public window copy becomes visible in the private copy in process
memory at the latest when an ensuing call to MPI_WIN_WAIT, MPI_WIN_FENCE, or MPI_WIN_LOCK is
executed on that window by the window owner.

The MPI_WIN_FENCE or MPI_WIN_WAIT call that completes the transfer from public copy to private copy (6)
is the same call that completes the put or accumulate operation in the window copy (2, 3). If a put or accumulate
access was synchronized with a lock, then the update of the public window copy is complete as soon as the
updating process executed MPI_WIN_UNLOCK. On the other hand, the update of private copy in the process
memory may be delayed until the target process executes a synchronization call on that window (6). Thus, updates
to process memory can always be delayed until the process executes a suitable synchronization call. Updates to a
public window copy can also be delayed until the window owner executes a synchronization call, if fences or post-
start-complete-wait synchronization are used. Only when lock synchronization is used does it becomes necessary
to update the public window copy, even if the window owner does not execute any related synchronization call.

The rules above also define, by implication, when an update to a public window copy becomes visible in another
overlapping public window copy. Consider, for example, two overlapping windows, win1 and win2. A call to
MPI_WIN_FENCE(0, win1) by the window owner makes visible in the process memory previous updates to
window win1 by remote processes. A subsequent call to MPI_WIN_FENCE(0, win2) makes these updates
visible in the public copy of win2.

A correct program must obey the following rules.

< previous page page_131 next page >

page_132

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_132.html[2011-2-17 2:05:38]

< previous page page_132 next page >

Page 132

1. A location in a window must not be accessed locally once an update to that location has started, until the update
becomes visible in the private window copy in process memory.

2. A location in a window must not be accessed as a target of an RMA operation once an update to that location
has started, until the update becomes visible in the public window copy. There is one exception to this rule, in the
case where the same variable is updated by two concurrent accumulates that use the same operation, with the same
predefined datatype, on the same window.

3. A put or accumulate must not access a target window once a local update or a put or accumulate update to
another (overlapping) target window have started on a location in the target window, until the update becomes
visible in the public copy of the window. Conversely, a local update in process memory to a location in a window
must not start once a put or accumulate update to that target window has started, until the put or accumulate update
becomes visible in process memory. In both cases, the restriction applies to operations even if they access disjoint
locations in the window.

A program is erroneous if it violates these rules.

Rationale. The last constraint on correct RMA accesses may seem unduly restrictive, as it forbids concurrent
accesses to nonoverlapping locations in a window. The reason for this constraint is that, on some architectures,
explicit coherence restoring operations may be needed at synchronization points. A different operation may be
needed for locations that were locally updated by stores and for locations that were remotely updated by put or
accumulate operations. Without this constraint, the MPI library will have to track precisely which locations in a
window were updated by a put or accumulate call. The additional overhead of maintaining such information is
considered prohibitive.

Advice to users. A user can write correct programs by following the following rules:

fence: During each period between fence calls, each window is either updated by put or accumulate calls, or
updated by local stores, but not both. Locations updated by put or accumulate calls should not be accessed during
the same period (with the exception of concurrent updates to the same location by accumulate calls). Locations
accessed by get calls should not be updated during the same period.

< previous page page_132 next page >

page_133

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_133.html[2011-2-17 2:05:39]

< previous page page_133 next page >

Page 133

post-start-complete-wait: A window should not be updated locally while being posted, if it is being updated by put
or accumulate calls. Locations updated by put or accumulate calls should not be accessed while the window is
posted (with the exception of concurrent updates to the same location by accumulate calls). Locations accessed by
get calls should not be updated while the window is posted.

With the post-start synchronization, the target process can tell the origin process that its window is now ready
for RMA access; with the complete-wait synchronization, the origin process can tell the target process that it
has finished its RMA accesses to the window.

lock: Updates to the window are protected by exclusive locks if they may conflict. Nonconflicting accesses (such
as read-only accesses or accumulate accesses) are protected by shared locks, both for local accesses and for RMA
accesses.

changing window or synchronization mode: One can change synchronization mode, or change the window used to
access a location that belongs to two overlapping windows, when the process memory and the window copy are
guaranteed to have the same values. This is true after a local call to MPI_WIN_FENCE, if RMA accesses to the
window are synchronized with fences; after a local call to MPI_WIN_WAIT, if the accesses are synchronized with
post-start-complete-wait; after the call at the origin (local or remote) to MPI_WIN_UNLOCK, if the accesses are
synchronized with locks.

In addition, a process should not access the local buffer of a get operation until the operation is complete, and
should not update the local buffer of a put or accumulate operation until that operation is complete.

4.7.1 Atomicity

The outcome of concurrent accumulates to the same location, with the same operation and predefined datatype, is
as if the accumulates were done at that location in some serial order. On the other hand, if two locations are both
updated by two accumulate calls, then the updates may occur in reverse order at the two locations. Thus, there is no
guarantee that the entire call to MPI_ACCUMULATE is executed atomically. The effect of this lack of atomicity
is limited: the previous correctness conditions imply that a location updated by a call to MPI_ACCUMULATE
cannot be accessed by load or an RMA call other than accumulate, until the MPI_ACCUMULATE call has
completed (at the target). Different interleavings can lead to different results only to the extent that computer
arithmetics are not truly associative or commutative.

< previous page page_133 next page >

page_134

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_134.html[2011-2-17 2:05:40]

< previous page page_134 next page >

Page 134

Figure 4.6
Symmetric communication

4.7.2 Progress

One-sided communication has the same progress requirements as point-to-point communication: once a
communication is enabled, then it is guaranteed to complete. RMA calls must have local semantics, except when
required for synchronization with other RMA calls.

There is some fuzziness in the definition of the time when a RMA communication becomes enabled. This fuzziness
provides to the implementor more flexibility than with point-to-point communication. Access to a target window
becomes enabled once the corresponding synchronization (such as MPI_WIN_FENCE or MPI_WIN_POST) has
executed. On the origin process, an RMA communication may become enabled as soon as the corresponding put,
get or accumulate call has executed, or as late as when the ensuing synchronization call is issued. Once the
communication is enabled both at the origin and at the target, the communication must complete.

Consider the code fragment in Example 4.4. Some of the calls may block if the target window is not posted.
However, if the target window is posted, then the code fragment must complete. The data transfer may start as soon
as the put call occurs, but may be delayed until the ensuing complete call occurs.

Consider the code fragment in Example 4.5. Some of the calls may block if another process holds a conflicting
lock. However, if no conflicting lock is held, then the code fragment must complete.

< previous page page_134 next page >

page_135

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_135.html[2011-2-17 2:05:40]

< previous page page_135 next page >

Page 135

Figure 4.7
Deadlock situation

Consider the code illustrated in Figure 4.6. Each process updates the window of the other process using a put
operation, then accesses its own window. The post calls are nonblocking, and should complete. Once the post calls
occur, RMA access to the windows is enabled, so that each process should complete the sequence of calls start-put-
complete. Once these are done, the wait calls should complete at both processes. Thus, this communication should
not deadlock, irrespective of the amount of data transferred.

Assume, in the last example, that the order of the post and start calls is reversed, at each process. Then, the code
may deadlock, as each process may block on the start call, waiting for the matching post to occur. Similarly, the
program will deadlock, if the order of the complete and wait calls is reversed, at each process.

The following two examples illustrate the fact that the synchronization between complete and wait is not
symmetric: the wait call blocks until the complete executes, but not vice versa. Consider the code illustrated in
Figure 4.7. This code will deadlock: the wait of process 1 blocks until process 0 calls complete, and the receive of
process 0 blocks until process 1 calls send. Consider, on the other hand, the code illustrated in Figure 4.8. This code
will not deadlock. Once process 1 calls post, then the sequence start, put, complete on process 0 can proceed to
completion. Process 0 will reach the send call, allowing the receive call of process 1 to complete.

Rationale. MPI implementations must guarantee that a process makes progress on all enabled communications it
participates in, while blocked on an MPI call. This is true for send-receive communication and applies to RMA
communication as well. Thus, in the example in Figure 4.8, the put and complete calls of process 0 should
complete while process 1 is blocked on the receive call. This may require the

< previous page page_135 next page >

page_136

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_136.html[2011-2-17 2:05:41]

< previous page page_136 next page >

Page 136

Figure 4.8
No deadlock

involvement of process 1, for example, to transfer the data put, while it is blocked on the receive call.

A similar issue is whether such progress must occur while a process is busy computing, or blocked in a non-MPI
call. Suppose that in the last example the send-receive pair is replaced by a write-to-socket/read-from-socket pair.
Then MPI does not specify whether deadlock is avoided. Suppose that the blocking receive of process 1 is replaced
by a very long compute loop. Then, according to one interpretation of the MPI standard, process 0 must return
from the complete call after a bounded delay, even if process 1 does not reach any MPI call in this period of time.
According to another interpretation, the complete call may block until process 1 reaches the wait call, or reaches
another MPI call. The qualitative behavior is the same, under both interpretations, unless a process is caught in an
infinite compute loop, in which case the difference may not matter. However, the quantitative expectations are
different. Different MPI implementations reflect these different interpretations. While this ambiguity is unfortunate,
it does not seem to affect many real codes. The MPI Forum decided not to decide which interpretation of the
standard is the correct one, since the issue is very contentious, and a decision would have much impact on
implementors but less impact on users.

4.7.3 Registers and Compiler Optimizations

Advice to users. All the material in this section is advice to users.

A coherence problem exists between variables kept in registers and the memory value of these variables. An RMA
call may access a variable in memory (or cache), while the up-to-date value of this variable is in a register. A get
will not return

< previous page page_136 next page >

page_137

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_137.html[2011-2-17 2:05:42]

< previous page page_137 next page >

Page 137

the latest variable value, and a put may be overwritten when the register is stored back in memory.

The problem is illustrated by the following code:

Source of Process 1 Source of Process 2 Executed in Process 2
bbbb = 777 buff = 999 reg_A:=999
call MPI_WIN_FENCE call MPI_WIN_FENCE
call MPI_PUT (bbbb
into buff of process 2)

stop appl. thread
buff:=777 in PUT
handler
continue appl. thread

call MPI_WIN_FENCE call MPI_WIN_FENCE
ccc = buff

ccc:=reg_A

In this example, variable buff is allocated in the register reg_A and therefore ccc will have the old value of
buff and not the new value 777.

This problem, which also afflicts in some cases send/receive communication, is discussed more at length in Section
8.2.2.

MPI implementations will avoid this problem for standard-conforming C programs. Many Fortran compilers will
avoid this problem, without disabling compiler optimizations. However, in order to avoid register-coherence
problems in a completely portable manner, users should restrict their use of RMA windows to variables stored in
COMMON blocks, or to variables that were declared VOLATILE (while VOLATILE is not a standard Fortran
declaration, it is supported by many Fortran compilers). Details and an additional solution are discussed in Section
8.2.2. See also Section 8.2.2 for additional Fortran problems.

< previous page page_137 next page >

page_139

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_139.html[2011-2-17 2:05:42]

< previous page page_139 next page >

Page 139

5
Intercommunicator Collective Operations.

In Chapter 4 of Book 1, collective operations were described only for intracommunicators. Indeed, the MPI-1
standard defined collective operations only for intracommunicators. However, most MPI collective operations can
be generalized to intercommunicators. This generalization has several uses: for example, in pipelined algorithms,
one often needs to move data from one group of processes to another group. The two groups may have different
sizes, and data may need to reorganized during the transfer. This type of communication is expressed naturally as a
collective operation on an intercommunicator. The extension of collective operations to intercommunicators was
done in MPI-2.

5.1
Introduction

We can view most MPI intracommunicator collective operations as fitting one of the following three categories:

All-to-all:All processes contribute data, and all processes receive data.

MPI_Allgather, MPI_Allgatherv

MPI_Alltoall, MPI_Alltoallv, MPI_Alltoallw

MPI_Allreduce, MPI_Reduce_scatter

Rooted: Either all processes contribute data and one process receives data (allto-one) or one process contributes
data and all processes receive data (one-to-all).

MPI_Gather, MPI_Gatherv

MPI_Reduce

MPI_Bcast

MPI_Scatter, MPI_Scatterv

Other: Collective operations that do not fit into one of the above categories.

MPI_Scan, MPI_Exscan

MPI_Barrier

The MPI_Barrier operation does not fit into this classification since no data is being moved. The data movement
pattern of MPI_Scan does not fit this taxonomy.

An intercommunicator has two groups, A and B. When collective communications are extended to
intracommunicators, then all data sent by processes in one group

< previous page page_139 next page >

page_140

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_140.html[2011-2-17 2:05:43]

< previous page page_140 next page >

Page 140

Figure 5.1
Intercommunicator allgather.

are received by processes in the other group. Communication is duplex for all-toall operations: data sent by
processes in group A is received by processes in group B, and data sent by processes in group B is received by
processes in group A . This is illustrated in Figure 5.1, for MPI_ALLGATHER (the figure indicates an
implementation where data is gathered at one process, next broadcast to all processes in the other group; this is for
illustrative purposes only, as other implementations are possible).

Communication is simplex for rooted operations. One group (either A or B) contains the root process. Data moves
from the root to all processes in the other group (one-to-all) or vice-versa (all-to-one). This is illustrated in Figure
5.2 for MPI_SCATTER.

When rooted operations are executed on intracommunicators, the root is specified by having all processes pass as
argument the root rank. This does not work for intercommunicators, as one needs to specify which of the two
groups contains the root. In this case, for the group containing the root process (the root group), all processes in the
group must call the routine using a special argument for the root. The root process uses the special root value
MPI_ROOT (MPI::ROOT in C++); all

< previous page page_140 next page >

page_141

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_141.html[2011-2-17 2:05:43]

< previous page page_141 next page >

Page 141

Figure 5.2
Intercommunicator scatter.

other processes in the root group use MPI_PROC_NULL. All processes in the other group (the leaf group) must
call the collective routine and provide the rank of the root.

Note that the in place option for intracommunicators does not apply to intercommunicators since in the
intercommunicator case there is no communication from a process to itself.

Rationale. Rooted operations are unidirectional by nature, and there is a clear way of specifying direction. The
calling scheme ensures that the root identity is passed as an argument by all processes that communicate with the
root.

All-to-all, nonrooted operations will often occur as part of an exchange, where it makes sense to communicate in
both directions at once.

Advice to users. When a rooted collective operation executes on an intercommunicator, then all processes in the
root group, with the exclusion of the root process, neither send nor receive data. Nevertheless, all these processes
must participate in the collective call. The implementation may actually involve some or all of these processes in
the collective communication.

5.2
Collective Operations

We describe now the semantics of collective operations on intercommunicators. We do not repeat the bindings for
these functions, as these are identical to the bindings presented in Chapter I-4. Note, however, that the functions
should be passed a comm argument that represents an intercommunicator. In C++, they should be invoked as
methods on objects of type MPI::Intercomm.

< previous page page_141 next page >

page_142

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_142.html[2011-2-17 2:05:44]

< previous page page_142 next page >

Page 142

MPI_BARRIER (comm)

All processes in group A may exit the barrier when all of the processes in group B have entered the barrier, and
vice-versa.

MPI_BCAST (buffer, count, datatype, root, comm)

The root process passes the value MPI_ROOT in root. All other processes in the root group pass the value
MPI_PROC_NULL in root. All processes in the leaf group pass the same value in argument root, which is the rank
of the root process in the root group. Data is broadcast from the root to all processes in the leaf group. The receive
buffer arguments of the processes in the leaf group must be consistent with the send buffer argument of the root
process. The arguments buffer and count are not significant at the processes of the root group, except at the root
process.

MPI_GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

MPI_GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm)

The root process passes the value MPI_ROOT in root. All other processes in the root group pass the value
MPI_PROC_NULL in root. All processes in the leaf group pass the same value in argument root, which is the rank
of the root process in the root group. Data is gathered from all processes in the leaf group to the root process. The
send buffer arguments of the processes in the leaf group must be consistent with the receive buffer argument of the
root process.The sendbuf, sendcount and sendtype arguments are significant only at processes of the leaf group.
The recvbuf, recvcount, and recvtype (recvbuf, recvcounts, displs and recvtype) arguments are significant only at
the root process.

MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

MPI_SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root, comm)

The root process passes the value MPI_ROOT in root. All other processes in the root group pass the value
MPI_PROC_NULL in root. All processes in the leaf group pass the same value in argument root, which is the rank
of the root process in the root group. Data is scattered from the root process to all processes in the leaf group. The
receive buffer arguments of the processes in the leaf group must be consistent with the send buffer argument of the
root process. The sendbuf, sendcount and

< previous page page_142 next page >

page_143

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_143.html[2011-2-17 2:05:45]

< previous page page_143 next page >

Page 143

sendtype (sendbuf, sendcounts, displs and sendtype) arguments are significant only at the root process. The
recvbuf, recvcount, and recvtype arguments are significant only at the processes of the leaf group.

MPI_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

MPI_ALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm)

Each process in group A contributes a data item; these items are concatenated and the result is stored at each
process in group B. Conversely the concatenation of the contributions of the processes in group B is stored at each
process in group A. The send buffer arguments in group A must be consistent with the receive buffer arguments in
group B, and vice versa.

Advice to users. The communication pattern of MPI_ALLGATHER executed on an intercommunication domain
need not be symmetric. The number of items sent by processes in group A (as specified by the arguments
sendcount, sendtype in group A and the arguments recvcount, recvtype in group B), need not equal the number
of items sent by processes in group B (as specified by the arguments sendcount, sendtype in group B and the
arguments recvcount, recvtype in group A). In particular, one can move data in only one direction by specifying
sendcount = 0 for the communication in the reverse direction.

MPL_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

MPI_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recvtype, comm)

MPI_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recvtypes. comm)

The outcome is as if each process in group A sends a message to each process in group B, and vice versa. The j-th
send buffer of process i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Advice to users. When all-to-all is executed on an intercommunication domain, then the number of data items sent
from processes in group A to processes in group B need not equal the number of items sent in the reverse direction.
In particular, one can have unidirectional communication by specifying sendcount=0 in the reverse direction.

< previous page page_143 next page >

page_144

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_144.html[2011-2-17 2:05:46]

< previous page page_144 next page >

Page 144

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

The root process passes the value MPI_ROOT in root. All other processes in the root group pass the value
MPI_PROC_NULL in root. All processes in the leaf group pass the same value in argument root, which is the rank
of the root process in the root group. The result of the reduction of the data provided by processes in the leaf group
is stored at the root process. The argument sendbuf is not significant at processes in the root group; the argument
recvbuf is significant only at the root process.

MPI_ALLREDUCE (sendbuf, recvbuf, count, datatype, op, comm)

The result of the reduction of the data provided by processes in group A is stored at each process in group B, and
vice versa. Both groups should provide the same count value.

MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm)

The result of the reduction of the data provided by processes in group A is scattered among processes in group B,
and vice versa. Within each group, all processes provide the same recvcounts argument, and the sum of the
recvcounts entries should be the same for the two groups.

Rationale. The last restriction is needed so that the length of the send buffer can be determined by the sum of the
local recvcounts entries. Otherwise, a communication is needed to figure out how many elements are reduced.

MPI_SCAN(sendbuf, recvbuf, count, datatype, op, comm)

This operation is illegal for intercommunicators.

MPI_EXSCAN(sendbuf, recvbuf, count, datatype, op, comm)

This operation is illegal for intercommunicators.

< previous page page_144 next page >

page_145

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_145.html[2011-2-17 2:05:46]

< previous page page_145 next page >

Page 145

6
External Interfaces

Although MPI-2 provides extensions to MPI-1 in critical areas (e.g., process management, one-sided
communication, and I/O,) true flexibility comes from being able to extend MPI in as yet unforeseen ways. The
functions described here provide this facilityto extend MPI within the MPI framework. These extensions fall into
three areas: creation of new nonblocking operations (or new libraries using nonblocking operations), debugger and
profiler support, and layering of significant parts of MPI-2 on top of the rest of MPI. This chapter is primarily
targeted towards low-level developers, and, as such, can be safely skipped by all but the most sophisticated users
of MPI.

6.1
Introduction

This chapter begins with calls used to create generalized requests. The objective of this MPI-2 addition is to allow
users of MPI to be able to create new nonblocking operations whose interface is similar to that of MPI nonblocking
operations. Generalized requests can be used to layer new functionality on top of MPI. Next, Section 6.3 deals with
setting the information found in status. This is needed for generalized requests as well as layering.

Section 6.4 allows users to associate names with communicators, windows, and datatypes. This will allow
debuggers and profilers to identify communicators, windows, and datatypes with more useful labels; common
objects are given useful default names. Section 6.5 allows users to add error codes, classes, and strings to MPI.
With users being able to layer functionality on top of MPI, it is desirable for them to use the same error
mechanisms found in MPI. Keep in mind, however, that the default error behavior (except for I/O) is errors are
fatal.

Section 6.6 deals with decoding datatypes. The opaque datatype object has found a number of uses outside MPI,
and the ability to decode datatypes is a key feature required for layering. Furthermore, a number of tools wish to
display internal information about datatypes.

Section 6.7 has information on attribute caching on datatypes and windows, similar to the attribute caching on
communicators that was introduced in Section I-5.6. Permitting caching on heavy weight objects facilitates all three
areas of extension.

< previous page page_145 next page >

page_146

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_146.html[2011-2-17 2:05:47]

< previous page page_146 next page >

Page 146

6.2
Generalized Requests.

The goal of this MPI-2 extension is to allow users to define new nonblocking operations. Such outstanding
nonblocking operations are represented by (generalized) requests. A fundamental property of a nonblocking
operation is that progress toward its completion occurs asynchronously, that is, concurrently with normal program
execution. Typically, this requires execution of code concurrently with the execution of the user code, for example,
in a separate thread or in a signal handler. Operating systems provide a variety of mechanisms in support of
concurrent execution. MPI does not attempt to standardize or replace these mechanisms: it is assumed
programmers who wish to define new asynchronous operations will use the mechanisms provided by the
underlying operating system. Thus, the calls in this section only provide a means for defining the effect of MPI
calls such as MPI_WAIT or MPI_CANCEL when they apply to generalized requests, and for signaling to MPI the
completion of a generalized operation.

Rationale. It is tempting to also define an MPI standard mechanism for achieving concurrent execution of user-
defined nonblocking operations. However, it is very difficult to define such a mechanism without consideration of
the specific mechanisms used in the operating system. The Forum felt that concurrency mechanisms are a proper
part of the underlying operating system and should not be standardized by MPI; the MPI standard should only deal
with the interaction of such mechanisms with MPI.

For a regular request, the operation associated with the request is performed by the MPI implementation, and the
operation completes without intervention by the application. For a generalized request, the operation associated
with the request is performed by the application; therefore, the application must notify MPI when the operation
completes. This is done by making a call to MPI_GREQUEST_COMPLETE. MPI maintains the completion status
of generalized requests. Any other request state has to be maintained by the user.

A new generalized request is started with

MPI_GREQUEST_START(query_fn,free_fn,cancel_fn,extra_state,request)

IN
query_fn callback function invoked when request status is queried (function)

IN
free_fn callback function invoked when request is freed (function)

< previous page page_146 next page >

page_147

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_147.html[2011-2-17 2:05:48]

< previous page page_147 next page >

Page 147

IN
cancel_fn callback function invoked when request is cancelled (function)

IN
extra_state extra state

OUT
request generalized request (handle)

int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,
 MPI_Grequest_free_function *free_fn, MPI_Grequest_cancel_function
 *cancel_fn, void *extra_state, MPI_Request *request)

MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,
 IERROR)
 INTEGER REQUEST, IERROR
 EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN
 INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_-STATE

static MPI::Grequest
 MPI::Grequest::Start(const MPI::Grequest::Query_function
 query_fn, const MPI::Grequest::Free_function free_fn,
 const MPI:: Grequest:: Cancel_function cancel_fn,
 void* extra_state)

Advice to users. Note that a generalized request belongs, in C++, to the class MPI::Grequest, which is a derived
class of MPI::Request. It is of the same type as regular requests in C and Fortran.

The call starts a generalized request and returns a handle to it in request.

The syntax and meaning of the callback functions are listed below. All callback functions are passed the
extra_state argument that was associated with the request by the starting call MPI_GREQUEST_START. This can
be used to maintain user-defined state for the request. In C, the query function is

typedef int MPI_Grequest_query_function(void *extra_state,
 MPI_Status *status);

in Fortran

SUBROUTINE GREQUEST_QUERY_FUNCTION (EXTRA_STATE, STATUS, IERROR)
 INTEGER STATUS(MPI_STATUS_SIZE), IERROR
 INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

< previous page page_147 next page >

page_148

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_148.html[2011-2-17 2:05:48]

< previous page page_148 next page >

Page 148

and in C++

typedef int MPI::Grequest::Query_function(void* extra_state,
 MPI::Status& status);

The query_fn function computes the status that should be returned for the generalized request. The status also
includes information about successful/unsuccessful cancellation of the request (result to be returned by
MPI_TEST_CANCELLED.)

The query_fn callback is invoked by the MPI_{WAIT|TEST} {ANY|SOME|ALL} call that completed the
generalized request associated with this callback. The callback function is also invoked by calls to
MPI_REQUEST_GET_STATUS, if the request is complete when the call occurs. In both cases, the callback is
passed a reference to the corresponding status variable passed by the user to the MPI call; the status set by the
callback function is returned by the MPI call. Even if the user provided MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE to the MPI function that causes query_fn to be called, MPI will pass a valid status
object to query_fn, but ignore it upon return of the callback function. Note that query_fn is invoked only after
MP_GREQUEST_COMPLETE is called on the request; it may be invoked several times for the same generalized
request, for example, if the user calls MPI_REQUEST_GET_STATUS several times for this request. Note also
that a call to MPI_{WAIT|TEST}{SOME|ALL} may cause multiple invocations of query_fn callback functions,
one for each generalized request that is completed by the MPI call. The order of these invocations is not specified
by MPI.

In C, the free function is

typedef int MPI_Grequest_free_function(void *extra_state);

and in Fortran

SUBROUTINE GREQUEST_FREE_FUNCTION (EXTRA_STATE, IERROR)
 INTEGER IERROR
 INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

and in C++

typedef int MPI::Grequest:: Free_function (void* extra_state);

The free_fn function is invoked to clean up user-allocated resources when the generalized request is freed.

The free_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL} call that completed the generalized
request associated with this callback. free_fn is invoked after the call to query_fn for the same request. However, if
the MPI call

< previous page page_148 next page >

page_149

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_149.html[2011-2-17 2:05:49]

< previous page page_149 next page >

Page 149

completed multiple generalized requests, the order in which free_fn callback functions are invoked is not specified by
MPI.

The free_fn callback is also invoked for generalized requests that are freed by a call to MPI_REQUEST_FREE(no
call to MPI_{WAIT|TEST}{_ANY|SOME|ALL} will occur for such a request). In this case, the callback function
will be called either in the MPI call MPI_REQUEST_FREE(request), or in the MPI callMPI_GREQUEST_-
COMPLETE(request), whichever happens last. That is, in this case the actual freeing code is executed as soon as
both calls MPI_REQUEST_FREE and MPI_-GREQUEST_COMPLETE have occurred. The request is not
deallocated until after free_fn completes. Note that free_fn will be invoked only once per request by a correct
program.

Advice to users. Calling MPI_REQUEST_FREE(request) will cause the request handle to be set to
MPI_REQUEST_NULL. This handle to the generalized request is no longer valid. However, other user copies of this
handle are valid until after free_fn completes since MPI does not deallocate the object until then. Since free_fn is not
called until after MPI_GREQUEST_COMPLETE, the user copy of the handle can be used to make this call. Users
should note that MPI will deallocate the object after free-fn executes. At this point, user copies of the request handle
no longer point to a valid request. MPI will not set user copies to MPI_REQUEST_NULL in this case, so it is up to
the user to avoid accessing this stale handle. This is a special case where MPI defers deallocating the object until a
later time that is known by the user.

In C, the cancel function is

typedef int MPI_Grequest_cancel_function (void *extra_state, in
 complete);

in Fortran

SUBROUTINE GREQUEST_CANCEL_FUNCTION (EXTRA_STATE, COMPLETE, IERROR)
 INTEGER IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE
 LOGICAL COMPLETE

and in C++

typedef int MPI::Grequest::Cancel_function, (void* extra_state, bool complete);

The cancel_fn function is invoked to start the cancellation of a generalized request. It is called by
MPI_REQUEST_CANCEL(request). MPI passes to the callback

< previous page page_149 next page >

page_150

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_150.html[2011-2-17 2:05:49]

< previous page page_150 next page >

Page 150

function complete=true if MPI_GREQUEST_COMPLETE was already called on the request, and complete=false
otherwise.

All callback functions return an error code. The code is passed back to the MPI function that invoked the callback
function, and dealt with as appropriate for the error code. For example, if error codes are returned then the error
code returned by the callback function will be returned by the MPI function that invoked the callback function. In
the case of MPI_{WAIT|TEST}_ANY call that invokes both query_ fn and free_fn. the MPI call will return the
error code returned by the last callback, namely free_fn. If one or more of the requests in a call to
MPI_{WAIT|TEST}{SOME|ALL} failed, then the MPI call will return MPI_ERR_IN_STATUS. In such a case, if
the MPI call was passed an array of statuses, then MPI will return in each of the statuses that correspond to a
completed generalized request the error code returned by the corresponding invocation of its free_fn callback
function. However, if the MPI function was passed MPI_STATUSES_IGNORE, then the individual error codes
returned by each callback functions will be lost.

Advice to users. query_fn must not set the error field of status since query_fn may be called by MPI_WAIT or
MPI_TEST, in which case the error field of status should not change. The MPI library knows the context in which
query_fn is invoked and can decide correctly when to put in the error field of status the returned error code.

MPI_GREQUEST_COMPLETE(request)

INOUT
request generalized request (handle)

int MPI_Grequest_complete(MPI_Request request)

MPI_GREQUEST_COMPLETE (REQUEST, IERROR)
 INTEGER REQUEST, IERROR
void MPI::Grequest::Complete()

The call informs MPI that the operations represented by the generalized request request are complete. (See
definitions in Section 1.4.) A call to MPL_WAIT(request, status) will return and a call to MPI_TEST(request, flag,
status) will return flag=true only after a call to MPI_GREQUEST_COMPLETE has declared that these operations
are complete.

< previous page page_150 next page >

page_151

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_151.html[2011-2-17 2:05:50]

< previous page page_151 next page >

Page 151

However, new nonblocking operations should be defined so that the general MPI imposes no restrictions on the
code executed by the callback functions. semantic rules about MPI calls such as MPLREST,
MPI_REQUEST_FREE, or MPI_CANCEL still hold. For example, all these calls are supposed to be local and
nonblocking. Therefore, the callback functions query_fn, free_fn, or cancel_fn should invoke blocking MPI
communication calls only if the context is such that these calls are guaranteed to return in finite time. Once
MPI_CANCEL is invoked, the cancelled operation should complete in finite time, irrespective of the state of other
processes (the operation has acquired local semantics). It should either succeed, or fail without side-effects. The
user should guarantee these same properties for newly defined operations.

Advice to implementors. A call to MPI_GREQUEST_COMPLETE may unblock a blocked user process/thread.
The MPI library should ensure that the blocked user computation will resume.

6.2.1
Examples

Example 6.1 This example shows the code for a user-defined reduce operation on an int using a binary tree: each
nonroot node receives two messages, sums them, and sends them up. It is assumed that no status is returned and
that the operation cannot be cancelled.

typedef struct {
 MPI_Comm comm;
 int tag;
 int root;
 int valin;
 int *valout;
 MPI_Request request;
 } ARGS;

int myreduce(MPI_Comm comm, int tag, int root,
 int valin, int *valout, MPI_Request *request)
{
 ARGS *args;
 pthread_t thread;

< previous page page_151 next page >

page_152

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_152.html[2011-2-17 2:05:51]

< previous page page_152 next page >

Page 152

/* start request */
MPI_Grequest_start(query_fn, free_fn, cancel_fn, NULL, request);

args = (ARGS*)malloc(sizeof(ARGS));
args®comm = comm;
args®tag = tag;
args®root = root;
args®valin = valin;
args®valout = valout;
args®request = *request;

/* spawn thread to handle request */
/* The availability of the pthread_create call is
system dependent */
pthread_create(&thread, NULL, reduce_thread, args);

return MPI_SUCCESS;
}

/* thread code */
void reduce_thread(void *ptr)
{
 int lchild, rchild, parent, Ival, rval, val;
 MPI_Request req[2];
 ARGS *args;

args = (ARGS*)ptr;

/* compute left,right child and parent in tree; set
to MPI_PROC_NULL if does not exist */
/* code not shown */
...

MPI_Irecv(&lval, 1, MPI_INT, Ichild, args®tag, args®comm,
 &req[0]);
MPI_Irecv(&rval, 1, MPI_INT, rchild, args®tag, argsc®comm,
 &req[1]);

< previous page page_152 next page >

page_153

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_153.html[2011-2-17 2:05:51]

< previous page page_153 next page >

Page 153

MPI_Waitall(2, req, MPI_STATUSES_IGNORE);
val = lval + args
rarr;valin + rval;
MPI_Send(&val, 1, MPI_INT, parent, args®tag, args®comm);
if (parent == MPI_PROC_NULL) *(args®valout) = val;
MPI_Grequest_complete((args®request));
free(ptr);
return;
}

int query_fn(void *extra_state, MPI_Status *status)
{
 /* always send just one int */
 MPI_Status_set_elements(status, MPI_INT, 1);
 /*can never cancel so always true */-
 MPI_Status_set_cancelled(status, 0);
 /* choose not to return a value for this */
 status®MPI_SOURCE = MPI_UNDEFINED;
 /* tag has not meaning for this generalized request */
 status®MPI_TAG = MPI_UNDEFINED;
 /* this generalized request never fails */
 return MPI_SUCCESS;
}

int free_fn(void *extra_state)
{
 /* this generalized request does not need to do any freeing */
 /* as a result it never fails here */
 return MPI_SUCCESS;
}

int cancel_fn(void *extra_state, int complete)
{
 /* This generalized request does not support cancelling.
 Abort if not already done. If done then treat as if
 cancel failed. */
 if (!complete) {

< previous page page_153 next page >

page_154

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_154.html[2011-2-17 2:05:52]

< previous page page_154 next page >

Page 154

 fprintf(stderr,
 Cannot cancel generalized request - aborting program\n);
 MPI_Abort(MPI_COMM_WORLD, 99) ;
 }
 return MPI_SUCCESS;
}

6.3
Associating Information with Status

In MPI-1, requests were associated with point-to-point-operations. In MPI-2, requests may also be associated with
I/O or, through the generalized request mechanism, with user-defined operations. All of these requests can be given
to MPI_{TEST|WAIT}{ANY|SOME|ALL}, which return a status object with information about the request. A
status contains five values, of which three are accessible as fields, and two, count and cancelled, are opaque. MPI-1
provides accessor functions to retrieve these opaque fields. In order for MPI-2 generalized requests to work, the
query_fn function introduced in the previous section must be able to set the other two. The two routines in this
section provide this functionality. Values not explicitly set are undefined.

MPI_STATUS_SET_ELEMENTS(status,datatype,count)

INOUT
status status to associate count with (Status)

IN
datatype datatype associated with count (handle)

IN
count number of elements to associate with status (integer)

int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype
 datatype, int count)

MPI_STATUS_SET_ELEMENTS (STATUS, DATATYPE, COUNT, IERROR)
 INTEGER STATUS (MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

void MPI::Status::Set_elements(const MPI::Datatype& datatype,
 int count)

This call modifies the opaque part of status so that a call to MPI_GET_ELEMENTS will return count.
MPI_GET_COUNT will return a compatible value.

< previous page page_154 next page >

page_155

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_155.html[2011-2-17 2:05:52]

< previous page page_155 next page >

Page 155

Rationale. The number of elements is set instead of the count of datatypes because the former can deal with
nonintegral number of datatypes.

A subsequent call to MPI_GET_COUNT(status, datatype, count) or to MPI_GET_ELEMENTS(status, datatype,
count) must use a datatype argument that has the same type signature as the datatype argument that was used in the
call to MPI_STATUS_SET_ELEMENTS.

Rationale. This is similar to the restriction that holds when when count is set by a receive operation: in that case,
the calls to MPI_GET_COUNT and MPI_GET_ELEMENTS must use a datatype with the same signature as the
datatype used in the receive call.

MPI_STATUS_SET_CANCELLED(status,flag)

INOUT
status status to associate cancel flag with (Status)

IN
flag if true indicates request was cancelled (logical)

int MPI_Status_set_cancelled(MPI_Status *status, int flag)

MPI_STATUS_SET_CANCELLED (STATUS, FLAG, IERROR)
 INTEGER STATUS(MPI_STATUS_SIZE), IERROR
 LOGICAL FLAG

void MPI::Status::Set_cancelled(bool flag)

If flag is set to true then a subsequent call to MPI_TEST_CANCELLED(status, flag) will also return flag = true,
otherwise it will return false.

Advice to users. Users are advised not to reuse the status fields for values other than those for which they were
intended. Doing so may lead to unexpected results when using the status object. For example, calling
MPI_GET_ELEMENTS may cause an error if the value is out of range or it may be impossible to detect such an
error. The extra_state argument provided with a generalized request can be used to return information that does not
logically belong in status. Furthermore, modifying the values in a status set internally by MPI, for example, by
MPI_RECV, may lead to unpredictable results and is strongly discouraged.

< previous page page_155 next page >

page_156

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_156.html[2011-2-17 2:05:53]

< previous page page_156 next page >

Page 156

6.4
Naming Objects

There are many occasions on which it would be useful to allow a user to associate a printable identifier with an
MPI communicator, window, or datatype, for instance when reporting errors, debugging, or profiling. Such names
should not propagate when the object is duplicated or copied by MPI routines. For communicators this
functionality is provided by the following two functions.

MPI_COMM_SET_NAME(comm,comm_name)

INOUT
comm communicator whose identifier is to be set (handle)

IN
comm_name the chracter string which is remembered as the name (string)

int MPI_Comm_set_name(MPI_Comm comm, char *comm_name)

MPI_COMM_SET_NAME(COMM, COMM_NAME, IERROR)
 INTEGER COMM, IERROR
 CHARACTER*(*) COMM_NAME

void MPI:: Comm:: Set_name (const char* comm_name)

MPI_COMM_GET_NAME allows a user to associate a name string with a communicator. The character string
which is passed to MPI_COMM_SET_NAME will be saved inside the MPI library (so it can be freed by the caller
immediately after the call, or allocated on the stack). Leading spaces in name are significant but trailing ones are
not.

MPI_COMM_SET_NAME is a local (noncollective) operation, which only affects the name of the communicator
as seen in the process which made the MPI_COMM_SET_NAME call. There is no requirement that the same (or
any) name be assigned to a communicator in every process where it exists.

Advice to users. Since MPI_COMM_SET_NAME is provided to help debug code, it is sensible to give the same
name to a communicator in all of the processes where it exists, to avoid confusion.

The number of characters that can be stored is at least 64 and is limited to the value of
MPI_MAX_OBJECT_NAME in Fortran and MPI_MAX_OBJECT_NAME-1 in C and C++ (where the constant is
known as MPI::MAX_OBJECT_NAME) to allow for

< previous page page_156 next page >

page_157

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_157.html[2011-2-17 2:05:54]

< previous page page_157 next page >

Page 157

the null terminator (see Section 2.2.8). Attempts to assign names longer than this will result in truncation of the
name.

Advice to users. Under circumstances of store exhaustion an attempt to put a name of any length could fail,
therefore the value of MPI_MAX_OBJECT_NAME should be viewed only as a strict upper bound on the name
length, not a guarantee that setting names of less than this length will always succeed.

Advice to implementors. Implementations which pre-allocate a fixed size space for a name should use the length of
that allocation as the value of MPI_MAX_OBJECT_NAME. Implementations which allocate space for the name
from the heap should still define MPI_MAX_OBJECT_NAME to be a relatively small value, since the user has to
allocate space for a string of up to this size when calling MPI_COMM_GET_NAME.

MPI_COMM_GET_NAME(comm,comm_name,resultlen)

IN
comm communicator whose name is to be returned (handle)

OUT
comm_namethe name previously stored on the communicator, or an empty string

if no such name exists (string)

OUT
resultlenlength of returned name (integer)

int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)

MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, IERROR)
 INTEGER COMM, RESULTLEN, IERROR
 CHARACTER*(*) COMM_NAME

void MPI::Comm::Get_name (char* comm_name, int& resultlen) const

MPI_COMM_GET_NAME returns the last name which has previously been associated with the given
communicator. The name may be set and taken from any language. The same name will be returned independent of
the language used. name should be allocated so that it can hold a resulting string of length
MPI_MAX_OBJECT_NAME characters. MPI_COMM_GET_NAME returns a copy of the set name in name.

If the user has not associated a name with a communicator. or an error occurs, MPI_COMM_GET_NAME will
return an empty string (all spaces in Fortran, in C and C++). The predefined communicators will have predefined
names associated

< previous page page_157 next page >

page_158

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_158.html[2011-2-17 2:05:55]

< previous page page_158 next page >

Page 158

with them. Thus, the names of MPI_COMM_WORLD and MPI_COMM_SELF, and the communicator returned
by MPI_COMM_GET_PARENT will be by default MPI_COMM_WORLD, MPI_COMM_SELF, and
MPI_COMM_PARENT, respectively. The fact that the system may have chosen to give a default name to a
communicator does not prevent the user from setting a name on the same communicator; doing this removes the
old name and assigns the new one.

Rationale. MPI provides separate functions for setting and getting the name of a communicator, rather than simply
providing a predefined attribute key for the following reasons:

It is not, in general, possible to store a string as an attribute from Fortran.

It is not easy to set up the delete function for a string attribute unless it is known to have been allocated from the
heap.

To make the attribute key useful additional code to call strdup is necessary. If this is not standardized then users
have to write it. This is extra unneeded work which can be easily eliminated.

The Fortran binding is not trivial to write (it will depend on details of the Fortran compilation system), and will not
be portable. Therefore it should be in the library rather than in user code.

Advice to users. The above definition means that it is safe simply to print the string returned by
MPI_COMM_GET_NAME, as it is always a valid string even if there was no name.

Note that associating a name with a communicator has no effect on the semantics of an MPI program, and will
(necessarily) increase the store requirement of the program, since the names must be saved. Therefore there is no
requirement that users use these functions to associate names with communicators. However, debugging and
profiling MPI applications may be made easier if names are associated with communicators, since the debugger or
profiler should then be able to present information in a less cryptic manner.

The following functions are used for setting and getting names of datatypes.

MPI_TYPE_SET_NAME(type,type_name)

INOUT
type datatype whose indentifier is to be set (handle)

< previous page page_158 next page >

page_159

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_159.html[2011-2-17 2:05:55]

< previous page page_159 next page >

Page 159

IN
type_name the character string which is remembered as the name (string)

int MPI_Type_set_name (MPI_Datatype type, char *type_name)

MPI_TYPE_SET_NAME(TYPE, TYPE_NAME, IERROR)
 INTEGER TYPE, IERROR
 CHARACTER*(*) TYPE_NAME

void MPI::Datatype::Set_name(const char* type_name)

MPI_TYPE_GET_NAME(type,type_name,resultlen)

IN
type datatype whose name is to be returned (handle)

OUT
type_namethe name previously stored on the datatype, or an empty string if no

such name exists (string)

OUT
resultlenlength of returned name (integer)

int MPI_Type_get_name (MPI_Datatype type, char *type_name, int *resultlen)

MPI_TYPE_GET_NAME(TYPE, TYPE_NAME, RESULTLEN, IERROR)
 INTEGER TYPE, RESULTLEN, IERROR
 CHARACTER*(*) TYPE_NAME

void MPI:: Datatype: :Get_name (char* type_name, int& resultlen) const

Named predefined datatypes have the default names of the datatype name. For example, MPI_WCHAR has the
default name of MPI_WCHAR.

The following functions are used for setting and getting names of windows.

MPI_WIN_SET_NAME(win,win_name)

INOUT
win window whose identifier is to be set (handle)

IN
win_name the character string which is remembered as the name (string)

int MPI_Win_set_name(MPI_Win win, char *win_name)

MPI_WIN_SET_NAME(WIN, WIN_NAME, IERROR)

< previous page page_159 next page >

page_160

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_160.html[2011-2-17 2:05:56]

< previous page page_160 next page >

Page 160

 INTEGER WIN, IERROR
 CHARACTER*(*) WIN_NAME

void MPI:: Win:: Set_name (const char* win_name)

MPI_WIN_GET_NAME(win,win_name,resultlen)

IN
win window whose name is to be returned (handle)

OUT
win_name the name previously stored on the window, or an empty string if no

such name exists (string)

OUT
resultlenlength of returned name (integer)

int MPI_Win_get_name(MPI_Win win, char *win_name, int *resultlen)

MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)
 INTEGER WIN, RESULTLEN, IERROR
 CHARACTER*(*) WIN_NAME

void MPI:: Win: : Get_name (char* win_name, int& resultlen) const

6.5
Error Classes, Error Codes, and Error Handlers

Users may want to write a layered library on top of an existing MPI implementation, and this library may have its
own set of error codes and classes. An example of such a library is an I/O library based on the I/O chapter in MPI-
2. For this purpose, functions are needed to:

1. Add a new error class to the ones an MPI implementation already knows.

2. Associate error codes with this error class, so that MPI_ERROR_CLASS works.

3. Associate strings with these error codes, so that MPI_ERROR_STRING works.

4. Invoke the error handler associated with a communicator, window, or object.

Several new functions are provided to do this. They are all local. No functions are provided to free error strings or
error classes: it is not expected that an application will generate them in significant numbers.

< previous page page_160 next page >

page_161

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_161.html[2011-2-17 2:05:57]

< previous page page_161 next page >

Page 161

MPI_ADD_ERROR_CLASS(errorclass)
OUT errorclass value for the new error class (integer)

int MPI_Add_error_class(int *errorclass)

MPI_ADD_ERROR_CLASS (ERRORCLASS, IERROR)
 INTEGER ERRORCLASS, IERROR

int MPI: :Add_error_class()

MPI_ADD_ERROR_CLASS creates a new error class and returns the value for it.

Rationale. To avoid conflicts with existing error codes and classes, the value is set by the implementation and not
by the user.

Advice to implementors. A high-quality implementation will return the value for a new errorclass in the same
deterministic way on all processes.

Advice to users. Since a call to MPI_ADD_ERROR_CLASS is local, the same errorclass may not be returned on
all processes that make this call. Thus, it is not safe to assume that registering a new error on a set of processes at
the same time will yield the same errorclass on all of the processes. However, if an implementation returns the new
errorclass in a deterministic way, and they are always generated in the same order on the same set of processes (for
example, all processes), then the value will be the same. However, even if a deterministic algorithm is used, the
value can vary across processes. This can happen, for example, if different but overlapping groups of processes
make a series of calls. As a result of these issues, getting the same error on multiple processes may not cause the
same value of error code to be generated. This is why displaying an error string can be more useful than an error
code.

The value of MPI_ERR_LASTCODE is not affected by new user-defined error codes and classes. As in M PI-1, it
is a constant value. Instead, a predefined attribute key MPI_LASTUSEDCODE (MPI::LASTUSEDCODE in C++)
is associated with MPI_COMM_WORLD. The attribute value corresponding to this key is the current maximum
error class including the user-defined ones. This is a local value and may be different on different processes. The
value returned by this key is always greater than or equal to MPI_ERR_LASTCODE.

< previous page page_161 next page >

page_162

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_162.html[2011-2-17 2:05:57]

< previous page page_162 next page >

Page 162

Advice to users. The value returned by the key MPI_LASTUSEDCODE will not change unless the user calls a
function to explicitly add an error class/code. In a multithreaded environment, the user must take extra care in
assuming this value has not changed. Note that error codes and error classes are not necessarily dense. A user may
not assume that each error class below MPI_LASTUSEDCODE is valid.

MPI_ADD_ERROR_CODE(errorclass,errorcode)

IN
errorclass error class (integer)

OUT
errorcode new error code to associated with errorclass (integer)

int MPI_Add_error_code(int errorclass, int *errorcode)

MPI_ADD_ERROR_CODE (ERRORCLASS, ERRORCODE, IERROR)
 INTEGER ERRORCLASS, ERRORCODE, IERROR

int MPI::Add_error_code(int errorclass)

MPI_ADD_ERROR_CODE creates a new error code associated with errorclass and returns its value in errorcode.

Rationale. To avoid conflicts with existing error codes and classes, the value of the new error code is set by the
implementation and not by the user.

Advice to implementors. A high-quality implementation will return the value for a new errorcode in the same
deterministic way on all processes.

MPI_ADD_ERROR_STRING(errorcode,string)

IN
errorcode error code or class (integer)

IN
string text corresponding to errorcode (string)

int MPI_Add_error_string(int errorcode, char *string)

MPI_ADD_ERROR_STRING (eRRORCODE, STRING, IERROR)
 INTEGER ERRORCODE, IERROR
 CHARACTER*(*) STRING

void MPI::Add_error_string(int errorcode, const char* string)

< previous page page_162 next page >

page_163

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_163.html[2011-2-17 2:05:58]

< previous page page_163 next page >

Page 163

MPI_ADD_ERROR_STRING associates an error string with an error code or class. The string must be no more
than MPL_MAX_ERROR_STRING characters long. The length of the string is as defined in the calling language.
The length of the string does not include the null terminator in C or C++. Trailing blanks will be stripped in
Fortran. Calling MPI_ADD_ERROR_STRING for an errorcode that already has a string will replace the old string
with the new string. It is erroneous to call MPI_ADD_ERROR_STRING for an error code or class with a value
less than or equal to MPI_ERROR_LASTCODE.

If MPI_ERROR_STRING is called when no string has been set, it will return an empty string (all spaces in
Fortran, in C and C++).

Section I-7.5.1 describes the methods for creating and associating error handlers with communicators, files, and
windows. The calls for invoking an error are described below.

MPI_COMM_CALL_ERRHANDLER(comm,errorcode)

IN
comm communicator with error handler (handle)

IN
errorcode errorcode (integer)

int MPI_Comm_call_errhandler(MPI_Comm comm, int errorcode)

MPI_COMM_CALL_ERRHANDLER(COMM, ERRORCODE, IERROR)
 INTEGER COMM, ERRORCODE, IERROR

void MPI::Comm::Call_errhandler(int errorcode) const

This function invokes the error handler assigned to the communicator with the error code supplied. This function
returns MPI_SUCCESS in C and the same value in IERROR if the error handler was successfully called (assuming
the process is not aborted and the error handler returns).

Advice to users. Users should note that the default error handler is MPI_ERRORS_ARE_FATAL. Thus, calling
MPI_COMM_CALL_ERRHANDLER will abort processes in comm if the default error handler has not been
changed for this communicator or on the parent before the communicator was created.

< previous page page_163 next page >

page_164

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_164.html[2011-2-17 2:05:59]

< previous page page_164 next page >

Page 164

MPI_WIN_CALL_ERRHANDLER(win,errorcode)

IN
win window with error handler (handle)

IN
errorcode error code (interger)

int MPI_Win_Call_errhandler (MPI_Win win, int errorcode)

MPI_WIN_CALL_ERRHANDLER(WIN, ERRORCODE, IERROR)
 INTEGER WIN, ERRORCODE, IERROR

void MPI::Win::Call_errhandler(int errorcode) const

This function invokes the error handler assigned to the window with the error code supplied. This function returns
MPI_SUCCESS in C and the same value in IERROR if the error handler was successfully called (assuming the
process is not aborted and the error handler returns).

Advice to users. As with communicators, the default error handler for windows is MPI_ERRORS_ARE_FATAL.

MPI_FILE_CALL_ERRHANDLER(fh,errorcode)

IN
fh file with error handler (handle)

IN
errorcode error code (integer)

int MPI_File_call_errhandler(MPI_File fh, int errorcode)

MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR)
 INTEGER FH, ERRORCODE, IERROR

void MPI::File::Call_errhandler(int errorcode) const

This function invokes the error handler assigned to the file with the error code supplied. This function returns
MPI_SUCCESS in C and the same value in IERROR if the error handler was successfully called (assuming the
process is not aborted and the error handler returns).

Advice to users. Unlike errors on communicators and windows, the default behavior for files is to have
MPI_ERRORS_RETURN.

< previous page page_164 next page >

page_165

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_165.html[2011-2-17 2:05:59]

< previous page page_165 next page >

Page 165

Advice to users. Users are warned that handlers should not be called recursively with
MPI_COMM_CALL_ERRHANDLER, MPI_FILE_CALL_ERRHANDLER, or
MPI_WIN_CALL_ERRHANDLER. Doing this can create a situation where an infinite recursion is created. This
can occur if MP_COMM_CALL_ERRHANDLER, MPI_FILE_CALL_ERRHANDLER, or
MPI_WIN_CALL_ERRHANDLER is called inside an error handler.

Error codes and classes are associated with a process. As a result, they may be used in any error handler. An error
handler should be prepared to deal with any error code it is given. Furthermore, it is good practice to only call an
error handler with the appropriate error codes. For example, file errors would normally be sent to the file error
handler.

6.6
Decoding a Datatype.

MPI-1 provides datatype objects, which allow users to specify an arbitrary layout of data in memory. The layout
information, once put in a datatype, cannot be decoded from the datatype using MPI-1 functions. There are several
cases, however, where accessing the layout information in opaque datatype objects would be useful.

The two functions in this section are used together to decode datatypes to recreate the calling sequence used in
their initial definition. These can be used to allow a user to determine the type map and type signature of a
datatype.

MPI_TYPE_GET_ENVELOPE(datatype,num_integers,num_addresses,
num_datatypes, combiner)

IN
datatype datatype to acccess (handle)

OUT
num_integers number of input integers used in the call constructing

combiner (nonnegative integer)

OUT
num_addressesnumber of input addresses used in the call constructing

combiner (nonegative integer)

OUT
num_datatypesnumber of input datatypes used in the call constructing

combiner (nonnegative integer)

OUT
combiner combiner (state)

int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,
 int *num_addresses, int *num_datatypes, int *combiner)

MPI_TYPE_GET_ENVELOPE (DATATYPE, NUM_INTEGERS, NUM_ADDRESSES,
 NUM_DATATYPES, COMBINER, IERROR)

< previous page page_165 next page >

page_166

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_166.html[2011-2-17 2:06:00]

< previous page page_166 next page >

Page 166

 INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,
 COMBINER, IERROR

void MPI::Datatype::Get_envelope(int& num_integers,
 int& num_addresses, int& num_datatypes, int& combiner) const

For the given datatype, MPI_TYPE_GET_ENVELOPE returns information on the number and type of input
arguments used in the call that created the datatype. The number-of-arguments values returned can be used to
provide sufficiently large arrays in the decoding routine MPI_TYPE_GET_CONTENTS. This call and the meaning
of the returned values is described below. The combiner reflects the MPI datatype constructor call that was used in
creating datatype.

Rationale. By requiring that the combiner reflect the constructor used in the creation of the datatype, the decoded
information can be used to effectively recreate the calling sequence used in the original creation. The ability to
extract the original constructor sequence was deemed useful enough to constrain implementations which optimize
the internal representation of datatypes to also remember the original constructor sequence.

The decoded information keeps track of datatype duplications. This is important as one needs to distinguish
between a predefined datatype and a dup of a predefined datatype. The former is a constant object that cannot be
freed, while the latter is a derived datatype that can be freed.

Advice to users. Decoding and re-encoding a datatype will not necessarily give an exact copy. Cached information
will not be recreated with this mechanism. This must be copied with other methods (assuming all the keys are
known). The datatype duplication function in Section I-3.4.1 can be used to give an exact copy of the original
datatype.

Table 6.1 has the values that can be returned in combiner on the left and the call associated with them on the right.

If combiner is MPI_COMBINER_NAMED then datatype is a named predefined datatype.

For calls with address arguments, one sometimes need to differentiate whether the call used an integer-or an
address-sized argument. For example, there are two combiners for hvector:
MPI_COMBINER_HVECTOR_INTEGER and MPI_COMBINER_HVECTOR. The former is used if it was the
MPI-1 call from Fortran, and the latter

< previous page page_166 next page >

page_167

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_167.html[2011-2-17 2:06:00]

< previous page page_167 next page >

Page 167

Table 6.1 Values of combiners and their meanings. Note that in C++ the names of the
constants begin MPI::COMBINER rather than MPI_COMBINER.

MPI_COMBINER_NAMED
a named predefined datatype

MPI_COMBINER_DUP
MPI_TYPE_DUP

MPI_COMBINER_CONTIGUOUS
MPI_TYPE_VECTOR

MPI_COMBINER_VECTOR
MPI_TYPE_VECTOR

MPI_COMBINER_HVECTOR_INTEGER
MPI_TYPE_HVECTOR from Fortran

MPI_COMBINER_HVECTOR_INTEGER
MPI_TYPE_HVECTOR from C or C++ and
in some cases Fortran, or
MPI_TYPE_CREATE_HVECTOR

MPI_COMBINER_INDEXED
MPI_TYPE_INDEXED

MPI_COMBINER_HINDEXED_INTEGER
MPI_TYPE_HINDEXED from Fortran

MPI_COMBINER_HINDEXED
MPI_TYPE_HINDEXED from C or
C++ and in some cases Fortran
or MPI_TYPE_CREATE_HINDEXED

MPI_COMBINER_INDEXED_BLOCK
MPI_TYPE_CREATE_INDEXED_BLOCK

MPI_COMBINER_STRUCT_INTEGER
MPI_TYPE_STRUCT from Fortran

MPI_COMBINER_STRUCT
MPI_TYPE_STRUCT from C or C++
and in some cases Fortran or
MPI_TYPE_CREATE_STRUCT

MPI_COMBINER_SUBRARRAY
MPI_TYPE_CREATE_SUBARRAY

MPI_COMBINER_DARRAY
MPI_TYPE_CREATE_DARRAY

MPI_COMBINER_F90_REAL
MPI_TYPE_CREATE_F90_REAL

MPI_COMBINER_F90_COMPLEX
MPI_TYPE_CREATE_F90_COMPLEX

MPI_COMBINER_RESIZED
MPI_TYPE_CREATE_RESIZED

< previous page page_167 next page >

page_168

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_168.html[2011-2-17 2:06:01]

< previous page page_168 next page >

Page 168

is used if it was the MPI-1 call from C or C++. However, on systems where MPI_-ADDRESS_KIND =
MPI_INTEGER_KIND (i.e., where integer arguments and addresssized arguments are the same), the combiner
MPI_COMBINER_HVECTOR may be returned for a datatype constructed by a call to MPI_TYPE_HVECTOR
from Fortran. Similarly, MPI_COMBINER_HINDEXED may be returned for a datatype constructed by a call to
MPI_TYPE_HINDEXED from Fortran, and MPI_COMBINER_STRUCT may be returned for a datatype
constructed by a call to MPI_TYPE_STRUCT from Fortran. On such systems, one need not differentiate
constructors that take addresssized arguments from constructors that take integer arguments, since these are the
same. The new MPI-2 calls all use address-sized arguments.

Rationale. For recreating the original call, it is important to know if address information may have been truncated.
The MPI-1 calls from Fortran for a few routines could be subject to truncation in the case where the default
INTEGER size is smaller than the size of an address.

The actual arguments used in the creation call for a datatype can be obtained from the call:

MPI_TYPE_GET_CONTENTS(datatype,max_integers,max_addresses,
max_datatypes,array_of_integers,array_of_addresses,array_of_datatypes)

IN
datatype datatype to access (handle)

IN
max_integers number of elements in array_of_integers(nonnegative integer)

IN
max_addresses number of elements in array_of_addresses (nonnegative

integer)

IN
max_datatypes number of elements in array_of_datatypes (nonnegative

integer)

OUT
array_of_integers contains integer arguments used in constructing datatype (array of

integers)

OUT
array_of_address contains address arguments used in constructing datatype (array of

integers)

OUT
array_of_datatypescontains datatype arguments used in constructing datatype (array

of handles)

int MPI_Type_get_contents(MPI_Datatype datatype, int max_integers,
 int max_addresses, int max_datatypes, int *array_of_integers,
 MPI_Aint *array_of_addresses, MPI_Datatype *array_of_datatypes)

< previous page page_168 next page >

page_169

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_169.html[2011-2-17 2:06:02]

< previous page page_169 next page >

Page 169

MPI_TYPE_GET_CONTENTS (DATATYPE, MAX_INTEGERS, MAX_ADDRESSES,
 MAX_DATATYPES, ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES,
 ARRAY_OF_DATATYPES, IERROR)
 INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,
 ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES (*)

void MPI: :Datatype: :Get_contents(int max_integers,
 int max_addresses, int max_datatypes, int array_of_integers [],
 MPI::Aint array_of_addresses [],
 MPI::Datatype array_of_datatypes []) const

datatype must be a predefined unnamed or a derived datatype; the call is erroneous if datatype is a predefined
named datatype.

The values given for max_integers, max_addresses, and max-datatypes must be at least as large as the value
returned in num_integers, num_addresses, and num_datatypes, respectively, in the call
MPI_TYPE_GET_ENVELOPE for the same datatype argument.

Rationale. The arguments max_integers, max_addresses, and max_datatypes allow for error checking in the call.
This is analogous to the arguments in topology routines in MPI-1.

The datatypes returned in array_of_datatypes are handles to datatype objects that are equivalent to the datatypes
used in the original construction call. If these were derived datatypes, then the returned datatypes are new datatype
objects, and the user is responsible for freeing these datatypes with MPI_TYPE_FREE. If these were predefined
datatypes, then the returned datatype is equal to that (constant) predefined datatype and cannot be freed.

The committed state of returned derived datatypes is undefined; that is, the datatypes may or may not be
committed. Furthermore, the content of attributes of returned datatypes is undefined.

Note that MPI_TYPE_GET_CONTENTS can be invoked with a datatype argument that was constructed using
MPI_TYPE_CREATE_F90_REAL, MPI_TYPE_CREATE_F90_INTEGER, or
MPI_TYPE_CREATE_F90_COMPLEX (an unnamed predefined datatype). In such a case, an empty
array_of_datatypes is returned.

Rationale. The definition of datatype equivalence implies that equivalent predefined datatypes are equal. By
requiring the same handle for named predefined

< previous page page_169 next page >

page_170

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_170.html[2011-2-17 2:06:02]

< previous page page_170 next page >

Page 170

datatypes, it is possible to use the == or . EQ. comparison operator to determine the datatype involved.

Advice to implementors. The datatypes returned in array_of_datatypes must appear to the user as if each is an
equivalent copy of the datatype used in the type constructor call. Whether this is done by creating a new datatype
or via another mechanism such as a reference count mechanism is up to the implementation as long as the
semantics are preserved.

Rationale. The committed state and attributes of the returned datatype are deliberately left vague. The datatype
used in the original construction may have been modified since its use in the constructor call. Attributes can be
added, removed, or modified as well as having the datatype committed. The semantics given allow for a reference
count implementation without having to track these changes.

In the MPI-1 datatype constructor calls, the address arguments in Fortran are of type INTEGER. In the new MPI-2
calls, the address arguments are of type INTEGER(KIND=MPI_ADDRESS_KIND). The call
MPI_TYPE_GET_CONTENTS returns all addresses in an argument of type
INTEGER(KIND=MPI_ADDRESS_KIND). This is true even if the old MPI-1 calls were used. Thus, the location
of values returned can be thought of as being returned by the C bindings. It can also be determined by examining
the new MPI-2 calls for datatype constructors for the deprecated MPI-1 calls that involve addresses.

Rationale. By having all address arguments returned in the array_of_addresses argument, the result from a C and
Fortran decoding of a datatype gives the result in the same argument. It is assumed that an integer of type
INTEGER(KIND=MPI_ADDRESS_KIND) will be at least as large as the INTEGER argument used in datatype
construction with the old MPI-1 calls so no loss of information will occur.

The following defines what values are placed in each entry of the returned arrays depending on the datatype
constructor used for datatype. It also specifies the size of the arrays needed which is the values returned by
MPI_TYPE_GET_ENVELOPE. In Fortran, the following calls were made:

INTEGER LARGE
PARAMETER (LARGE = 1000)
INTEGER TYPE, NI, NA, ND, COMBINER, I(LARGE), D(LARGE) IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) A(LARGE)
! CONSTRUCT DATATYPE TYPE (NOT SHOWN)

< previous page page_170 next page >

page_171

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_171.html[2011-2-17 2:06:03]

< previous page page_171 next page >

Page 171

CALL MPI_TYPE_GET_ENVELOPE(TYPE, NI, NA, ND, COMBINER, IERROR)
IF ((NI .GT. LARGE) .OR. (NA .GT. LARGE) .OR. &
 (ND .GT. LARGE)) THEN
 WRITE (*, *) NI, NA, OR ND = , NI, NA, ND, &
 RETURNED BY MPI_TYPE_GET_ENVELOPE IS LARGER THAN LARGE = &
 LARGE
 CALL MPI_ABORT(MPI_COMM_WORLD, 99, IERROR)
ENDIF
CALL MPI_TYPE_GET_CONTENTS(TYPE, NI, NA, ND, I, A, D, IERROR)

or in C the analogous calls of:

#define LARGE 1000
int ni, na, nd, combiner, i[LARGE];
MPI_Aint a[LARGE];
MPI_Datatype type, d[LARGE] ;
/* construct datatype type (not shown) */
MPI_Type_get_envelope(type, &ni, &na, &nd, &combiner);
if ((ni > LARGE) || (na > LARGE) || (nd > LARGE)) {
 fprintf(stderr, ni, na, or nd = %d %d %d returned by ,
 ni, na, nd);
 fprintf(stderr,
 MPI_Type_get_envelope is larger than LARGE = %d\n,
 LARGE);
 MPI_Abort(MPI_COMM_WORLD, 99);
}
MPI_Type_get_contents(type, ni, na, nd, i, a, d);

The C++ code is analogous to the C code above with the same values returned. In the descriptions that follow, the
lowercase name of arguments is used. If combiner is MPI_COMBINER_NAMED then it is erroneous to call
MPI_TYPE_GET_CONTENTS.

If combiner is MPI_COMBINER_DUP then

Constructor argument C & C++ location Fortran location
oldtype d[0] D(1)

and ni = 0, na = 0, nd = 1.

If combiner is MPI_COMBINER_CONTIGUOUS then

< previous page page_171 next page >

page_172

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_172.html[2011-2-17 2:06:04]

< previous page page_172 next page >

Page 172

Constructor argument C & C++ location Fortran location
count i[0] I(1)
oldtype d[0] D(1)

and ni = 1, na = 0, nd = 1.

If combiner is MPI_COMBINER_VECTOR then

Constructor argument C & C++ location Fortran location
count i[0] I(1)
blocklength i[1] I(2)
stride i[2] I(3)
oldtype d[0] D(1)

and ni = 3, na = 0, nd = 1.

If combiner is MPI_COMBINER_HVECTOR_INTEGER or MPI_COMBINER_HVECTOR then

Constructor argument C & C++ location Fortran location
count i[0] I(1)
blocklength i[1] I(2)
stride a[0] A(1)
oldtype d(0) D(1)

and ni = 2, na = 1, nd = 1.

If combiner is MPI_COMBINER_INDEXED then

Constructor argument C & C++ location Fortran location
count i[0] I(1)
array_of_blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_displacements i[i[0]+1] to i[2*i[0]] I(I(1)+2) to I(2*I(1)+1)
oldtype d[0] D(1)

and ni = 2*count+1, na = 0, nd = 1.

If combiner is MPI_COMBINER_HINDEXED_INTEGER or MPI_COMBINER_HINDEXED then

Constructor argument C & C++ location Fortran location
count i[0] I(1)
array_of_blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_displacements a[0] to a[i[0]-1] A(1) to A(I(1))
oldtype d[0] D(1)

and ni = count+1, na = count, nd = 1.

If combiner is MPI_COMBINER_INDEXED_BLOCK then

< previous page page_172 next page >

page_173

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_173.html[2011-2-17 2:06:04]

< previous page page_173 next page >

Page 173

Constructor argument C & C++ location Fortran location
count i[0] I(1)
blocklength i[1] I(2)
array_of_displacements i[2] to i[i[0]+1] I(3) to I(I(1)+2)
oldtype d[0] D(1)

and ni = count+2, na = 0, nd = 1.

If the combiner is MPI_COMBINER_STRUCT_INTEGER or MPI_COMBINER_STRUCT then

Constructor argument C & C++ location Fortran location
count i[0] I(1)
array_of_blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_displacements a[0] to a[i[0]-1] A(1) to A(I(1))
array_of_types d[0] to d[i[0]-1] D(1) to D(I(1))

and ni = count+1, na = count, nd = count.

If combiner is MPI_COMBINER_SUBARRAY then

Constructor argument C & C++ location Fortran location
ndims i[0] I(1)
array_of_sizes i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_subsizes i[i[0]+1] to i[2*i[0]] I(I(1)+2) to I(2*I(1) - 1)
array_of_starts i[2*[0]+1] to i[3*i[0]] I(2*I(1)+2) to I(3*I(1)+1)
order i[3*i[0]+1] I(3*I(1)+2]
oldtype d[0] D(1)

and ni = 3**ndims+2, na =0, nd =1.

If combiner is MPI_COMBINER_DARRAY then

Constructor argument C & C++ location Fortran location
size i[0] I(1)
rank i[1] I(2)
ndims i[2] I(3)
array_of_gsizes i[3] to i[i[2]+2] I(4) to I(I(3)+3)
array_of_distribs i[i[2]+3] to i[2*i[2]+2] I(I(3)+4 to I(2*I(3)+3)
array_of_dargs i[2*i[2]+3] to i[3*i[2]+2] I(2*I(3)+4) to I(3*I(3)+3)
array_of_psizes i[3*i[2]+3] to i[4*i[2]+2] I(3*I(3)+4) to I(4*I(3)+3)
order i[4*i[2]+3] I(4*I(3)+4)
oldtype d[0] D(1)

and ni = 4*ndims+4, na = 0, nd = 1.

If combiner is MPI_COMBINER_F90_REAL then

< previous page page_173 next page >

page_174

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_174.html[2011-2-17 2:06:05]

< previous page page_174 next page >

Page 174

Constructor argument C & C++ location Fortran location
p i[0] I(1)
r i[1] I(2)

and ni = 2, na = 0, nd = 0.

If combiner is MPI_COMBINER_F90_COMPLEX then

Constructor argument C & C++ location Fortran location
p i[0] I(1)
r i[1] I(2)

and ni = 2, na = 0, nd = 0.

If combiner is MPI_COMBINER_F90_INTEGER then

Constructor argument C & C++ location Fortran location
r i[0] I(1)

and ni = 1, na = 0, nd = 0.

If combiner is MPI_COMBINER_RESIZED then

Constructor argument C & C++ location Fortran location
lb a[0] A(1)
extent a[1] A(2)
oldtype d[0] D(1)

and ni = 0, na = 2, nd = 1.

Example 6.2 This example shows how a datatype can be decoded. The routine printdatatype prints out the elements
of the datatype. Note the use of MPI_Type_free for datatypes that are not predefined.

/*
 Example of decoding a datatype.
 Returns 0 if the datatype is predefined, 1 otherwise.
 */
#include <stdio.h>
#include <stdlib.h>
#include mpi.h
int printdatatype(MPI_Datatype datatype)
{
 int *array_of_ints;
 MPI_Aint *arra_of_adds;
 MPI_Datatype *array_of_dtypes;

< previous page page_174 next page >

page_175

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_175.html[2011-2-17 2:06:06]

< previous page page_175 next page >

Page 175

int num_ints, num_adds, num_dtypes, combiner;
int i;

MPI_Type_get_envelope(datatype, &num_ints, &num_adds,
 &num_dtypes, &combiner);
switch (combiner) {
case MPI_COMBINER_NAMED:
 printf(Datatype is named:);
 /* To print the specific type, one can match against the
 predefined forms. One can NOT use a switch statement
here. One could also use MPI_TYPE_GET_NAME if one
 preferred to use names that the user may have changed.
 */
 if (datatype == MPI_INT) printf(MPI_INT\n);
 else if (datatype == MPI_DOUBLE) printf(MPI_DOUBLE\n);
 ... else test for other types ...
 return 0;
 break;
case MPI_COMBINER_STRUCT:
case MPI_COMBINER_STRUCT_INTEGER:
 printf(Datatype is struct containing);
 array_of_ints = (int *)malloc(num_ints * sizeof(int));
 array_of_adds =
 (MPI_Aint *) malloc(num_adds * sizeof(MPI_Aint));
 array_of_dtypes = (MPI_Datatype *)
 malloc(num_dtypes * sizeof(MPI_Datatype));
 MPI_Type_get_contents(datatype,
 num_ints, num_adds, num_dtypes,
 array_of_adds, array_of_dtypes);
 printf(%d datatypes:\n, array_of_ints[0]);
 for (i=0; i<array_of_ints[0]; i++) {
 printf (blocklength %d, displacement %d, type:\n,
 array_of_ints[i+1], array_of_adds[i]);
 if (printdatatype(array_of_dtypes[i])) {
 /* Note that one frees the type ONLY if it
 is not predefined */
 MPI_Type_free(&array_of_dtypes[i]);
 }

< previous page page_175 next page >

page_176

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_176.html[2011-2-17 2:06:06]

< previous page page_176 next page >

Page 176

 }
 free(array_of_ints);
 free(array_of_adds);
 free(array_of_dtypes);
 break;
 ... other combiner values ...
 default:
 printf(Unrecognized combiner type\n) ;
 }
 return 1;
}

6.7
Caching on Windows and on Datatypes

Caching on communicators has been a useful feature for library developers. This function has been expanded in
MPI-2 to include windows and datatypes.

Rationale. Caching has a cost associated with it and should be provided only when it is clearly needed and the
increased cost is modest. Thus, caching has not been expanded to opaque objects that are created frequently, such
as requests, so as not to slow down MPI. Also, caching has not been provided for opaque objects for which it
seems to make little sense, such as error handlers.

The attribute manipulation functions for windows and datatypes are presented below. These functions are similar to
the attribute caching functions for communicators. The reader is referred to the description of attribute caching for
communicators in Section I-5.6 for additional information on the behavior of these functions.

6.7.1
Windows

The functions for caching on windows are:

MPI_WIN_CREATE_KEYVAL(win_copy_attr_fn,win_delete_attr_fn,
win_keyval,extra_state)

IN
win_copy_attr_fn copy callback function for win_keyval (function)

IN
win_delete_attr_fndelete callback function for win_keyval

(function)

OUT
win_keyval key value for future access (integer)

IN
extra_state extra state for callback functions

< previous page page_176 next page >

page_177

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_177.html[2011-2-17 2:06:07]

< previous page page_177 next page >

Page 177

int MPI_Win_create_keyval (MPI_Win_copy_attr_function *win_copy_attr_fn,
 MPI_Win_delete_attr_function *win_delete_attr_fn, int *win_keyval,
 void *extra_state)

MPI_WIN_CREATE_KEYVAL(WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL,
 EXTRA_STATE, IERROR)
 EXTERNAL_WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN
 INTEGER WIN_KEYVAL, IERROR
 IERROR
 INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

static int MPI::Win:: Create_keyval (MPI::Win:: Copy_attr_function *
 win_copy_attr_fn, MPI::Win::Delete_attr_function*
 win_delete_attr_fn, void* extra_state)

The argument win_copy_attr_fn may be specified as MPI_WIN_NULL_COPY_FN or MPI_WIN_DUP_FN from
either C, C++, or Fortran. MPI_WIN_NULL_COPY_FN is a function that does nothing other than returning flag =
0 and MPI_SUCCESS. MPI_WIN_DUP_FN is a simple-minded copy function that sets flag = 1, returns the value
of attribute_val_in in attribute_va_out, and returns MPI_SUCCESS.

The argument win_delete_attr_fn may be specified as MPI_WIN_NULL_DELETE_FN from either C, C++, or
Fortran. MPI_WIN_NULL_DELETE_FN is a function that does nothing, other than returning MPI_SUCCESS.

The C callback functions are:

typedef int MPI_Win_copy_attr_function(MPI_Win win, int win_keyval,
 void *extra_state, void *attribute_val,_in,
 void *attribute_val_out, int *flag);

and

typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,
 void *attribute_val, void *extra_state);

The Fortran callback functions are:

SUBROUTINE WIN_COPY_ATTR_FN (OLDWIN, WIN_KEYVAL, EXTRA_STATE,
 ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
 INTEGER OLDWIN, WIN_KEYVAL, IERROR
 INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,
 ATTRIBUTE_VAL_OUT
 LOGICAL FLAG

and

< previous page page_177 next page >

page_178

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_178.html[2011-2-17 2:06:07]

< previous page page_178 next page >

Page 178

SUBROUTINE WIN_DELETE_ATTR_FM(WIN, WIN_KEYVAL, ATTRIBUTE_VAL,
 EXTRA_STATE, IERROR)
 INTEGER WIN, WIN_KEYVAL, IERROR
 INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The C++ callbacks are:

typedef int MPI::Win::Copy_attr_function(const MPI::Win& oldwin,
 int win_keyval, void* extra_state, void* attribute_val_in,
 void* attribute_val_out, bool& flag);

and

typedef int MPI: :Win:: Delete_attr_function (MPI::Win& win,
 int win_keyval, void* attribute_val, void* extra_state);

MPI_WIN_FREE_KEYVAL(win_keyval)
INOUT win_keyval key value integer

int MPI_Win_free_keyval(int *win_keyval)

MPI_WIN_FREE_KEYVAL, (WIN_KEYVAL, IERROR)
 INTEGER WIN_KEYVAL, IERROR

static void MPI::Win::Free_keyval (int& win_keyval)

MPI_WIN_SET_ATTR(win,win_keyval, attribute_val)

INOUT
win window to which attribute will be attached (handle)

IN
win_keyval key value (integer)

IN
attribute_val attribute value

int MPI_Win_set_attr (MPI_Win win, int win_keyval, void *attribute_val)

MPI_WIN_SET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, IERROR)
 INTEGER WIN, WIN_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

void MPI::Win::Set_attr(int win_keyval, const void* attribute_val)

< previous page page_178 next page >

page_179

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_179.html[2011-2-17 2:06:08]

< previous page page_179 next page >

Page 179

MPI_WIN_GET_ATTR(win,win_keyval,attribute_val,flag)

IN
win window to which the attribute is attached (handle)

IN
win_keyval key value (integer)

OUT
attribute_val attribute value, unless flag = false

OUT
flag false if no attribute is associated with the key (logical)

int MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val,
 int *flag)

MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
 INTEGER WIN, WIN_KEYVAL, IERROR
 INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
 LOGICAL FLAG

bool MPI::Win::Get_attr(const MPI::Win& win, int win_keyval,
 void* attribute_val) const

MPI_WIN_DELETE_ATTR(win,in_keyval)

INOUT
win window from which the attribute is deleted (handle)

IN
win_keyval key value (integer)

int MPI_Win_delete_attr(MPI_Win win, int win_keyval)

MPI_WIN_DELETE_ATTR(WIN, WIN_KEYVAL, IERROR)
 INTEGER WIN, WIN_KEYVAL, IERROR

void MPI::Win::Delete_attr(int win_keyval)

Rationale. The attribute copy callback function that is associated with window attribute keys is superfluous, since
there is no MPI_WIN_DUP function to duplicate windows. This may be an omission of the MPI-2 Forum that will
be corrected in the future.

6.7.2
Datatypes

The functions for caching on datatypes are:

< previous page page_179 next page >

page_180

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_180.html[2011-2-17 2:06:08]

< previous page page_180 next page >

Page 180

MPI_TYPE_CREATE_KEYVAL(type_copy_attr_fn,type_delete_attr_fn,
type_keyval, extra_state)

IN
type_copy_attr_fn copy callback function for type_keyval (function)

IN
type_delete_attr_fn delete callback function for type_keyval (function)

OUT
type_keyval key value for future access (integer)

IN
extra_state extra state for callback functions

int MPI_Type_create_keyval (
 MPI_Type_copy_attr_function *type_copy_attr_fn,
 MPI_Type_delete_attr_function *type_delete_attr_fn,
 int *type_keyval, void *extra_state)

MPI_TYPE_CREATE_KEYVAL (TYPE_COPY_ATTR_FN,
 TYPE_DELETE_ATTR_FN,
 TYPE_KEYVAL, EXTRA_STATE, IERROR)
 EXTERNAL TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN
 INTEGER TYPE_KEYVAL, IERROR
 INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

static int MPI::Datatype::Create_keyval (
 MPI::Datatype:: Copy_attr_function* type_copy_attr_fn,
 MPI::Datatype: :Delete_attr_function* type_delete_attr_fn,
 void* extra_state)

The argument type_copy_attr_fn may be specified as MPI_TYPE_NULL_COPY_FN or MPI_TYPE_DUP_FN
from either C, C++, or Fortran.MPI_TYPE_NULL_COPY_FN is a function that does nothing other than returning
flag = 0 and MPI_SUCCESS. MPI_TYPE_DUP_FN is a simple-minded copy function that sets flag = 1, returns
the value of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS.

The argument type_delete_attr_fn may be specified as MPI_TYPE_NULL_DELETE_FN from either C, C++, or
Fortran. MPI_TYPE_NULL_DELETE_FN is a function that does nothing, other than returning MPI_SUCCESS.

The C callback functions are:

typedef int MPI_Type_copy_attr_function (MPI_Datatype oldtype,
 int type_keyval, void *extra_state, void *attribute_val_in,
 void *attribute_val_out, int *flag);

and

typedef int MPI_Type_delete_attr_function (MPI_Datatype type,
 int type_keyval, void *attribute_val, void *extra_state) ;

< previous page page_180 next page >

page_181

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_181.html[2011-2-17 2:06:09]

< previous page page_181 next page >

Page 181

The Fortran callback functions are:

SUBROUTINE TYPE_COPY_ATTR_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,
 ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)
 INTEGER OLDTYPE, TYPE_KEYVAL, IERROR
 INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE,
 ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT
 LOGICAL FLAG

and

SUBROUTINE TYPE_DELETE_ATTR_FN (TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL,
 EXTRA_STATE, IERROR)
 INTEGER TYPE, TYPE_KEYVAL, IERROR
 INTEGER (KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The C++ callbacks are:

typedef int MPI:: Datatype:: Copy_attr_function (
 const MPI: :Datatype& oldtype, int type_keyval, void* extra_state,
 const voidasteric; attribute_val_in, void* attribute_val_out,
 bool& flag);

and

typedef int MPI::Datatype::Delete_attr_function (MPI::Datatype& type,
 int type_keyval, void* attribute_val, void* extra_state);

MPI_TYPE_FREE_KEYVAL(type_keyval)
INOUT type_keyval key value integer

int MPI_Type_free_keyval (int *type_keyval)

MPI_TYPE_FREE_KEYVAL (TYPE_KEYVAL, IERROR)
 INTEGER TYPE_KEYVAL, IERROR

static void MPI::Datatype::Free_keyval (int& type_keyval)

MPI_TYPE_SET_ATTR(type,type_keyval,attribute_val)

INOUT
type datatype to which attribute will be attached (handle)

< previous page page_181 next page >

page_182

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_182.html[2011-2-17 2:06:09]

< previous page page_182 next page >

Page 182

IN
type_keyval key value(integer)

IN
attribute_val attribute value

int MPI_Type_set_attr(MPI_Datatype type, int type_keyval,
 void *attribute_val)

MPI_TYPE_SET_ATTR(TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR)
 INTEGER TYPE, TYPE_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

void MPI:: Datatype::Set_attr (int type_keyval, const void*
 attribute_val)

MPI_TYPE_GET_ATTR(type, type_keyval, attribute_val, flag)

IN
type datatype to which the attribute is attached (handle)

IN
type_keyval key value (integer)

OUT
attribute_val attribute value, unless flag = false

OUT
flag false if no attribute is associated with the key (logical)

int MPI_Type_get_attr(MPI_Datatype type, int type_keyval, void
 *attribute_val, int *flag)

MPI_TYPE_GET_ATTR (TYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)
 INTEGER TYPE, TYPE_KEYVAL, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL
 LOGICAL FLAG

bool MPI::Datatype::Get_attr (int type_keyval, void* attribute_val)
 const

MPI_TYPE_DELETE_ATTR(type, type_keyval)

INOUT
type datatype from which the attribute is deleted (handle)

IN
type_keyval key value (integer)

< previous page page_182 next page >

page_183

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_183.html[2011-2-17 2:06:10]

< previous page page_183 next page >

Page 183

int MPI_Type_delete_attr(MPI_Datatype type, int type_keyval)

MPI_TYPE_DELETE_ATTR(TYPE, TYPE_KEYVAL, IERROR)
 INTEGER TYPE, TYPE_KEYVAL, IERROR

void MPI::Datatype::Delete_attr (int type_keyval)

< previous page page_183 next page >

page_185

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_185.html[2011-2-17 2:06:11]

< previous page page_185 next page >

Page 185

7
I/O

MPI provides a rich set of routines (point-to-point, collective, and one-sided) for transferring data between MPI
processes. Such data transfer is called communication in MPI. MPI also provides routines for transferring data into
or out of an application, typically (but not necessarily) to or from files on an external storage device. Such data
transfer is called I/O in MPI. We will use the term parallel I/O in its most general sense to mean any I/O done by
a parallel (MPI) application, but the area in which MPI adds the most new functionality is in the area of
cooperative I/O, in which many processes concurrently access a single file.

7.1
Introduction.

While POSIX provides a widely-availablefilesystem interface, this interface is not sufficient for high performance
parallel I/O. Many performance optimizations (e.g., grouping [19], collective buffering [2, 3, 20, 22, 24], and disk-
directed I/O [17]) cannot be performed unless the I/O interface allows an application to describe how file data is
partitioned among processes and unless that interface provides collective data transfer operations. MPI provides
additional potential for optimization by providing mechanisms for asynchronous I/O, strided accesses, and control
over physical file layout on storage devices (disks). Finally, through its use of MPI datatypes to describe all data,
MPI enables greater portability of files and the possibility of seamless operation in heterogeneous environments.

While MPI specifies a programming interface for I/O, it does not specify a filesystem. More specifically, MPI
specifies only the library interface needed by an MPI program to access data, and does not specify how file data
can be accessed by a non-MPI program, how files are organized in directories, what filenames are allowed, how
file protection works, how files are stored, etc. POSIX specifies quite a bit more than MPI in this regard. The MPI-
2 I/O interface is designed to be able to interact with a wide range of existing filesystems.

What about traditional language I/O (e.g., OPEN, READ, etc. in Fortran and fopen, fread, etc. in C)? While
language I/O may be appropriate for some applications, MPI does not require that language I/O be available on all
processes, so that portable applications cannot (technically) rely on it. More important, though, is the fact that
language I/O interfaces, like the POSIX interface, do not provide the functionality described above. Note that
support for standard I/O (e.g., I/O to stdout or sterr and from stdin in C, and usually associated with I/O to
and

< previous page page_185 next page >

page_186

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_186.html[2011-2-17 2:06:11]

< previous page page_186 next page >

Page 186

from a terminal) is not mandated by MPI, nor is such I/O specifically supported by MPI-2 I/O.

MPI uses derived datatypes to express the partitioning of file data among processes. An alternative approach, used
in other parallel I/O interfaces, would be to define a set of I/O access modes to express common patterns for
accessing a shared file (broadcast, reduction, scatter, gather). The MPI approach has the advantages of added
flexibility and expressiveness.

Since I/O errors are common and often recoverable, they are treated differently from communication errors in MPI.
Error handlers for I/O are associated with MPI file handles rather than with communicators, and the default error
handler returns an error code to the application, rather than aborting.

7.1.1
Definitions

file: An MPI file is an ordered collection of typed data items. MPI supports random or sequential access to a file. A
file is opened collectively by a group of processes. All subsequent collective I/O operations on the file are
collective over this group.

displacement: A file displacement is an absolute byte position relative to the beginning of a file. The displacement
defines the location where a view begins. Note that a file displacement is distinct from a typemap displacement,
which is a relative byte displacement from the beginning of a datatype.

etype: An etype (elementary datatype) is the unit of data access and positioning within a file. An etype is an MPI
datatype, and can be any predefined datatype or any derived datatype in which the typemap displacements are
nonnegative and monotonically nondecreasing. MPI I/O routines perform data access in etype units, reading or
writing whole data items of type etype. Offsets (see definition below) are expressed as a count of etypes; file
pointers (see definition below) point to the beginning of etypes. Depending on context, the term etype is used to
describe one of three aspects of an elementary datatype: a particular MPI type, a data item of that type, or the
extent of that type.

filetype: A filetype defines a template for accessing a file and is the basis for partitioning a file among processes. A
filetype is either a single etype or a derived MPI datatype constructed from multiple instances of the same etype. A
filetype may contain holes, and the extent of any hole in the filetype must be a multiple of the etype's extent. For
more information about filetype restrictions, see Section 7.1.2.

view: A view defines what file data are accessible by a process. Different processes may have different views of
the same file and views can be changed by the user during program execution.

< previous page page_186 next page >

page_187

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_187.html[2011-2-17 2:06:12]

< previous page page_187 next page >

Page 187

Figure 7.1
Etypes and filetypes

Figure 7.2
Partitioning a file among several processes

A view is specified by a displacement, an etype, and a filetype. These define what data are accessible by a process
as illustrated in Figure 7.1. Starting at the byte offset given by the displacement, the filetype is repeated, tiling the
file, in the same pattern that MPI_TYPE_CONTIGUOUS would produce if it were passed the filetype and an
arbitrarily large count. The file data accessible by a process are the nonempty etype slots in this tiling. In other
words, a write to the file will write only the shaded etype slots, skipping the holes. Similarly, a read from the
file will read only the shaded etype slots. In this way, file data can be partitioned among processes using
complementary views to achieve a global data distribution (see Figure 7.2). Note that the filetype in this example
must have explicit lower and upper bounds set in order for the initial and final holes to be repeated in the view.

The default view is a linear byte stream (displacement is zero; etype and filetype are equal to MPI_BYTE).

< previous page page_187 next page >

page_188

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_188.html[2011-2-17 2:06:12]

< previous page page_188 next page >

Page 188

offset: An offset is a position in the file relative to the current view, expressed as a count of etypes. This position is
calculated skipping holes in the view's filetype. Offset 0 is the location of the first etype visible in the view (after
skipping the displacement and any initial holes in the view). For example, offsets 0, 1 and 2 for process 1 in Figure
7.2 are the positions of the of the 2nd, 3rd and 8th etypes in the file after the displacement. An explicit offset is an
offset that is used as a formal parameter in explicit data access routines.

file size and end of file: The size of an MPI file is measured in bytes from the beginning of the file. A newly
created file has a size of zero bytes. Using the size as an absolute displacement gives the position of the byte
immediately following the last byte in the file. For any given view, the end of file is the offset of the first etype
accessible in the current view starting after the last byte in the file.

file pointer: A file pointer is an implicit offset maintained by MPI. An Individual file pointer is a file pointer that is
local to the process that opened the file. A shared file pointer is a file pointer that is shared by the group of
processes that opened the file. For every file handle, MPI maintains an individual file pointer on every process that
opened the file, as well as a single shared file pointer.

file handle: A file handle is an opaque object created by MPI_FILE_OPEN and freed by MPI_FILE_CLOSE. All
operations on an open file reference the file through the file handle. This object is of type MPI_File in C, MPI_File
in C++, and INTEGER (as usual) in Fortran.

7.1.2
Constraints on filetypes and etypes

A filetype is either a single etype or a derived MPI datatype constructed from multiple instances of the same etype.
In addition, the extent of any hole in the filetype must be a multiple of the etype's extent. These displacements are
not required to be distinct, but they cannot be negative, and they must be monotonically nondecreasing.

If the file is opened for writing, neither the etype nor the filetype is permitted to contain overlapping regions. This
restriction is equivalent to the datatype used in a receive cannot specify overlapping regions restriction for
communication (Section I-3.5.4). Note that filetypes from different processes may still overlap each other.

It is erroneous to use absolute addresses in the construction of the etype and filetype.

< previous page page_188 next page >

page_189

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_189.html[2011-2-17 2:06:13]

< previous page page_189 next page >

Page 189

7.2
File Manipulation

7.2.1
Opening a File

MPI_FILE_OPEN(comm,filename,amodeinfo,fh)

IN
comm communicator (handle)

IN
filename name of file to open (string)

IN
amode file access mode (integer)

IN
info info object (handle)

OUT
fh new file handle (handle)

int MPI_File_open(MPI_Comm comm, char *filename, int amode,
 MPI_Info info, MPI_File *fh)

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)
 CHARACTER*(*) FILENAME
 INTEGER COMM, AMODE, INFO, FH, IERROR

static MPI::File MPI::File::Open(const MPI::Intracomm& comm,
 const char* filename, int amode, const MPI::Info& info)

MPI_FILE_OPEN opens the file identified by the file name filename on all processes in the comm communicator
group. MPI_FILE_OPEN is collective over this group. All processes must provide the same value for amode, and
all processes must provide filenames that reference the same file. The contents of info may be different on different
processes. comm must be an intracommunicator; it is erroneous to pass an interrcommunicator to
MPI_FILE_OPEN. Errors in MPI_FILE_OPEN are raised using the default file error handler (see Section 7.7). A
process can open a file independently of other processes by using the MPI_COMM_SELF communicator. The file
handle returned, fh, can be subsequently used to access the file until the file is closed using MPI_FILE_CLOSE.
Before calling MPI_FINALIZE, the user is required to close (via MPI_FILE_CLOSE) all files that were opened
with MPI_FILE_OPEN. Note that the communicator comm is unaffected by MPI_FILE_OPEN and continues to
be usable in all MPI routines (e.g., MPI_SEND). Furthermore, the use of comm will not interfere with I/O
behavior.

The format for specifying the file name in the filename argument is implementation-dependent and must be
documented by the implementation.

< previous page page_189 next page >

page_190

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_190.html[2011-2-17 2:06:14]

< previous page page_190 next page >

Page 190

Advice to implementors. An implementation may require that filename include a string or strings specifying
additional information about the file. Examples include the type of filesystem (e.g., a prefix of ufs:), a remote
hostname (e.g., a prefix of machine.univ.edu:), or a file password (e.g., a suffix of /PASSWORD=SECRET).

Advice to users. On some implementations of MPI, the file namespace may not be identical for all processes of all
applications. For example, /tmp/foo may denote different files on different processes, or a single file may have
many names, dependent on process location. The user is responsible for ensuring that a single file is referenced by
the filename argument, as it may be impossible for an implementation to detect this type of namespace error.

Initially, all processes view the file as a linear byte stream, and each process views data in its own native
representation (no data representation conversion is performed). (POSIX files are linear byte streams in the native
representation.) The file view can be changed via the MPI_FILE_SET_VIEW routine.

The following access modes are supported (specified in amode, a bitwise OR of the following integer constants):

MPI_MODE_RDONLY: read only,

MPI_MODE_RDWR: reading and writing,

MPI_MODE_WRONLY: write only,

MPI_MODE_CREATE: create the file if it does not exist,

MPI_MODE_EXCL: error if creating file that already exists,

MPI_MODE_DELETE_ON_CLOSE: delete file on close,

MPI_MODE_UNIQUE_OPEN: file will not be concurrently opened elsewhere,

MPI_MODE_SEQUENTIAL: file will only be accessed sequentially,

MPI_MODE_APPEND: set initial position of all file pointers to end of file.

In C++ these names begin MPI::MODE instead of MPI_MODE.

Advice to users. C/C++ users can use bitwise OR (|) to combine these constants; Fortran 90 users can use the bit
vector IOR intrinsic. Fortran 77 users can use (nonportably) bit vector IOR on systems that support it.
Alternatively, Fortran users can portably use integer addition to OR the constants (each constant should appear at
most once in the addition).

< previous page page_190 next page >

page_191

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_191.html[2011-2-17 2:06:14]

< previous page page_191 next page >

Page 191

Advice to implementors. The values of these constants must be defined such that the bitwise OR and the sum of
any distinct set of these constants is equivalent.

The modes MPI_MODE_RDONLY, MPI_MODE_RDWR, MPI_MODE_WRONLY, MPI_MODE_CREATE, and
MPI_MODE_EXCL have semantics identical to those of their POSIX counterparts [15]. Exactly one of
MPI_MODE_RDONLY, MPI_MODE_RDWR, or MPI_MODE_WRONLY, must be specified. It is erroneous to
specify MPI_MODE_CREATE or MPI_MODE_EXCL in conjunction with MPI_MODE_RDONLY; it is
erroneous to specify MPI_MODE_SEQUENTIAL together with MPI_MODE_RDWR.

The MPI_MODE_DELETE_ON_CLOSE mode causes the file to be deleted (equivalent to performing an
MPI_FILE_DELETE) when the file is closed.

The MPI_MODE_UNIQUE_OPEN mode allows an implementation to optimize access by eliminating the overhead
of file locking. It is erroneous to open a file in this mode unless the file will not be concurrently opened elsewhere.

Advice to users. For MPI_MODE_UNIQUE_OPEN, not opened elsewhere includes both inside and outside the
MPI environment. In particular, one needs to be aware of potential external events which may open files (e.g.,
automated backup facilities). When MPI_MODE_UNIQUE_OPEN is specified, the user is responsible for ensuring
that no such external events take place.

The MPI_MODE_SEQUENTIAL is required for sequential stream files, such as network streams and tape files
that do not allow random access. It is erroneous to attempt nonsequential access to a file that has been opened in
this mode. See Section 7.6.2 for more details.

Specifying MPI_MODE_APPEND sets the initial positions of all shared and individual file pointers to the end of
the file when MPI_FILE_OPEN returns, but does not prohibit subsequent repositioning of file pointers by the
application. If an application repositions these pointers, subsequent writes may not append to the file.

Errors related to the access mode are raised in the class MPI_ERR_AMODE.

The info argument is used to provide information regarding file access patterns and file system specifics (see
Section 7.2.8). The constant MPI_INFO_NULL can be used.

Advice to users. Some file attributes are inherently implementation-dependent (e.g., file permissions). These
attributes must be set using either the info argument or facilities outside the scope of MPI.

< previous page page_191 next page >

page_192

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_192.html[2011-2-17 2:06:15]

< previous page page_192 next page >

Page 192

Files are opened by default using nonatomic mode file consistency semantics (see Section 7.6.1). The more
stringent atomic mode consistency semantics, required for atomicity of conflicting accesses, can be set using
MPI_FILE_SET_ATOMICITY.

7.2.2
Closing a File.

MPI_FILE_CLOSE(fh)

INOUT
fh file handle (handle)

int MPI_File_close(MPI_File *fh)

MPI_FILE_CLOSE(FH, IERROR)
 INTEGER FH, IERROR

void MPI::File::Close()

MPI_FILE_CLOSE first synchronizes file state (performing the equivalent of MPI_-FILE_SYNC), then closes the
file associated with fh. The file is deleted if it was opened with access mode MPI_MODE_DELETE_ON_CLOSE
(performing the equivalent of MPI_FILE_DELETE). MPI_FILE_CLOSE is a collective routine.

Advice to users. If the file is deleted on close, and other processes are currently accessing the file, the status of the
file and the behavior of future accesses by these processes are implementation-dependent.

The user is responsible for ensuring that all outstanding nonblocking and split collective operations associated with
fh made by a process have completed before that process calls MPI_FILE_CLOSE.

The MPI_FILE_CLOSE routine deallocates the file handle object and sets fh to MPI_FILE_NULL
(MPI::FILE_NULL in C++).

7.2.3
Deleting a File

MPI_FILE_DELETE(filename,info)

IN
filename name of file to delete (string)

IN
info info object (handle)

int MPI_File_delete(char *filename, MPI_Info info)

< previous page page_192 next page >

page_193

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_193.html[2011-2-17 2:06:16]

< previous page page_193 next page >

Page 193

MPI_FILE_DELETE (FILENAME, INFO, IERROR)
 CHARACTER*(*) FILENAME
 INTEGER INFO, IERROR

static void MPI::File::Delete(const char* filename,
 const MPI:: Info& info)

MPI_FILE_DELETE deletes the file identified by the file name filename. If the file does not exist,
MPI_INFO_NULL raises an error in the class MPI_ERR_NO_SUCH_-FILE.

The info argument can be used to provide information regarding file system specifics (see Section 7.2.8). The
constant MPI_INFO_NULL can be used.

If a process currently has the file open, the behavior of any access to the file (as well as the behavior of any
outstanding accesses) is implementation-dependent. In addition, whether an open file is deleted or not is also
implementation-dependent. If the file is not deleted, an error in the class MPI_ERR_FILE_IN_USE or
MPI_ERR_ACCESS will be raised. Errors are raised using the default error handler (see Section 7.7).

7.2.4
Resizing a File

MPI_FILE_SET(fh,size)

INOUT
fh file handle (handle)

IN
size size to truncate or expand file (integer)

int MPI_File_set_size(MPI_File fh, MPI_Offset size)

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)
 INTEGER FH, IERROR
 INTEGER (KIND=MPI_OFFSET_KIND) SIZE

void MPI::File::Set_size(MPI::Off set size)

MPI_FILE_SET_SIZE resizes the file associated with the file handle fh. size is measured in bytes from the
beginning of the file. MPI_FILE_SET_SIZE is collective; all processes in the group must pass identical values for
size.

If size is smaller than the current file size, the file is truncated at the position defined by size. The implementation
is free to deallocate file blocks located beyond this position.

< previous page page_193 next page >

page_194

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_194.html[2011-2-17 2:06:16]

< previous page page_194 next page >

Page 194

If size is larger than the current file size, the file size becomes size. Regions of the file that have been previously
written are unaffected. The values of data in the new regions in the file (those locations with displacements
between old file size and size) are undefined. It is implementation-dependent whether the MPI_FILE_SET_SIZE
routine allocates file spaceuse MPI_FILE_PREALLOCATE to force file space to be reserved.

MPI_FILE_SET_SIZE does not affect the individual file pointers or the shared file pointer. If
MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to call this routine.

Advice to users. It is possible for the file pointers to point beyond the end of file after a MPI_FILE_SET_SIZE
operation truncates a file. This is legal, and equivalent to seeking beyond the current end of file.

All nonblocking and split collective operations on fh must be completed before calling MPI_FILE_SET_SIZE.
Otherwise, calling MPI_FILE_SET_SIZE is erroneous. As far as consistency semantics are concerned,
MPI_FILE_SET_SIZE is considered to be a write operation that conflicts with operations that access bytes at
displacements between the old and new file sizes (see Section 7.6.1).

7.2.5
Preallocating Space for a File

MPI_FILE_PREALLOCATE(fh,size)

IN
fh file handle (handle)

IN
size size to preallocate file (integer)

int MPI_File_preallocate(MPI_File fh, MPI_Offset size)

MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)
 INTEGER FH, IERROR
 INTEGER (KIND=MPI_OFFSET_KIND) SIZE

void MPI:: File:: Preallocate (MPI:: Offset size)

MPI_FILE_PREALLOCATE ensures that storage space is allocated for the first size bytes of the file associated
with fh. MPI_FILE_PREALLOCATE is collective; all processes in the group must pass identical values for size.
Regions of the file that have previously been written are unaffected. For newly allocated regions of the file,
MPI_FILE_PREALLOCATE has the same effect as writing undefined data. If size is

< previous page page_194 next page >

page_195

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_195.html[2011-2-17 2:06:17]

< previous page page_195 next page >

Page 195

larger than the current file size, the file size increases to size. If size is less than or equal to the current file size, the
file size is unchanged.

The treatment of file pointers, pending nonblocking accesses, and file consistency is the same as with
MPI_FILE_SET_SIZE. If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is
erroneous to call this routine.

Advice to users. In some implementations, file preallocation may be expensive.

7.2.6
Querying the Size of a File

MPI_FILE_GET_SIZE(fh,size)

IN
fh file handle (handle)

OUT
size size of the file in bytes (integer)

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)
 INTEGER FH, IERROR
 INTEGER (KIND=MPI_OFFSET_KIND) SIZE

MPI::Offset MPI::File::Get_size() const

MPI_FILE_GET_SIZE returns, in size, the current size in bytes of the file associated with the file handle fh. As far
as consistency semantics are concerned, MPI_FILE_GET_SIZE is a data access operation (see Section 7.6.1).

7.2.7
Querying File Parameters.

MPI_FILE_GET_GROUP(fh,group)

IN
fh file handle (handle)

OUT
group group which opened the file (handle)

int MPI_File_get_size(MPI_File fh, MPI_Group *group)

MPI_FILE_GET_GROUP(FH, GROUP, IERROR)
 INTEGER FH, GROUP, IERROR

MPI::Group MPI::File::Get_group() const

< previous page page_195 next page >

page_196

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_196.html[2011-2-17 2:06:17]

< previous page page_196 next page >

Page 196

MPI_FILE_GET_GROUP returns a duplicate of the group of the communicator used to open the file associated
with fh. The group is returned in group. The user is responsible for freeing group.

MPI_FILE_GET_AMODE(fh,amode)

IN
fh file handle (handle)

OUT
amode file access mode used to open the file (integer)

int MPI_File_get_amode(MPI_File fh, int *amode)

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)
 INTEGER FH, AMODE, IERROR

int MPI::File::Get_amode() const

MPI_FILE_GET_AMODE returns, in amode, the access mode of the file associated with fh. To determine whether
certain bits are set, an application can use IOR in Fortran or the bitwise OR operator (I) in C or C++.

7.2.8
File Info

Hints specified via info (see Section 2.3) allow a user to provide information such as file access patterns and file
system specifics to direct optimization. Providing hints may enable an implementation to deliver increased I/O
performance or minimize the use of system resources. However, hints do not change the semantics of any of the
I/O interfaces. In other words, an implementation is free to ignore all hints. Hints are specified on a per file basis,
in MPI_FILE_OPEN, MPI_FILE_DELETE, MPI_FILE_SET_VIEW, and MPI_FILE_SET_INFO via the opaque
info object.

Advice to users. info is treated differently by I/O operations and operations related to process management (Chapter
3). For I/O operations, info contains hints that can be used by MPI but don't change the behavior of the operations.
For instance, a hint cannot cause an operation to fail that would succeed if the hint were not given. On the other
hand, info arguments in Chapter 3 can change the semantics of the operations.

Advice to implementors. It may happen that a program is coded with hints for one system, and later executes on
another system that does not support these hints. In general, unsupported hints should simply be ignored. Needless
to say, no hint can be mandatory. However, for each hint used by a specific implementation,

< previous page page_196 next page >

page_197

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_197.html[2011-2-17 2:06:18]

< previous page page_197 next page >

Page 197

a default value must be provided when the user does not specify a value for this hint.

MPI_FILE_SET_INFO(fh,info)

INOUT
fh file handle (handle)

IN
info info object (handle)

int MPI_File_set_info (MPI_File fh, MPI_Info info)

MPI_FILE_SET_INFO(FH, INFO, IERROR)
 INTEGER FH, INFO, IERROR

void MPI::File::Set_info(const MPI::Info& info)

MPI_FILE_SET_INFO sets new values for the hints of the file associated with fh. MPI_FILE_SET_INFO is a
collective routine. The info object may be different on each process, but any info entries that an implementation
requires to be the same on all processes must appear with the same value in each process's info object.

Advice to users. Many info items that an implementation can use when it creates or opens a file cannot easily be
changed once the file has been created or opened. Thus, an implementation may ignore hints issued in this call that
it would have accepted in an open call.

MPI_FILE_GET_INFO(fh,info_used)

IN
fh file handle (handle)

OUT
info_used new info object (handle)

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)
 INTEGER FH, INFO_USED, IERROR

MPI::Info MPI::File::Get_info() const

MPI_FILE_GET_INFO returns a new info object containing the hints of the file associated with fh. The current
setting of all hints actually used by the system

< previous page page_197 next page >

page_198

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_198.html[2011-2-17 2:06:18]

< previous page page_198 next page >

Page 198

related to this open file is returned in info_used. The user is responsible for freeing info_used via
MPI_INFO_FREE.

Advice to users. The info object returned in info_used will contain all hints currently active for this file. This set of
hints may be greater or smaller than the set of hints passed in to MPI_FILE_OPEN, MPI_FILE_SET_VIEW, and
MPI_FILE_SET_INFO, as the system may not recognize some hints set by the user, and may recognize other hints
that the user has not set.

Reserved File Hints. Some potentially useful hints (info keys) are outlined below. The following keys are reserved.
An implementation is not required to interpret these keys, but if it does interpret the key, it must provide the
functionality described. (For more details on info, see Section 2.3.)

These hints mainly affect access patterns and the layout of data on parallel I/O devices. For each hint name
introduced, we describe the purpose of the hint, and the type of the hint value. The [SAME] annotation specifies
that the hint values provided by all participating processes must be identical; otherwise the program is erroneous. In
addition, some hints are context dependent, and are only used by an implementation at specific times (e.g.,
file_perm is only useful during file creation).

access_style (comma separated list of strings): This hint specifies the manner in which the file will be accessed
until the file is closed or until the access_style key value is altered. The hint value is a comma separated list of the
following: read_once, write_once, read_mostly, write_mostly, sequential, reverse_sequential, and random.

collective_buffering (boolean) [SAME]: This hint specifies whether the application may benefit from collective
buffering. Collective buffering is an optimization performed on collective accesses. Accesses to the file are
performed on behalf of all processes in the group by a number of target nodes. These target nodes coalesce small
requests into large disk accesses. Legal values for this key are true and false. Collective buffering parameters are
further directed via additional hints: cb_block_-size, cb_buffer_size, and cb_nodes.

cb_block_size (integer) [SAME]: This hint specifies the block size to be used for collective buffering file access.
Target nodes access data in chunks of this size. The chunks are distributed among target nodes in a round-robin
(CYCLIC) pattern.

cb_buffer_size (integer) [SAME]: This hint specifies the total buffer space that can be used for collective buffering
on each target node, usually a multiple of cb_block_-size.

< previous page page_198 next page >

page_199

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_199.html[2011-2-17 2:06:19]

< previous page page_199 next page >

Page 199

cb_nodes (integer) [SAME]: This hint specifies the number of target nodes to be used for collective buffering.

chunked (comma separated list of integers) [SAME]: This hint specifies that the file consists of a multidimensional
array that is often accessed by subarrays. The value for this hint is a comma-separated list of array dimensions,
starting from the most significant one (for an array stored in row-major order, as in C, the most significant
dimension is the first one; for an array stored in column-major order, as in Fortran, the most significant dimension
is the last one, and array dimensions should be reversed).

chunked_item (comma separated list of integers) [SAME]: This hint specifies the size of each array entry, in bytes.

chunked_size (comma separated list of integers) [SAME]: This hint specifies the dimensions of the subarrays. This
is a comma-separated list of array dimensions, starting from the most significant one.

filename (string): This hint specifies the file name used when the file was opened. If the implementation is capable
of returning the file name of an open file, it will be returned using this key by MPI_FILE_GET_INFO. This key is
ignored when passed to MPI_FILE_OPEN, MPI_FILE_SET_VIEW, MPI_FILE_SET_INFO, and
MPI_FILE_DELETE.

file_perm (string) [SAME]: This hint specifies the file permissions to use for file creation. Setting this hint is only
useful when passed to MPI_FILE_OPEN with an amode that includes MPI_MODE_CREATE. The set of legal
values for this key is implementation-dependent.

io_node_list (comma separated list of strings) [SAME]: This hint specifies the list of I/O devices that should be
used to store the file. This hint is most relevant when the file is created.

nb_proc (integer) [SAME]: This hint specifies the number of parallel processes that will typically be assigned to
run programs that access this file. This hint is most relevant when the file is created.

num_io_nodes (integer) [SAME]: This hint specifies the number of I/O devices in the system.

striping_factor (integer) [SAME]: This hint specifies the number of I/O devices that the file should be striped
across, and is relevant only when the file is created.

striping_unit (integer) [SAME]: This hint specifies the suggested striping unit to be used for this file. The striping
unit is the amount of consecutive data assigned

< previous page page_199 next page >

page_200

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_200.html[2011-2-17 2:06:19]

< previous page page_200 next page >

Page 200

to one I/O device before progressing to the next device, when striping across a number of devices. It is expressed in
bytes. This hint is relevant only when the file is created.

7.3
File Views

MPI_FILE_SET_VIEW (fh, disp, etype, filetype, datarep, info)

INOUT
fh file handle (handle)

IN
disp displacement (integer)

IN
etype elementary datatypr (handle)

IN
filetype filetype (handle)

IN
datarep data representation (string)

IN
info info object (handle)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp,
 MPI_Datatype etype, MPI_Datatype filetype, char *datarep,
 MPI_Info info)

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)
 INTEGER FH, ETYPE, FILETYPE, INFO, IERROR
 CHARACTER*(*) DATAREP
 INTEGER(KIND=MPI_OFFSET_KIND) DISP

void MPI::File::Set_view(MPI::Offset disp,
 const MPI::Datatype& etype, const MPI::Datatype& filetype,
 const char* datarep, const MPI::Info& info)

The MPI_FILE_SET_VIEW routine changes the process's view of the data in the file. The start of the view is set
to disp; the type of data is set to etype; the distribution of data to processes is set to filetype; and the representation
of data in the file is set to datarep. In addition, MPI_FILE_SET_VIEW resets the individual file pointers and the
shared file pointer to zero. MPI_FILE_SET_VIEW is collective; the values for datarep and the extents of etype in
the file data representation must be identical on all processes in the group; values for disp, filetype, and info may
vary. The datatypes passed in etype and fitetype must be committed.

The etype always specifies the data layout in the file. If etype is a portable datatype (see Section 1.4), the extent of
etype is computed by scaling any displacements in the datatype to match the file data representation. If etype is not
a portable datatype, no scaling is done when computing the extent of etype. The user must

< previous page page_200 next page >

page_201

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_201.html[2011-2-17 2:06:20]

< previous page page_201 next page >

Page 201

Figure 7.3
Displacements

be careful when using nonportable etypes in heterogeneous environments; see Section 7.5.1 for further details.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, the special displacement
MPI_DISPLACEMENT_CURRENT_ (MPI::DISPLACEMENT_CURRENT in C++) must be passed in disp. This
sets the displacement to the current position of the shared file pointer.

Rationale. For some sequential files, such as those corresponding to magnetic tapes or streaming network
connections, the displacement may not be meaningful. MPI_DISPLACEMENT_CURRENT allows the view to be
changed for these types of files.

Advice to implementors. It is expected that a call to MPI_FILE_SET_VIEW will immediately follow
MPI_FILE_OPEN in numerous instances. A high-quality implementation will ensure that this behavior is efficient.

The disp displacement argument specifies the position (absolute offset in bytes from the beginning of the file)
where the view begins.

Advice to users, disp can be used to skip headers or when the file includes a sequence of data segments that are to
be accessed in different patterns (see Figure 7.3). Separate views, each using a different displacement and filetype,
can be used to access each segment.

Advice to users. In order to ensure interoperability in a heterogeneous environment, additional restrictions must be
observed when constructing the etype (see Section 7.5).

< previous page page_201 next page >

page_202

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_202.html[2011-2-17 2:06:21]

< previous page page_202 next page >

Page 202

If filetype has holes in it, then the data in the holes is inaccessible to the calling process. However, the disp, etype and filetype arguments can be changed via future
calls to MPI_FILE_SET_VIEW to access a different part of the file.

The info argument is used to provide information regarding file access patterns and file system specifics to direct optimization (see Section 7.2.8). The constant
MPI_INFO_NULL can be used.

The datarep argument is a string that specifies the representation of data in the file. See Section 7.5 on file interoperability for details and a discussion of valid values.

The user is responsible for ensuring that all nonblocking and split collective operations on fh have been completed before calling MPI_FILE_SET_VIEWotherwise,
the call to MPI_FILE_SET_VIEW is erroneous.

MPI_FILE_GET_VIEW(fh, disp, etype, filetype, datarep)

IN
fh file handle (handle)

OUT
disp displacement (integer)

OUT
etype elementary datatype (handle)

OUT
filetype filetype (handle)

OUT
datarep data representation (string)

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp,
 MPI_Datatype *etype, MPI_Datatype *filetype, char *datarep)

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)
 INTEGER FH, ETYPE, FILETYPE, IERROR CHARACTER*(*) DATAREP,
 INTEGER(KIND=MPI_OFFSET_KIND) DISP

void MPI::File::Get_view(MPI::Offset& disp, MPI::Datatype&e type, MPI::Datatype& filetype, char* datarep) const

MPI_FILE_GET_VIEW returns the process's view of the data in the file. The current value of the displacement is returned in disp. The etype and filetype are new
datatypes with typemaps equal to the typemaps of the current etype and filetype, respectively.

The data representation is returned in datarep. The user is responsible for ensuring that datarep is large enough to hold the returned data representation string. The
length of a data representation string is limited to the value of MPI_MAX_DATAREP_STRING (MPI::MAX_DATAREP_STRING in C++).

< previous page page_202 next page >

page_203

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_203.html[2011-2-17 2:06:21]

< previous page page_203 next page >

Page 203

In addition, if a portable datatype was used to set the current view, then the corresponding datatype returned by
MPI_FILE_GET_VIEW is also a portable datatype. If etype or filetype are derived datatypes, the user is
responsible for freeing them. The etype and filetype returned are both in a committed state.

7.4
Data Access

7.4.1
Data Access Routines

An application moves data between files and processes by issuing read and write calls. There are three orthogonal
aspects to data access: positioning (explicit offset versus implicit file pointer), synchronism (blocking versus
nonblocking and split collective), and coordination (noncollective versus collective). Furthermore, implicit file
pointers are of two types: individual and shared. Table 7.1 lists the data access routines provided by MPI. These
routines are described in detail in subsequent sections.

POSIX read:()/fread() and write()/fwrite() are blocking, noncollective operations and use
individual file pointers. The MPI equivalents are MPI_FILE_READ and MPI_FILE_WRITE.

Implementations of data access routines may buffer data to improve performance. This does not affect reads, since
the data is always available in the user's buffer after a read operation completes. For writes, however, the
MPI_FILE_SYNC routine provides the only guarantee that data has been transferred to the storage device.

Positioning. MPI provides three types of positioning for data access routines: explicit offsets, individual file
pointers, and shared file pointers. The different positioning methods may be mixed within the same program and
do not affect each other.

The data access routines that accept explicit offsets contain _AT in their name (e.g., MPI_FILE_WRITE_AT).
Explicit offset operations perform data access at the file position given directly as an argumentno file pointer is
used nor updated. Note that this is not equivalent to an atomic seek-and-read or seek-and-write operation, as
noseek is issued. Operations with explicit offsets asre described in Section 7.4.2.

The names of the individual file pointer routines contain no positional qualifier (e.g., MPI_FILE_WRITE).
Operations with individual file pointers are described in Section 7.4.3. The data access routines that use shared file
pointers contain SHARED or ORDERED in their name (e.g., MPI_FILE_WRITE_SHARED). Operations with
shared file pointers are described in Section 7.4.4.

< previous page page_203 next page >

page_204

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_204.html[2011-2-17 2:06:22]

< previous page page_204 next page >

Page 204

Table 7.1
Quick guide to data access routines. All routine names are shown without the MPI_FILE
prefix in the interest of space

coordination
positioning synchronism noncollective collective
explict offsets blocking READ_AT READ_AT_ALL

WRITE_AT WRITE_AT_ALL
nonblocking & IREAD_AT READ_AT_ALL_BEGIN
split collective READ_AT_ALL_END

IWRITE_AT WRITE_AT_ALL_BEGIN
WRITE_AT_ALL_END

individual blocking READ READ_ALL
file pointers WRITE WRITE_ALL

nonblocking & IREAD READ_ALL_BEGIN
split collective READ_ALL_END

IWRITE WRITE_ALL_BEGIN
WRITE_ALL_END

shared blocking READ_SHARED READ_ORDERED
file pointer WRITE_SHARED WRITE_ORDERED

nonblocking & IREAD_SHARED READ_ORDERED_BEGIN
split collective READ_ORDERED_END

IWRITE_SHARED WRITE_ORDERED_BEGIN
WRITE_ORDERED_END

The main semantic issues related to MPI-maintained file pointers are how and when they are updated by I/O
operations. In general, each I/O operation leaves the file pointer pointing to the next data item after the last one
that is accessed by the operation. In a nonblocking or split collective operation, the pointer is updated by the call
that initiates the I/O, possibly before the access completes.

More formally,

where count is the number of datatype items to be accessed, elements(X) is the number of predefined datatypes in
the typemap of X, and old-file-offset is the value of the implicit offset before the call. The file position, new-file-
offset, is in terms of a count of etypes relative to the current view.

Synchronism. MPI supports blocking and nonblocking I/O routines. A blocking I/O call will not return until the
I/O request is completed. A nonblocking

< previous page page_204 next page >

page_205

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_205.html[2011-2-17 2:06:23]

< previous page page_205 next page >

Page 205

I/O call initiates an I/O operation, but does not wait for it to complete. Given suitable hardware, this allows the
transfer of data out/in the user's buffer to proceed concurrently with computation. A separate request complete call
(MPI_WAIT, MPI_TEST, or any of their variants) is needed to complete the I/O request, that is, to confirm that
the data has been read or written and that it is safe for the user to reuse the buffer. The nonblocking versions of the
routines are named MPI_FILE_-1{READ|WRITE|}, where the I stands for immediate.

It is erroneous to access the local buffer of a nonblocking data access operation, or to use that buffer as the source
or target of other communications, between the initiation and completion of the operation.

The split collective routines support a restricted form of nonblocking operations for collective data access (see
Section 7.4.5).

Coordination. Every noncollective data access routine MPI_FILE_-{READ|WRITE|} has a collective counterpart.
For most routines, this counterpart is MPI_FILE_{READ|WRITE|}_ALL or a pair of
MPI_FILE_{READ_ALL|WRITE_ALL|} BEGIN and MPI_FILE-{READ_ALL|WRITE_ALL|}_END. The
counterparts to the MPI_FILE{READ|WRITE}_SHARED routines are MPI_FILE_{READ|WRITE}_ORDERED.

The completion of a noncollective call only depends on the activity of the calling process. However, the completion
of a collective call (which must be called by all members of the process group) may depend on the activity of the
other processes participating in the collective call. See Section 7.6.4 for rules on semantics of collective calls.

Collective operations may perform much better than their noncollective counterparts, since global data accesses
have significant potential for automatic optimization.

Data Access Conventions. Data is moved between files and processes by calling read and write routines. Read
routines move data from a file into memory. Write routines move data from memory into a file. The file is
designated by a file handle, fh. The location of the file data is specified by an offset into the current view. The data
in memory is specified by a triple: buf, count, and datatype. Upon completion, the amount of data accessed by the
calling process is returned in a status.

An offset designates the starting position in the file for an access. The offset is always in etype units relative to the
current view. Explicit offset routines pass offset as an argument (negative values are erroneous). The file pointer
routines use implicit offsets maintained by MPI.

< previous page page_205 next page >

page_206

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_206.html[2011-2-17 2:06:23]

< previous page page_206 next page >

Page 206

A data access routine attempts to transfer (read or write) count data items of type datatype between the user's
buffer buf and the file. The datatype passed to the routine must be a committed datatype. The layout of data in
memory corresponding to buf, count, datatype is interpreted the same way as in MPI-1 communication functions;
see Section I-3.5.3. The data is accessed from those parts of the file specified by the current view (Section 7.3).
The type signature of datatype must match the type signature of some number of contiguous copies of the etype of
the current view. As in a receive, it is erroneous to specify a datatype for reading that contains overlapping regions
(areas of memory which would be stored into more than once).

The nonblocking data access routines indicate that MPI can start a data access and associate a request handle,
request, with the I/O operation. Nonblocking operations are completed via MPI_TEST, MPI_WAIT, or any of their
variants.

Data access operations, when completed, return the amount of data accessed in status. For blocking routines, status
is returned directly. For nonblocking routines and split collective routines, status is returned when the operation is
completed. The number of datatype entries and predefined elements accessed by the calling process can be
extracted from status by using MPI_GET_COUNT and MPI_GET_ELEMENTS, respectively. The interpretation
of the MPI_ERROR field is the same as for other operationsnormally undefined, but meaningful if an MPI routine
returns MPI_ERR_IN_STATUS. The user can pass (in C and Fortran) MPI_STATUS-IGNORE in the status
argument if the return value of this argument is not needed. In C++, the status argument is optional. The status can
be passed to MPI_TEST_CANCELLED to determine whether the operation was cancelled. All other fields of
status are undefined.

When reading, a program can detect the end of file by noting that the amount of data read is less than the amount
requested. Writing past the end of file increases the file size. The amount of data accessed will be the amount
requested, unless an error is raised (or a read reaches the end of file).

7.4.2
Data Access with Explicit Offsets.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to call the routines in
this section.

< previous page page_206 next page >

page_207

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_207.html[2011-2-17 2:06:24]

< previous page page_207 next page >

Page 207

MPI_FILE_READ_AT(fh,offset,buf,count,datatype,status)

IN
fh file handle (handle)

IN
offset file offset (integer)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

int _File_read_at (MPI_File fh, MPI_Offset offset, void *buf,
 int count, MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, STATUS (MPI_STATUS_SIZE) , IERROR
 INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File:: Read_at(MPI::Off set offset, void* buf, int count,
 const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_at(MPI::Off set offset, void* buf, int count, const MPI::Datatype& datatype)

MPI_FILE_READ_AT reads a file beginning at the position specified by offset.

MPI_FILE_READ_AT_ALL(fh,offset,buf,count,datatype,status)

IN
fh file handle (handle)

IN
offset file offset (integer)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

int MPI_File_read_at_all (MPI_File fh, MPI_Offset offset, void *buf,
 int count, MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS,
 IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE) , IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

< previous page page_207 next page >

page_208

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_208.html[2011-2-17 2:06:25]

< previous page page_208 next page >

Page 208

void MPI:: File: :Read_at_all(MPI:: Off set offset, void* buf,
 int count, const MPI::Datatype& datatype, MPI::Status& status)

void MPI:: File: :Read_at_all (MPI:: Off set offset, void* buf,
 int count, const MPI::Datatype& datatype)

MPI_FILE_READ_AT_ALL is a collective version of the blocking MPI_FILE_READ_ AT interface.

MPI_FILE_WRITE_AT(fh, offset, buf, count, datatype,
status)

INOUT
fh file handle (handle)

IN
offset file offset (integer)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

int MPI_File_write_at (MPI_File fh, MPI_Offset offset, void *buf,
 int count, MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
 INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

void MPI:: File: :Write_at (MPI: :_Offset offset, const void* buf,
 int count, const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_at(MPI::Off set offset, const void* buf,
 int count, const MPI::Datatype& datatype)

MPI_FILE_WRITE_AT writes a file beginning at the position specified by offset.

MPI_FILE_WRITE_AT_ALL(fh, offset, buf, count, datatype,
status)

INOUT
fh file handle (handle)

IN
offset file offset (integer)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

page_208

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_208.html[2011-2-17 2:06:25]

< previous page page_208 next page >

page_209

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_209.html[2011-2-17 2:06:25]

< previous page page_209 next page >

Page 209

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, void *buf,
 int count, MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS,
 IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, STATUS (MPI_STATUS_SIZE) , IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI: :File: :Write_at_all(MPI: :Offset offset, const void* buf,
 int count, const MPI::Datatype& datatype, MPI::Status& status)

void MPI: :File: :Write_at_all_ (MPI: :Offset offset, const void* buf,
 int count, const MPI::Datatype& datatype)

MPI_FILE_WRITE_AT_ALL is a collective version of the blocking MPI_FILE_WRITE_AT interface.

MPI_FILE_IREAD_AT(fh, offset, buf, count, datatype, request)

IN
fh file handle (handle)

IN
offset file offset (integer)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
request request object (handle)

int MPI_File_iread_at (MPI_File fh, MPI_Offset offset, void *buf,
 int count, MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Request MPI::File::Iread_at(MPI::Offset offset, void* buf,
 int count, const MPI::Datatype& datatype)

MPI_FILE_IREAD_AT is a nonblocking version of the MPI_FILE_READ_AT interface.

< previous page page_209 next page >

page_210

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_210.html[2011-2-17 2:06:26]

< previous page page_210 next page >

Page 210

MPI_FILE_IWRITE_AT(fh, offset, buf, count, datatype,
request)

INOUT
fh file handle (handle)

IN
offset file offset (integer)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
request request object (handle)

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, void *buf,
 int count, MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Request MPI::File::Iwrite_at(MPI::Offset offset,
 const void* buf, int count, const MPI::Datatype& datatype)

MPI_FILE_IWRITE_AT is a nonblocking version of the MPI_FILE_WRITE_AT interface.

7.4.3
Data Access with Individual File Pointers

MPI maintains one individual file pointer per process per file handle. The current value of this pointer implicitly
specifies the offset for the data access routines described in this section. These routines only use and update the
individual file pointers maintained by MPI. The shared file pointer is neither used nor updated.

The individual file pointer routines have the same semantics as the explicit offset data access routines described in
Section 7.4.2, with the following modifications:

The offset is defined to be the current value of the MPI-maintained individual file pointer.

After an individual file pointer operation is initiated, the individual file pointer is updated to point to the next etype
after the last one that will be accessed. The file pointer is updated relative to the current view of the file.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to call the routines in
this section.

< previous page page_210 next page >

page_211

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_211.html[2011-2-17 2:06:26]

< previous page page_211 next page >

Page 211

MPI_FILE_READ(fh, buf, count, datatype, status)

INOUT
fh file handle (handle)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

int MPI_File_read(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, STATUS (MPI_STATUS_SIZE), IERROR

void MPI::File::Read(void* buf, int count,
 const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read(void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_READ reads a file using the individual file pointer.

Example 7.1 The following Fortran code fragment is an example of reading a file until the end of file is reached:

| Read a preexisting input file until all data has been read
| Call routine "process_input" if all requested data is read
 The Fortan 90 "exit" statement exits the loop

 integer bufsize, numread, totprocessed
 integer mufh, ierr, status (MPI_STATUS_SIZE)
 parameter (bufsize=100)
 real local buffer (bufsize)

 call MPI_FILE-OPEN (MPI_COMM_WORLD, 'myoldfile',&
 MPI_MODE_RDONLY, MPI _INFO_NULL, myfh, &
 ierr)
 call MPI_FILE_SET_VIEW(myth, 0, MPI_REAL, MPI_REAL, &
 'native', MPI_INFO_NULL, ierr

< previous page page_211 next page >

page_212

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_212.html[2011-2-17 2:06:27]

< previous page page_212 next page >

Page 212

 totprocessed = 0
 do
 call MPI_FILE_READ(myfh, localbuffer, bufsize, MPI_REAL, &
status, ierr)
 call MPI_GET_COUNT(status, MPI_REAL, numread, ierr)
 call process_input(localbuffer, numread)
 totprocessed = totprocessed + numread
 if (numread < bufsize) exit
 enddo

 write(6,1001) numread, bufsize, totprocessed
1001 format(No more data: read, 13, and expected, 13, &
 Processed total of, 16, before terminating job.)

 call MPI_FILE_CLOSE(myfh, ierr)

MPI_FILE_READ_ALL (fh, buf, count, datatype, status)

INOUT
fh file handle (handle)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

int MPI_File_read_allMPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_all(void* buf, int count,
 const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_all(void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_READ_ALL is a collective version of the blocking MPI_FILE_READ interface.

< previous page page_212 next page >

page_213

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_213.html[2011-2-17 2:06:28]

< previous page page_213 next page >

Page 213

MPI_FILE_WRITE(fh, buf, count, datatype, status)

INOUT
fh file handle (handle)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

int MPI_File_write(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write(const void* buf, int count,
 const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write(const void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_WRITE writes a file using the individual file pointer.

MPI_FILE_WRITE_ALL(fh, buf, count, datatype, status)

INOUT
fh file handle (handle)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

int MPI_File_write_all(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, STATUS (MPI_STATUS_SIZE), IERROR

void MPI::File::Write_all(const void* buf, int count,
 const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_all(const void* buf, int count,
 const MPI::Datatype& datatype)

page_213

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_213.html[2011-2-17 2:06:28]

< previous page page_213 next page >

page_214

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_214.html[2011-2-17 2:06:28]

< previous page page_214 next page >

Page 214

MPI_FILE_WRITE_ALL is a collective version of the blocking MPI_FILE_WRITE interface.

MPI_FILE_IREAD(fh, buf, count, datatype, request)

INOUT
fh file handle (handle)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
request request object (handle)

int MPI_File_iread(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iread(void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_IREAD is a nonblocking version of the MPI_FILE_READ interface.

Example 7.2 The following Fortran code fragment illustrates file pointer update semantics:

! Read the first twenty real words in a file into two local
! buffers. Note that when the first MPI_FILE_IREAD returns,
! the file pointer has been updated to point to the
! eleventh real word in the file.

 integer bufsize, req1, req2, myfh, ierr
 integer, dimension(MPI_STATUS_SIZE) :: status1, status2
 parameter (bufsize=10)
 real buf1(bufsize), buf2(bufsize)

 call MPI_FILE_OPEN(MPI_COMM_SELF, myoldfile, &
 MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, &
 ierr)
 call MPI_FILE_SET_VIEW(myfh, o, MPI_REAL, MPI_REAL, &
 native, MPI_INFO_NULL, ierr)

< previous page page_214 next page >

page_215

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_215.html[2011-2-17 2:06:29]

< previous page page_215 next page >

Page 215

 call MPI_FILE_IREAD(myfh, buf1, bufsize, MPI_REAL, &
 req1, ierr)
 call MPI_FILE_IREAD(myfh, buf2, bufsize, MPI_REAL, &
 req2, ierr)

 call MPI_WAIT(req1, status1, ierr)
 call MPI_WAIT(req2, status2, ierr)

 call MPI_FILE_CLOSE(myfth, ierr)

MPI_FILE_IWRITE(fh, buf, count, datatype, request)

INOUT
fh file handle (handle)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
request request object (handle)

int MPI_File_iwrite(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File: :Iwrite(const void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_IWRITE is a nonblocking version of the MPI_FILE_WRITE interface.

MPI_FILE_SEEK(fh, offset, whence)

INOUT
fh file handle (handle)

IN
offset file offset (integer)

IN
whence update mode (state)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

< previous page page_215 next page >

page_216

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_216.html[2011-2-17 2:06:30]

< previous page page_216 next page >

Page 216

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)
 INTEGER FH, WHENCE, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Seek(MPI::Offset offset, int whence)

MPI_FILE_SEEK updates the individual file pointer according to whence, which has the following possible
values:

MPI_SEEK_SET: the pointer is set to offset

MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

MPI_SEEK_END: the pointer is set to the end of file plus offset

In C++, the names of the above constants begin MPI::SEEK instead of MPI_SEEK.

The offset can be negative, which allows seeking backwards. It is erroneous to seek to a negative position in the
view.

MPI_FILE_GET_POSITION(fh, offset)

IN
fh file handle (handle)

OUT
offset offset of individual pointer (integer)

int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)
 INTEGER FH, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Offset MPI::File::Get_position() const

MPI_FILE_GET_POSITION returns, in offset, the current position of the individual file pointer in etype units
relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK using whence = MPI_SEEK_SET to
return to the current position. To set the displacement to the current file pointer position, first convert offset into an
absolute byte position using MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with the
resulting displacement.

< previous page page_216 next page >

page_217

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_217.html[2011-2-17 2:06:30]

< previous page page_217 next page >

Page 217

MPI_FILE_GET_BYTE_OFFSET(fh, offset, disp)

IN
fh file handle (handle)

IN
offset offset (integer)

OUT
disp absolute byte position of offset (integer)

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,
 MPI_Offset *disp)

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)
 INTEGER FH, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP

MPI::Offset MPI::File::Get_byte_offset(const MPI::Offset disp) const

MPI_FILE_GET_BYTE_OFFSET converts a view-relative offset into an absolute byte position. The absolute byte
position (from the beginning of the file) of offset relative to the current view of fh is returned in disp.

7.4.4
Data Access with Shared File Pointers

MPI maintains exactly one shared file pointer per collective MPI_FILE_OPEN (shared among processes in the
communicator's group). The current value of this pointer implicitly specifies the offset in the data access routines
described in this section. These routines only use and update the shared file pointer maintained by MPI. The
individual file pointers are neither used nor updated.

The shared file pointer routines have the same semantics as the data access with explicit offset routines described
in Section 7.4.2 with the following modifications:

The offset is defined to be the current value of the MPI-maintained shared file pointer,

The effect of multiple calls to shared file pointer routines is defined to behave as if the calls were serialized, and

The use of shared file pointer routines is erroneous unless all processes use the same file view.

For the noncollective shared file pointer routines, the serialization ordering is not deterministic. The user needs to
use other synchronization means to enforce a specific order.

< previous page page_217 next page >

page_218

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_218.html[2011-2-17 2:06:31]

< previous page page_218 next page >

Page 218

After a shared file pointer operation is initiated, the shared file pointer is updated to point to the next etype after the
last one that will be accessed. The file pointer is updated relative to the current view of the file.

Noncollective Operations.

MPI_FILE_READ_SHARED(fh, buf, count, datatype, status)

INOUT
fh file handle (handle)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

int MPI_File_read_shared(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI:: File:: Read_shared (void* buf, int count,
 const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read_shared (void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_READ_SHARED reads a file using the shared file pointer.

MPI_FILE_WRITE_SHARED(fh, buf, count, datatype, status)

INOUT
fh file handle (handle)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

int MPI_File_write_shared(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 <type> BUF(*)

< previous page page_218 next page >

page_219

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_219.html[2011-2-17 2:06:32]

< previous page page_219 next page >

Page 219

 INTEGER FH, COUNT, DATATYPE, STATUS (MPI_STATUS_SIZE), IERROR

void MPI::File::Write_shared(const void* buf, int count,
 const MPI::Datatype& datatype, MPI::Status status)

void MPI::File::Write_shared(const void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_WRITE_SHARED writes a file using the shared file pointer.

MPI_FILE_IREAD_SHARED(fh, buf, count, datatype, request)

INOUT
fh file handle (handle)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each-buffer element (handle)

OUT
request request object (handle)

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI: :Request MPI: :File::Iread_shared (void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_IREAD_SHARED is a nonblocking version of the MPI_FILE_READ_SHARED interface.

MPI_FILE_IWRITE_SHARED(fh, buf, count, datatype, request)

INOUT
fh file handle (handle)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
request request object (handle)

int MPI_File_iwrite_shared(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Request *request)

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

page_219

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_219.html[2011-2-17 2:06:32]

< previous page page_219 next page >

page_220

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_220.html[2011-2-17 2:06:33]

< previous page page_220 next page >

Page 220

 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iwrite_shared(const void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_IWRITE_SHARED is a nonblocking version of the MPI_FILE_WRITE_SHARED interface.

Collective Operations. The semantics of a collective access using a shared file pointer is that the accesses to the
file will be in the order determined by the ranks of the processes within the group. For each process, the location in
the file at which data is accessed is the position at which the shared file pointer would be after all processes whose
ranks within the group less than that of this process had accessed their data. In addition, in order to prevent
subsequent shared offset accesses by the same processes from interfering with this collective access, the call might
return only after all the processes within the group have initiated their accesses. When the call returns, the shared
file pointer points to the next etype accessible, according to the file view used by all processes, after the last etype
requested.

Advice to users. There may be some programs in which all processes in the group need to access the file using the
shared file pointer, but the program may not require that data be accessed in order of process rank. In such
programs, using the shared ordered routines (e.g., MPI_FILE_WRITE_ORDERED rather than
MPI_FILE_WRITE_SHARED) may enable an implementation to optimize access, improving performance.

Advice to implementors. Accesses to the data requested by all processes do not have to be serialized. Once all
processes have issued their requests, locations within the file for all accesses can be computed, and accesses can
proceed independently from each other, possibly in parallel.

MPI_FILE_READ_ORDERED(fh, buf, count, datatype, status)

INOUT
fh file handle (handle)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

< previous page page_220 next page >

page_221

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_221.html[2011-2-17 2:06:33]

< previous page page_221 next page >

Page 221

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI:: File:: Read_ordered (void* buf, int count,
 const MPI::Datatype& datatype, MPI::Status& status)

void MPI: : File:: Read_ordered (void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_READ_ORDERED is a collective version of the MPI_FILE_READ_SHARED interface.

MPI_FILE_WRITE_ORDERED(fh,buf,count,datatype,status)

INOUT
fh file handle (handle)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

OUT
status status object (Status)

int MPI_File_write_ordered(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

void MPI:: File: :Write_ordered (const void* buf, int count,
 const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write_ordered(const void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_WRITE_ORDERED is a collective version of the MPI_FILE_WRITE_SHARED interface.

Seek. If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to call the
following two routines (MPI_FILE_SEEK_SHARED and MPI_FILE_GET_POSITION_SHARED).

< previous page page_221 next page >

page_222

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_222.html[2011-2-17 2:06:34]

< previous page page_222 next page >

Page 222

MPI_FILE_SEEK_SHARED(fh,offset,whence)

INOUT
fh file handle (handle)

IN
offset file offset (integer)

IN
whence update mode (state)

int MPI_File_seek_shared(MPI_File fh, MPI_Offset, int whence)

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)
 INTEGER FH, WHENCE, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI_:File::Seek_shared(MPI::Offset offset, int whence)

MPI_FILE_SEEK_SHARED updates the shared file pointer according to whence,

which has the following possible values:

MPI_SEEK_SET:the pointer is set to offset

MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

MPI_SEEK_END: the pointer is set to the end of file plus offset

MPI_FILE_SEEK_SHARED is collective; all the processes in the communicator group associated with the file
handle fh must call MPI_FILE_SEEK_SHARED with the same values for offset and whence.

The offset can be negative, which allows seeking backwards. It is erroneous to seek to a negative position in the
view.

MPI_FILE_GET_POSITION_SHARED(fh,offset)

IN
fh file handle (handle)

OUT
offset offset of shared pointer (integer)

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)
 INTEGER FH, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI::Offset MPI::File: :Get_position_shared() const

MPI_FILE_GET_POSITION_SHARED returns, in offset,the current position of the shared file pointer in etype
units relative to the current view.

< previous page page_222 next page >

page_223

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_223.html[2011-2-17 2:06:35]

< previous page page_223 next page >

Page 223

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK_SHARED using whence =
MPI_SEEK_SET to return to the current position. To set the displacement to the current file pointer position, first
convert offset into an absolute byte position using MPI_FILE_GET_BYTE_OFFSET, then call
MPI_FILE_SET_VIEW with the resulting displacement.

7.4.5
Split Collective Data Access Routines

MPI provides a restricted form of nonblocking collective I/O operations for all data accesses using split collective
data access routines. These routines are referred to as split collective routines because a single collective operation
is split in two: a begin routine and an end routine. The begin routine begins the operation, much like a nonblocking
data access (e.g., MPI_FILE_IREAD). The end routine completes the operation, much like the matching test or
wait (e.g., MPI_WAIT). As with nonblocking data access operations, the user must not use the buffer passed to a
begin routine while the routine is outstanding; the operation must be completed with an end routine before it is safe
to free buffers, etc.

Split collective data access operations on a file handle fh are subject to the rules given below.

On any MPI process, each file handle may have at most one active split collective operation at any time.

Begin calls are collective over the group of processes that participated in the collective open and follow the
ordering rules for collective calls.

End calls are collective over the group of processes that participated in the collective open and follow the ordering
rules for collective calls. Each end call matches the preceding begin call for the same collective operation. When
an end call is made, exactly one unmatched begin call for the same operation must precede it.

An implementation is free to implement any split collective data access routine using the corresponding blocking
collective routine when either the begin call (e.g., MPI_FILE_READ_ALL_BEGIN) or the end call (e.g.,
MPI_FILE_READ_ALL_END) is issued. The begin and end calls are provided to allow the user and MPI
implementation to optimize the collective operation.

Split collective operations do not match the corresponding regular collective operations. For example, in a single
collective read operation, an MPI_FILE_READ_ALL on one process does not match an
MPI_FILE_READ_ALL_BEGIN/MP_FILE_READ_ALL_END pair on another process.

< previous page page_223 next page >

page_224

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_224.html[2011-2-17 2:06:36]

< previous page page_224 next page >

Page 224

Split collective routines must specify the same buffer in both the begin and end routines. By specifying the buffer
that receives data in the end routine, we can avoid many (though not all) of the problems described in A Problem
with Register Optimization, Section 8.2.2.

No collective I/O operations are permitted on a file handle concurrently with a split collective access on that file
handle (i.e., between the begin and end of the access). That is,

MPI_File_read_all_begin(fh, ...);
...
MPI_File_read_all(fh, ...);
...
MPI_File_read_all_end(fh, ...);

is erroneous.

In a multithreaded implementation, any split collective begin and end operation called by a process must be called
from the same thread. This restriction is made to simplify the implementation in the multithreaded case. (Note that
we have already disallowed having two threads begin a split collective operation on the same file handle since only
one split collective operation can be active on a file handle at any time.)

The arguments for these routines have the same meanings as for the equivalent collective versions (e.g., the
argument definitions for MPI_FILE_READ_ALL_BEGIN and MPI_FILE_READ_ALL_END are equivalent to the
arguments for MPI_FILE_READ_ALL). The begin routine (e.g., MPI_FILE_READ_ALL_BEGIN) begins a split
collective operation that, when completed with the matching end routine (i.e., MPI_FILE_READ_ALL_END)
produces the result as defined for the equivalent collective routine (i.e.,MPI_FILE_READ_ALL).

For the purpose of consistency semantics (Section 7.6.1), a matched pair of split collective data access operations
(e.g., MPI_FILE_READ_ALL_BEGIN and MPI_FILE_READ_ALL_END)compose a single data access.

MPI_FILE_READ_AT_ALL_BEGIN(fh,offset, buf,count,datatype)

IN
fh file handle (handle)

IN
offset file offset (integer)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

< previous page page_224 next page >

page_225

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_225.html[2011-2-17 2:06:37]

< previous page page_225 next page >

Page 225

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset,
 void *buf, int count, MPI_Datatype datatype)

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Read_at_all_begin(MPI::Offset offset, void* buf,
 int count, const MPI::Datatype& datatype)

MPI_FILE_READ_AT_ALL_END(fh, buf, status)

IN
fh file handle (handle)

OUT
buf initial address of buffer (choice)

OUT
status status object (Status)

int MPI_File_read_at_all_end(MPI_File fh, void *buf,
 MPI_Status *status)

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_at_all_end(void* buf, MPI::Status& status)

void MPI::File::Read_at_all_end(void* buf)

MPI_FILE_WRITE_AT_ALL_BEGIN(fh,offset,buf,count,datatype)

INOUT
fh file handle (handle)

IN
offset file offset (integer)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

int MPI_File_write_at_all_begin(MPI_File fh,MPI_Offset offset,
 void *buf, int count, MPI_Datatype datatype)

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)
 <type> BUF(*)

< previous page page_225 next page >

page_226

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_226.html[2011-2-17 2:06:38]

< previous page page_226 next page >

Page 226

 INTEGER FH, COUNT, DATATYPE, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

void MPI::File::Write_at_all_begin(MPI::Offset offset,
 const void* buf, int count, const MPI::Datatype& datatype)

MPI_FILE_WRITE_AT_ALL_END(fh, buf, status)

INOUT
fh file handle (handle)

IN
buf initial address of buffer (choice)

OUT
status status object (Status)

int MPI_File_write_at_all_end(MPI_File fh, void *buf,
 MPI_Status *status)

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_at_all_end(const void* buf,
 MPI::Status& status)

void MPI::File::Write_at_all_end(const void* buf)

MPI_FILE_READ_ALL_BEGIN(fh, buf, count, datatype)

INOUT
fh file handle (handle)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype)

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Read_all_begin(void* buf, int count,
 const MPI::Datatype& datatype)

< previous page page_226 next page >

page_227

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_227.html[2011-2-17 2:06:38]

< previous page page_227 next page >

Page 227

MPI_FILE_READ_ALL_END(fh, buf, status)

INOUT
fh file handle (handle)

OUT
buf initial address of buffer (choice)

OUT
status status object (Status)

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Read_all_end(void* buf, MPI::Status& status)

void MPI::File::Read_all_end(void* buf)

MPI_FILE_WRITE_ALL_BEGIN(fh, buf, count, datatype)

INOUT
fh file handle (handle)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

int MPI_File_write_all_begin(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype)

MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Write_all_begin(const void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_WRITE_ALL_END(fh, buf, status)

INOUT
fh file handle (handle)

IN
buf initial address of buffer (choice)

OUT
status status object (Status)

< previous page page_227 next page >

page_228

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_228.html[2011-2-17 2:06:39]

< previous page page_228 next page >

Page 228

int MPI_File_write_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)
 <type> BUF(*)
 INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

void MPI::File::Write_all_end(const void* buf, MPI::Status& status)

void MPI::File::Write_all_end(const void* buf)

MPI_FILE_READ_ORDERED_BEGIN(fh, buf, count, datatype)

INOUT
fh file handle (handle)

OUT
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,
 MPI_Datatype datatype)

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)
 <type> BUF*)
 INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Read_ordered_begin(void* buf, int count,
 const MPI::Datatype& datatype)

MPI_FILE_READ_ORDERED_END(fh, buf, status)

INOUT
fh file handle (handle)

OUT
buf initial address of buffer (choice)

OUT
status status object (Status)

int MPI_File_read_ordered_end(MPI_File fh, void *buf,
 MPI_Status *status)

MPI_FILE_READ_ORDERED_END (FH, BUF, STATUS, IERROR)
 <type> BUF (*)
 INTEGER FH, STATUS (MPI_STATUS_SIZE) , IERROR

void MPI::File::Read_ordered_end(void* buf, MPI: :Status& status)

< previous page page_228 next page >

page_229

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_229.html[2011-2-17 2:06:40]

< previous page page_229 next page >

Page 229

void MPI: :File: :Read_ordered_end (void* buf)

MPI_FILE_WRITE_ORDERED_BEGIN(fh, buf, count, datatype)

INOUT
fh file handle (handle)

IN
buf initial address of buffer (choice)

IN
count number of elements in buffer (integer)

IN
datatype datatype of each buffer element (handle)

int MPI_File_write_ordered_begin (MPI_File fh, void *buf, int count,
 MPI_Datatype datatype)

MPI_FILE_WRITE_ORDERED_BEGIN (FH, BUF, COUNT, DATATYPE, IERROR)
 <type> BUF(*)
 INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Write_ordered_begin (const void* buf, int count,
 const MPI: :Datatype& datatype)

MPI_FILE_WRITE_ORDERED_END (fh, buf, status)

INOUT
fh file handle (handle)

IN
buf initial address of buffer (choice)

OUT
status status object (Status)

int MPI_File_write_ordered_end (MPI_File fh, void *buf,
 MPI_Status *status)

MPI_FILE_WRITE_ORDERED_END (FH, BUF, STATUS, IERROR)
 <type> BUF (*)
 INTEGER FH, STATUS (MPI_STATUS_SIZE), IERROR

void MPI::File::Write_ordered_end (const void* buf,
 MPI: :Status& status)

void MPI: :File: :Write_ordered_end(const void* buf)

< previous page page_229 next page >

page_230

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_230.html[2011-2-17 2:06:41]

< previous page page_230 next page >

Page 230

7.5
File Interoperability.

At the most basic level, file interoperability is the ability to read the information previously written to a filenot just
the bits of data, but the actual information the bits represent. MPI guarantees full interoperability within a single
MPI environment, and supports increased interoperability outside that environment through the external data
representation (Section 7.5.2) as well as the data conversion functions (Section 7.5.3).

Interoperability within a single MPI environment (which could be considered operability) ensures that file data
written by one MPI process can be read by any other MPI process, subject to the consistency constraints (see
Section 7.6.1), provided that it would have been possible to start the two processes simultaneously and have them
reside in a single MPI_COMM_WORLD. Furthermore, both processes must see the same data values at every
absolute byte offset in the file for which data was written.

This single environment file interoperability implies that file data is accessible regardless of the number of
processes.

There are three aspects to file interoperability:

transferring the bits,

converting between different file structures, and

converting between different machine representations.

The first two aspects of file interoperability are beyond the scope of this standard, as both are highly machine-
dependent. However, transferring the bits of a file into and out of the MPI environment (e.g., by writing a file to
tape) is required to be supported by all MPI implementations. In particular, an implementation must specify how
familiar operations similar to POSIX cp, rm, and mv can be performed on the file. Furthermore, it is expected that
the facility provided maintains the correspondence between absolute byte offsets (e.g., after possible file structure
conversion, the data bits at byte offset 102 in the MPI environment are at byte offset 102 outside the MPI
environment). As an example, a simple off-line conversion utility that transfers and converts files between the
native file system and the MPI environment would suffice, provided it maintained the offset coherence mentioned
above. In a high-quality implementation of MPI, users will be able to manipulate MPI files using the same or
similar tools that the native file system offers for manipulating its files.

The remaining aspect of file interoperability, converting between different machine representations, is supported by
the typing information specified in the etype

< previous page page_230 next page >

page_231

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_231.html[2011-2-17 2:06:41]

< previous page page_231 next page >

Page 231

and filetype. This facility allows the information in files to be shared between any two applications, regardless of
whether they use MPI, and regardless of the machine architectures on which they run.

MPI supports multiple data representations: native, internal, and external32. An implementation may support
additional data representations. MPI also supports user-defined data representations (see Section 7.5.3). The native
and internal data representations are implementation-dependent, while the external32 representation is common to
all MPI implementations and facilitates file interoperability. The data representation is specified in the datarep
argument to MPI_FILE_SET_VIEW.

Advice to users. MPI is not guaranteed to retain knowledge of what data representation was used when a file is
written. Therefore, to correctly retrieve file data, an MPI application is responsible for specifying the same data
representation as was used to create the file.

native: Data in this representation is stored in a file exactly as it is in memory. The advantage of this data
representation is that data precision and I/O performance are not lost in type conversions with a purely
homogeneous environment. The disadvantage is the loss of transparent interoperability within a heterogeneous MPI
environment.

Advice to users. This data representation should only be used in a homogeneous MPI environment, or when the
MPI application is capable of performing the data type conversions itself.

Advice to implementors. When implementing read and write operations on top of MPI message passing, the
message data should be typed as MPI_BYTE to ensure that the message routines do not perform any type
conversions on the data.

internal: This data representation can be used for I/O operations in a homogeneous or heterogeneous environment;
the implementation will perform type conversions if necessary. The implementation is free to store data in any
format of its choice, with the restriction that it will maintain constant extents for all predefined datatypes in any one
file. The environment in which the resulting file can be reused is implementation defined and must be documented
by the implementation.

Rationale. This data representation allows the implementation to perform I/O efficiently in a heterogeneous
environment, though with implementation-defined restrictions on how the file can be reused.

< previous page page_231 next page >

page_232

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_232.html[2011-2-17 2:06:42]

< previous page page_232 next page >

Page 232

Advice to implementors. Since external32 is a superset of the functionality provided by internal, an implementation
may choose to implement internal as external32.

external32: This data representation states that read and write operations convert all data from and to the external32
representation defined in Section 7.5.2. The data conversion rules for communication also apply to these
conversions (see Section 3.3.2, page 2527, of the MPI-1 document). The data on the storage medium is always in
this canonical representation, and the data in memory is always in the local process's native representation.

This data representation has several advantages. First, all processes reading the file in a heterogeneous MPI
environment will automatically have the data converted to their respective native representations. Second, the file
can be exported from one MPI environment and imported into any other MPI environment with the guarantee that
the second environment will be able to read all the data in the file.

The disadvantage of this data representation is that data precision and I/O performance may be lost in data type
conversions.

Advice to implementors. When implementing read and write operations on top of MPI message passing, the
message data should be converted to and from the external32 representation in the client, and sent as type
MPI_BYTE. This will avoid possible double data type conversions and the associated further loss of precision and
performance.

7.5.1
Datatypes for File Interoperability

If the file data representation is other than native, care must be taken in constructing etypes and filetypes. Any of
the datatype constructor functions may be used; however, for those functions that accept displacements in bytes, the
displacements must be specified in terms of their values in the file for the file data representation being used. MPI
will interpret these byte displacements as is; no scaling will be done. The function
MPI_FILE_GET_TYPE_EXTENT can be used to calculate the extents of datatypes in the file. For etypes and
filetypes that are portable datatypes (see Section 1.4), MPI will scale any displacements in the datatypes to match
the file data representation. Datatypes passed as arguments to read/write routines specify the data layout in
memory; therefore, they must always be constructed using displacements corresponding to displacements in
memory.

Advice to users. One can logically think of the file as if it were stored in the memory of a file server. The etype
and filetype are interpreted as if they were defined

< previous page page_232 next page >

page_233

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_233.html[2011-2-17 2:06:43]

< previous page page_233 next page >

Page 233

at this file server, by the same sequence of calls used to define them at the calling process. If the data
representation is native, then this logical file server runs on the same architecture as the calling process, so that
these types define the same data layout on the file as they would define in the memory of the calling process. If the
etype and filetype are portable datatypes, then the data layout defined in the file is the same as would be defined in
the calling process memory, up to a scaling factor. The routine MPI_FILE_GET_FILE_EXTENT can be used to
calculate this scaling factor. Thus, two equivalent portable datatypes define the same data layout in the file, even in
a heterogeneous environment with internal, external32, or user-defined data representations. If they are not portable
and equivalent, the etype and filetype must be constructed so that their typemap and extent are the same on any
architecture. This can be achieved if they have an explicit upper bound and lower bound (defined using
MPI_TYPE_CREATE_RESIZED). This condition must also be fulfilled by any datatype that is used in the
construction of the etype and filetype, if this datatype is replicated contiguously, either explicitly, by a call to
MPI_TYPE_CONTIGUOUS, or implicitly, by a blocklength argument that is greater than one. If an etype or
filetype is not portable, and has a typemap or extent that is architecture-dependent, then the data layout specified
by it on a file is implementation-dependent.

File data representations other than native may be different from corresponding data representations in memory.
Therefore, for these file data representations, it is important not to use hardwired byte offsets for file positioning,
including the initial displacement that specifies the view. When a portable datatype (see Section 1.4) is used in a
data access operation, any holes in the datatype are scaled to match the data representation. However, note that this
technique only works when all the processes that created the file view build their etypes from the same predefined
datatypes. For example, if one process uses an etype built from MPI_INT and another uses an etype built from
MPI_FLOAT, the resulting views may be nonportable because the relative sizes of these types may differ from one
data representation to another.

MPI_FILE_GET_TYPE_EXTENT(fh, datatype, extent)

IN
fh file handle (handle)

IN
datatype datatype (handle)

OUT
extent datatype extent (integer)

< previous page page_233 next page >

page_234

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_234.html[2011-2-17 2:06:43]

< previous page page_234 next page >

Page 234

int MPI_File_get_type_extent (MPI_File fh, MPI_Datatype datatype,
 MPI_Aint *extent)

MPI_FILE_GET_TYPE_EXTENT (FH, DATATYPE, EXTENT, IERROR)
 INTEGER FH, DATATYPE, IERROR
 INTEGER (KIND=MPI_ADDRESS_KIND) EXTENT

MPI::Aint MPI::File::Get_type_extent (const MPI::Datatype& datatype)
 const

MPI_FILE_GET_TYPE_EXTENT returns the extent of datatype in the file fh. This extent will be the same for all
processes accessing the file fh. If the current view uses a user-defined data representation (see Section 7.5.3), MPI
uses the dtype_file_extent_fn callback to calculate the extent.

Advice to implementors. In the case of user-defined data representations, the extent of a derived datatype can be
calculated by first determining the extents of the predefined datatypes in this derived datatype using
dtype_file_extent_fn (see Section 7.5.3).

7.5.2
External Data Representation: external32

All MPI implementations are required to support the data representation defined in this section. Datatypes listed in
this section need not be supported if they are not required to be supported by other parts of MPI (e.g.,
MPI_INTEGER2 on a machine that does not support 2-byte integers).

All floating point values are in big-endian IEEE format [13] of the appropriate size. Floating point values are
represented by one of three IEEE formats. These are the IEEE Single, Double, and Double Extended formats,
requiring 4, 8 and 16 bytes of storage, respectively. For the IEEE Double Extended formats, MPI specifies a
Format Width of 16 bytes, with 15 exponent bits, bias = +10383, 112 fraction bits, and an encoding analogous to
the Double format. All integral values are in two's complement big-endian format. Big-endian means that the most
significant byte is the one with the lowest address. For FortranLOGICAL and C++ bool, zero implies false and
nonzero implies true. Fortran COMPLEX and DOUBLE COMPLEX are represented by a pair of floating point
format values for the real and imaginary components. Characters are in ISO 8859-1 format [14]. Wide characters
(of type MPI_WCHAR) are in Unicode format [26].

All signed numerals (e.g., MPI_INT, MPI_REAL) have the sign bit at the most significant bit. MPI_COMPLEX
and MPI_DOUBLE_COMPLEX have the sign bit of the

< previous page page_234 next page >

page_235

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_235.html[2011-2-17 2:06:44]

< previous page page_235 next page >

Page 235

real and imaginary parts at the most significant bit of each part. The size of each MPI datatype is shown in Table
7.2.

According to IEEE specifications [13], the NaN (not a number) is systemdependent. It should not be interpreted
within MPI as anything other than NaN.

Advice to implementors. The MPI treatment of NaN is similar to the approach used in XDR (see
ftp://ds.internic.net/rfc/rfc1832. txt).

All data is byte aligned, regardless of type. All data items are stored contiguously in the file.

Advice to implementors. All bytes of LOGICAL and bool must be checked to determine the value.

Advice to users. The type MPI_PACKED is treated as bytes and is not converted. The user should be aware that
MPI_PACK has the option of placing a header in the beginning of the pack buffer.

The size of the predefined datatypes returned from MPI_TYPE_CREATE_F90_REAL,
MPI_TYPE_CREATE_F90_COMPLEX, and MPI_TYPE_CREATE_F90_INTEGER are defined in Section 8.2.5.

Advice to implementors. When converting a larger-sized integer to a smaller-sized integer, only the less significant
bytes are moved. Care must be taken to preserve the sign bit value. This prevents conversion errors if the data
range is within the range of the smaller size integer.

7.5.3
User-Defined Data Representations

There are two situations that cannot be handled by the required representations:

1. A user wants to write a file in a representation unknown to the implementation, and

2. A user wants to read a file written in a representation unknown to the implementation.

User-defined data representations allow the user to insert a third-party converter into the I/O stream to do the data
representation conversion.

< previous page page_235 next page >

page_236

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_236.html[2011-2-17 2:06:44]

< previous page page_236 next page >

Page 236

Table 7.2 Datatypes defined for external32
Type Length
MPI_PACKED 1
MPI_BYTE 1
MPI_CHAR 1
MPI_UNSIGNED_CHAR 1
MPI_SIGNED_CHAR 1
MPI_WCHAR 2
MPI_SHORT 2
MPI_UNSIGNED_SHORT 2
MPI_INT 4
MPI_UNSIGNED 4
MPI_LONG 4
MPI_UNSIGNED_LONG 4
MPI_FLOAT 4
MPI_DOUBLE 8
MPI_LONG_DOUBLE 16
MPI_CHARACTER 1
MPI_LOGICAL 4
MPI_INTEGER 4
MPI_REAL 4
MPI_DOUBLE_PRECISION 8
MPI_COMPLEX 2*4
MPI_DOUBLE_COMPLEX 2*8

Optional Type Length
MPI_INTEGER1 1
MPI_INTEGER2 2
MPI_INTEGER4 4
MPI_INTEGER8 8
MPI_LONG_LONG 8
MPI_UNSIGNED_LONG_LONG 8
MPI_REAL4 4
MPI_REAL8 8
MPI_REAL16 16

< previous page page_236 next page >

page_237

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_237.html[2011-2-17 2:06:45]

< previous page page_237 next page >

Page 237

MPI_REGISTER_DATAREP(datarep, read_conversion_fn, write_conversion_fn,
dtype_file_extent_fn, extra_state)

IN
datarep data representation identifier (string)

IN
read_conversion_fn function invoked to convert from file representation to native

representation (function)

IN
write_conversion_fn function invoked to convert from native representation to file

representation (function)

IN
dtype_file_extent_fnfunction invoked to get the extent of a datatype as represented in the

file (function)

IN
extra_state extra state

int MPI_Register_datarep (char *datarep,
 MPI_Datarep_conversion_function *read_conversion_fn,
 MPI_Datarep_conversion_function *write_conversion_fn,
 MPI_Datarep_extent_function *dtype_file_extent_fn,
 void *extra_state)

MPI_REGISTER_DATAREP (DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,
 DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)
 CHARACTER*(*) DATAREP
 EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN
 INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE
 INTEGER IERROR

void MPI: :Register_datarep(const char* datarep,
 MPI: :Datarep_conversion_function* read_conversion_fn,
 MPI: :Datarep_conversion_function* write_conversion_fn,
 MPI: :Datarep_extent_function* dtype_file_extent_fn,
 void* extra_state)

The call associates read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn with the data representation
identifier datarep. datarep can then be used as an argument to MPI_FILE_SET_VIEW. causing subsequent data
access operations to call the conversion functions to convert all data items accessed between file data representation
and native representation. MPI_REGISTER_DATAREP is a local operation and only registers the data
representation for the calling MPI process. If datarep is already defined, an error in the error
classMPI_ERR_DUP_DATAREP is raised using the default file error handler (see Section 7.7). The length of a

< previous page page_237 next page >

page_238

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_238.html[2011-2-17 2:06:46]

< previous page page_238 next page >

Page 238

data representation string is limited to the value of MPI_MAX_DATAREP_STRING
(MPI::MAX_DATAREP_STRING IN C++). MPI_MAX_DATAREP_STRING must be large enough to represent
64 characters (see Section 2.2.8). No routines are provided to delete data representations and free the associated
resources; it is not expected that an application will generate them in significant numbers.

Extent Callback. The following defines the interface for the function that must be provided to provide the extent of
a datatype in the file representation.

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,
 MPI_Aint *file_extent, void *extra_state);

SUBROUTINE DATAREP_EXTENT_FUNCTION (DATATYPE, EXTENT, EXTRA_STATE,
 IERROR)
 INTEGER DATATYPE, IERROR
 INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

typedef MPI::Datarep_extent_function(const MPI::Datatype& datatype,
 MPI::Aint& file_extent, void* extra_state);

The function dtype_file_extent_fn must return, in file_extent, the number of bytes required to store
datatype in the file representation. The function is passed, in extra_state, the argument that was passed to
the MPI_REGISTER_DATAREP call. MPI will only call this routine with predefined datatypes employed by the
user.

Datarep Conversion Functions. typedef int
 MPI_Datarep_conversion_function(void *userbuf,
 MPI_Datatype datatype, int count, void *filebuf,
 MPI_Offset position, void *extra_state);

SUBROUTINE DATAREP_CONVERSION_FUNCTION (USERBUF, DATATYPE, COUNT,
 FILEBUF, POSITION, EXTRA_STATE, IERROR)
 <TYPE> USERBUF(*), FILEBUF(*)
 INTEGER COUNT, DATATYPE, IERROR
 INTEGER(KIND=MPI_OFFSET_KIND) POSITION
 INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

typedef MPI::Datarep_conversion_function(void* userbuf,
 MPI::Datatype& datatype, int count, void* filebuf,
 MPI::Offset position, void* extra_state);

< previous page page_238 next page >

page_239

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_239.html[2011-2-17 2:06:46]

< previous page page_239 next page >

Page 239

The function read_conversion_fn must convert from file data representation to native representation. Before calling
this routine, MPI allocates and fills filebuf with count contiguous data items. The type of each data item matches
the corresponding entry for the predefined datatype in the type signature of datatype. The function is passed, in
extra_state, the argument that was passed to the MPI_REGISTER_DATAREP call. The function must copy all
count data items from filebuf to userbuf in the distribution described by datatype, converting each data item from
file representation to native representation. datatype will be equivalent to the datatype that the user passed to the
read or write function. If the size of datatype is less than the size of the count data items, the conversion function
must treat datatype as being contiguously tiled over the userbuf. The conversion function must begin storing
converted data at the location in userbuf specified by position into the (tiled) datatype.

Advice to users. Although the conversion functions have similarities to MPI_PACK and MPI_UNPACK, one
should note the differences in the use of the arguments count and position. In the conversion functions, count is a
count of data items (i.e., count of typemap entries of datatype), and position is an index into this typemap. In
MPI_PACK, incount refers to the number of whole datatypes, and position is a number of bytes.

Advice to implementors. A converted read operation could be implemented as follows:

1. Get file extent of all data items.

2. Allocate a filebuf large enough to hold all count data items.

3. Read data from file into filebuf.

4. Call read_conversion_fn to convert data and place it into userbuf.

5. Deallocate filebuf.

If MPI cannot allocate a buffer large enough to hold all the data to be converted from a read operation, it may call
the conversion function repeatedly using the same datatype and userbuf, and reading successive chunks of data to
be converted in filebuf. For the first call (and in the case when all the data to be converted fits into filebuf,) MPI
will call the function with position set to zero. Data converted during this call will be stored in the userbuf
according to the first count data items in datatype. Then in subsequent calls to the conversion function, MPI will
increment the value in position by the count of items converted in the previous call.

< previous page page_239 next page >

page_240

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_240.html[2011-2-17 2:06:47]

< previous page page_240 next page >

Page 240

Rationale. Passing the conversion function a position and one datatype for the transfer allows the conversion
function to decode the datatype only once and cache an internal representation of it on the datatype. On subsequent
calls, the conversion function can use the position to quickly find its place in the datatype and continue storing
converted data where it left off at the end of the previous call.

Advice to users. Although the conversion function may usefully cache an internal representation on the datatype, it
should not cache any state information specific to an ongoing conversion operation, since it is possible for the same
datatype to be used concurrently in multiple conversion operations.

The function write_conversion_fn must convert from native representation to file data representation. Before
calling this routine, MPI allocates filebuf of a size large enough to hold count contiguous data items. The type of
each data item matches the corresponding entry for the predefined datatype in the type signature of datatype. The
function must copy count data items from userbuf in the distribution described by datatype, to a contiguous
distribution in filebuf, converting each data item from native representation to file representation. If the size of
datatype is less than the size of count data items, the conversion function must treat datatype as being contiguously
tiled over the userbuf.

The function must begin copying at the location in userbuf specified by position into the (tiled) datatype. datatype
will be equivalent to the datatype that the user passed to the read or write function. The function is passed, in
extra_state, the argument that was passed to the MPI_REGISTER_DATAREP call.

The predefined constant MPI_CONVERSION_FN_NULL (MPI::CONVERSION_FN_NULL in C++) may be
used as either write_conversion_fn or read_conversion_fn. In that case, MPI will not attempt to invoke
write_conversion_fn or read_conversion_fn, respectively, but will perform the requested data access using the
native data representation.

An MPI implementation must ensure that all data accessed is converted, either by using a filebuf large enough to
hold all the requested data items or else by making repeated calls to the conversion function with the same datatype
argument and appropriate values for position.

An implementation will only invoke the callback routines in this section (read_conversion_fn,
write_conversion_fn, and dtype_file_extent_fn) when one of the read or write routines in Section 7.4 or
MPI_FILE_GET_TYPE_EXTENT is called by the user. dtype_file_extent_fn will only be passed predefined
datatypes employed by the user.

< previous page page_240 next page >

page_241

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_241.html[2011-2-17 2:06:48]

< previous page page_241 next page >

Page 241

The conversion functions will only be passed datatypes equivalent to those that the user has passed to one of the
routines noted above.

The conversion functions must be reentrant. User-defined data representations are restricted to use byte alignment
for all types. Furthermore, it is erroneous for the conversion functions to call any collective routines or to free
datatype.

The conversion functions should return an error code. If the returned error code has a value other than
MPI_SUCCESS, the implementation will raise an error in the class MPI_ERR_CONVERSION.

7.5.4
Matching Data Representations

It is the user's responsibility to ensure that the data representation used to read data from a file is compatible with
the data representation that was used to write that data to the file.

In general, using the same data representation name when writing and reading a file does not guarantee that the
representation is compatible. Similarly, using different representation names on two different implementations may
yield compatible representations.

Compatibility can be obtained when external32 representation is used, although precision may be lost and the
performance may be less than when native representation is used. Compatibility is guaranteed using external32
provided at least one of the following conditions is met.

The data access routines directly use types enumerated in Section 7.5.2 that are supported by all implementations
participating in the I/O. The predefined type used to write a data item must also be used to read a data item.

In the case of Fortran 90 programs, the programs participating in the data accesses obtain compatible datatypes
using MPI routines that specify precision and/or range (Section 8.2.5).

For any given data item, the programs participating in the data accesses use compatible predefined types to write
and read the data item.

User-defined data representations may be used to provide an implementation compatibility with another
implementation's native or internal representation.

Advice to users. Section 8.2.5 defines routines that support the use of matching datatypes in heterogeneous
environments and contains examples illustrating their use.

< previous page page_241 next page >

page_242

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_242.html[2011-2-17 2:06:48]

< previous page page_242 next page >

Page 242

7.6
Consistency and Semantics.

7.6.1
File Consistency

Consistency semantics define the outcome of multiple accesses to a single file. All file accesses in MPI are relative
to a specific file handle created from a collective open. MPI provides three levels of consistency: sequential
consistency among all accesses using a single file handle, sequential consistency among all accesses using file
handles created from a single collective open with atomic mode enabled, and user-imposed consistency among
accesses other than the above.

We say that a set of data access operations A1An is sequentially consistent if they behave as if they were performed
sequentially in an order consistent with program ordereach access appears atomic, although the exact ordering of
accesses is unspecified. All data access operations are considered separate operations. In particular, a collective
operation on N processes is considered N separate operations for the purposes of this section, except for
MPI_FILE_SET_SIZE and MPI_FILE_PREALLOCATE. User-imposed consistency may be obtained using
program order and calls to MPI_FILE_SYNC.

Advice to users. Consider, for example, a write operation A1 and A2 access the same data, possibly from separate
processes. If A1 and A2 are sequentially consistent, then either the read gets old data (before the write), or new
data (after the write), but never a mixture. Note however that the definition of sequential consistency says nothing
about whether A1 and A2 access the same data or are on the same process.

A standard counterexample to expectations about sequential consistency is I/O operations on an NFS filesystem
accessed from processes on different hosts. Such I/O operations are not necessarily sequentially consistent even if
they access different data. For instance two write operations to different areas of the same filesystem block may
interfere with one another, as data is written in blocks at a time. Indeed, lack of such sequential consistency in the
filesystem is an important reason to use MPI I/O.

Let FH1 be the set of file handles created from one particular collective open of the file foo and FH2 be the set of
file handles created from a different collective open of foo. Note that nothing restrictive is said about FH1 and
FH2: the sizes of FH1 and FH2 may be different, the groups of processes used for each open may or may not
intersect, the file handles in FH1 may be destroyed before those in FH2 are created, etc. We will consider the
following three cases: a single file handle (e.g.,

< previous page page_242 next page >

page_243

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_243.html[2011-2-17 2:06:49]

< previous page page_243 next page >

Page 243

fh1Î FH1), two file handles created from a single collective open (e.g., fh1aÎ FH1 and fh1bÎ FH1), and two file
handles from different collective opens (e.g., fh1Î FH1 and fh2Î FH2).

For the purpose of consistency semantics, a matched pair (Section 7.4.5) of split collective data access operations
(e.g., MPI_FILE_READ_ALL_BEGIN and MPI_FILE_READ_ALL_END) compose a single data access
operation. Similarly, a nonblocking data access routine (e.g., MPI_FILE_IREAD) and the routine which completes
the request (e.g., MPI_WAIT) also compose a single data access operation. For all cases below, these data access
operations are subject to the same constraints as blocking data access operations.

Advice to users. For an MPI_FILE_IREAD and MPI_WAIT pair, the operation begins when MPI_FILE_IREAD is
called and ends when MPI_WAIT returns.

Let A1 and A2 be data access operations. Let D1 (D2) be the set of absolute byte displacements of every byte
accessed in A1 (A2). The two data accesses overlap if D1Ç D2¹Æ. The two data accesses conflict if they overlap
and at least one is a write access.

Let SEQfh be a sequence of file operations on a single file handle, bracketed by MPI_FILE_SYNCs on that file
handle. (Both opening and closing a file implicitly perform an MPI_FILE_SYNC.) SEQfh is a write sequence if
any of the data access operations in the sequence are writes or if any of the file manipulation operations in the
sequence change the state of the file (e.g., MPI_FILE_SET_SIZE or MPI_FILE_PREALLOCATE). Two
sequences SEQ1 and SEQ2 or two operations A1 and A2 are concurrent if one may begin before the other is
complete.

The requirements for guaranteeing sequential consistency among all accesses to a particular file are divided into the
three cases given below. If any of these requirements are not met, then the value of all data in that file is
implementationdependent.

Case 1: fh1Î FH1: All operations on fh1 are sequentially consistent if atomic mode is set. If nonatomic mode is set,
then all operations on fh1 are sequentially consistent if they are either not concurrent, not conflicting, or both.

Case 2: fh1aÎ FH1b and fh1bÎ FH1: Let A1 be a data access operation using fh1a, and let A2 be a data access
operation using fh1b. If A1 does not conflict with A2, MPI guarantees that the operations are sequentially
consistent.

< previous page page_243 next page >

page_244

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_244.html[2011-2-17 2:06:50]

< previous page page_244 next page >

Page 244

However, unlike POSIX semantics, the default MPI semantics for conflicting accesses do not guarantee sequential
consistency. If A1 and A2 conflict, sequential consistency can be guaranteed by either enabling atomic mode via
the MPI_FILE_SET_ATOMICITY routine, or meeting the condition described in Case 3.

Case 3: fh1Î FH1 and fh2Î FH2: A write sequence SEQ1 on fh1 and another sequence SEQ2 on fh2. are
guaranteed to be sequentially consistent if they are not concurrent or if fh1 and fh2 refer to different files. In other
words, MPI_FILE_SYNC must be used together with a mechanism that guarantees nonconcurrency of the
sequences.

See the examples in Section 7.6.10 for further clarification of some of these consistency semantics.

MPI_FILE_SET_ATOMICITY(fh, flag)

INOUT
fh file handle (handle)

IN
flag true to set atomic mode, false to set nonatomic

mode (logical)

int MPI_File_set_atomicity(MPI_File fh, int flag)

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)
 INTEGER FH, IERROR
 LOGICAL FLAG

void MPI::File::Set_atomicity(bool flag)

Let FH be the set of file handles created by one collective open. The consistency semantics for data access
operations using FH is set by collectively calling MPI_FILE_SET_ATOMICITY on FH.
MPI_FILE_SET_ATOMICITY is collective; all processes in the group must pass identical values for fh and flag.
If flag is true, atomic mode is set; if flag is false, nonatomic mode is set.

Changing the consistency semantics for an open file only affects new data accesses. All completed data accesses
are guaranteed to abide by the consistency semantics in effect during their execution. Nonblocking data accesses
and split collective operations that have not completed (e.g., via MPI_WAIT) are only guaranteed to abide by
nonatomic mode consistency semantics.

< previous page page_244 next page >

page_245

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_245.html[2011-2-17 2:06:51]

< previous page page_245 next page >

Page 245

Advice to implementors. Since the semantics guaranteed by atomic mode are stronger than those guaranteed by
nonatomic mode, an implementation is free to adhere to the more stringent atomic mode semantics for outstanding
requests.

MPI_FILE_GET_ATOMICITY(fh, flag)

IN
fh file handle (handle)

OUT
flag true if atomic mode, false if nonatomic mode (logical)

int MPI_File_get_atomicity(MPI_File fh, int *flag)

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)
 INTEGER FH, IERROR
 LOGICAL FLAG

bool MPI::File::Get_atomicity() const

MPI_FILE_GET_ATOMICITY returns the current consistency semantics for data access operations on the set of
file handles created by one collective open. If flag is true, atomic mode is enabled; if flag is false, nonatomic mode
is enabled.

MPI_FILE_SYNC(fh)

INOUT
fh file handle (handle)

int MPI_File_sync(MPI_File fh)

MPI_FILE_SYNC(FH, IERROR)
 INTEGER FH, IERROR

void MPI::File::Sync()

Calling MPI_FILE_SYNC with fh causes all previous writes to fh by the calling process to be transferred to the
storage device. If other processes have made updates to the storage device, then all such updates become visible to
subsequent reads of fh by the calling process. MPI_FILE_SYNC may be necessary to ensure sequential consistency
in certain cases (see above). MPI_FILE_SYNC is a collective operation.

< previous page page_245 next page >

page_246

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_246.html[2011-2-17 2:06:51]

< previous page page_246 next page >

Page 246

The user is responsible for ensuring that all nonblocking and split collective operations on fh have been completed
before calling MPI_FILE_SYNCotherwise, the call to MPI_FILE_SYNC is erroneous.

Advice to users. MPI does not define precisely a storage device and it may be unwise to make assumptions here
(e.g., if the power goes off the data will be available when it comes back on). The storage device is a convenient
abstraction that makes it possible to guarantee that file updates will be visible in other processes. A sync behaves
like an I/O flush after a write, and like an I/O cache flush before a read.

7.6.2
Random Access versus Sequential Files

MPI distinguishes ordinary random access files from sequential stream files, such as pipes and tape files.
Sequential stream files must be opened with the MPI_MODE_SEQUENTIAL flag set in the amode. For these
files, the only permitted data access operations are shared file pointer reads and writes. Filetypes and etypes with
holes are erroneous. In addition, the notion of a repositionable file pointer is not meaningful; therefore, calls to
MPI_FILE_SEEK_SHARED and MPI_FILE_GET_POSITION_SHARED are erroneous, and the pointer update
rules specified for the data access routines do not apply. The amount of data accessed by a data access operation
will be the amount requested unless the end of file is reached or an error is raised.

Rationale. This implies that reading on a pipe will always wait until the requested amount of data is available or
until the process writing to the pipe has issued an end of file.

Finally, for some sequential files, such as those corresponding to magnetic tapes or streaming network connections,
writes to the file may be destructive. In other words, a write may act as a truncate (an MPI_FILE_SET_SIZE with
size set to the current position) followed by the write.

7.6.3
Progress

The progress rules of MPI are both a promise to users and a set of constraints on implementors. In cases where the
progress rules restrict possible implementation choices more than the interface specification alone, the progress
rules take precedence.

All blocking routines must complete in finite time unless an exceptional condition (such as resource exhaustion)
causes an error.

< previous page page_246 next page >

page_247

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_247.html[2011-2-17 2:06:52]

< previous page page_247 next page >

Page 247

Nonblocking data access routines inherit the following progress rule from nonblocking point-to-point
communication: a nonblocking write is equivalent to a nonblocking send for which a receive is eventually posted,
and a nonblocking read is equivalent to a nonblocking receive for which a send is eventually posted.

Finally, an implementation is free to delay progress of collective routines until all processes in the group associated
with the collective call have invoked the routine. Once all processes in the group have invoked the routine, the
progress rule of the equivalent noncollective routine must be followed.

7.6.4
Collective File Operations

Collective file operations are subject to the same restrictions as collective communication operations. For a
complete discussion, please refer to the semantics set forth in Section 1-4.14.

Collective file operations are collective over a dup of the communicator used to open the filethis duplicate
communicator is implicitly specified via the file handle argument. Different processes can pass different values for
other arguments of a collective routine unless specified otherwise.

7.6.5
Type Matching.

The type matching rules for I/O mimic the type matching rules for communication with one exception: if etype is
MPI_BYTE, then this matches any datatype in a data access operation. In general, the etype of data items written
must match the etype used to read the items, and for each data access operation, the current etype must also match
the type declaration of the data access buffer.

Advice to users. In most cases, use of MPI_BYTE as a wild card will defeat the file interoperability features of
MPI. File interoperability can only perform automatic conversion between heterogeneous data representations
when the exact datatypes accessed are explicitly specified.

7.6.6
Miscellaneous Clarifications

Once an I/O routine completes, it is safe to free any opaque objects passed as arguments to that routine. For
example, the comm and info used in an MPI_FILE_OPEN, or the etype and filetype used in an
MPI_FILE_SET_VIEW, can be freed without affecting access to the file. Note that for nonblocking routines and
split collective operations, the operation must be completed before it is safe to reuse data buffers passed as
arguments.

< previous page page_247 next page >

page_248

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_248.html[2011-2-17 2:06:52]

< previous page page_248 next page >

Page 248

As in communication, datatypes must be committed before they can be used in file manipulation or data access
operations. For example, the etype and filetype must be committed before calling MPI_FILE_SET_VIEW, and the
datatype must be committed before calling MPI_FILE_WRITE.

7.6.7
MPI_Offset Type

MPI_Offset is a C integer type of size sufficient to represent the size (in bytes) of the largest file supported by
MPI. Displacements and offsets are always specified as values of type MPI_Offset. The corresponding type in C++
is MPI::Offset.

In Fortran, the corresponding integer is an integer of kind MPI_OFFSET_KIND (MPI::OFFSET_KIND in C++),
defined in mpif.h and the mpi module.

In Fortran 77 environments that do not support KIND parameters, MPI_Offset arguments should be declared as an
INTEGER of suitable size. The language interoperability implications for MPI_Offset are similar to those for
addresses (see Section 2.2).

7.6.8
Logical versus Physical File Layout

MPI specifies how the data should be laid out in a virtual file structure (the view), not how that file structure is to
be stored on one or more disks. Specification of the physical file structure was avoided because it is expected that
the mapping of files to disks will be system specific, and any specific control over file layout would therefore
restrict program portability. However, there are still cases where some information may be necessary to optimize
file layout. This information can be provided as hints specified via info when a file is created (see Section 7.2.8).

7.6.9
File Size

The size of a file may be increased by writing to the file after the current end of file. The size may also be changed
by calling MPI size changing routines, such as MPI_FILE_SET_SIZE. A call to a size changing routine does not
necessarily change the file size. For example, calling MPI_FILE_PREALLOCATE with a size less than the current
size does not change the size.

Consider a set of bytes that has been written to a file since the most recent call to a size changing routine, or since
MPI_FILE_OPEN if no such routine has been called. Let the high byte be the byte in that set with the largest
displacement. The file size is the larger of

one plus the displacement of the high byte or

< previous page page_248 next page >

page_249

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_249.html[2011-2-17 2:06:53]

< previous page page_249 next page >

Page 249

the size immediately after the size changing routine or MPI_FILE_OPEN has returned.

When applying consistency semantics, calls to MPI_FILE_SET_SIZE and MPI_FILE_PREALLOCATE are
considered writes to the file (which conflict with operations that access bytes at displacements between the old and
new file sizes), and MPI_FILE_GET_SIZE is considered a read of the file (which overlaps with all accesses to the
file).

Advice to users. Any sequence of operations containing the collective routines MPI_FILE_SET_SIZE and
MPI_FILE_PREALLOCATE is a write sequence. As such, sequential consistency in nonatomic mode is not
guaranteed unless the conditions in Section 7.6.1 are satisfied.

File pointer update semantics (i.e., file pointers are updated by the amount accessed) are only guaranteed if file size
changes are sequentially consistent.

Advice to users. Consider the following example. Given two operations made by separate processes to a file
containing 100 bytes: anMPI_FILE_READ of 10 bytes and an MPI_FILE_SET_SIZE to 0 bytes. If the user does
not enforce sequential consistency between these two operations, the file pointer may be updated by the amount
requested (10 bytes) even if the amount accessed is zero bytes.

7.6.10
Consistency and Semantics Examples.

The examples in this section illustrate the application of the MPI consistency and semantics guarantees. These
address

conflicting accesses on file handles obtained from a single collective open, and

all accesses on file handles obtained from two separate collective opens.

The simplest way to achieve consistency for conflicting accesses is to obtain sequential consistency by setting
atomic mode. For the code below, process 1 will read either 0 or 10 integers. If the latter, every element of b will
be 5. If nonatomic mode is set, the results of the read are undefined.

/* Process 0 */
int i, a [10] ;
int TRUE = 1;

for (i=0;i<10;i++)

< previous page page_249 next page >

page_250

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_250.html[2011-2-17 2:06:54]

< previous page page_250 next page >

Page 250

 a[i] = 5 ;

MPI_File_open(MPI_COMM_WORLD, workfile,
 MPI_MODE_RDWR | MPI_MODE_CREATE,
 MPI_INFO_NULL, &fh0) ;
MPI_File_set_view(fhO, 0, MPI_INT, MPI_INT, native,
 MPI_INFO_NULL) ;
MPI_File_set_atomicity(fhO, TRUE) ;
MPI_File_write_at(fhO, 0, a, 10, MPI_INT, &status) ;
/* MPI_Barrier(MPI_COMM_WORLD) ; */

/* Process 1 */
int b[10] ;
int TRUE = 1;
MPI_File_open(MPI_COMM_WORLD, workfile,
 MPI_MODE_RDWR | MPI_MODE_CREATE,
 MPI_INFO_NULL, &fh1) ;
MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT, native,
 MPI_INFO_NULL) ;
MPI_File_set_atomicity(fh1, TRUE) ;
/* MPI_Barrier(MPI_COMM_WORLD) ; */
MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

A user may guarantee that the write on process 0 precedes the read on process 1 by imposing temporal order with,
for example, calls to MPI_BARRIER (which are commented out in the code above).

Advice to users. Routines other than MPI_BARRIER may be used to impose temporal order. In the example above,
process 0 could use MPI_SEND to send a 0 byte message, received by process 1 using MPI_RECV.

Alternatively, a user can impose consistency with nonatomic mode set:

/* Process 0 */
int i, a [10] ;
for (i=0;i<10;i++)
 a[i] = 5 ;

MPI_File_open(MPI_COMM_WORLD, workfile,
 MPI_MODE_RDWR I MPI_MODE_CREATE,

< previous page page_250 next page >

page_251

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_251.html[2011-2-17 2:06:54]

< previous page page_251 next page >

Page 251

 MPI_INFO_NULL, &fh0) ;
MPI_File_set_view(fhO, 0, MPI_INT, MPI_INT,
 native, MPI_INFO_NULL) ;
MPI_File_write_at(fhO, 0, a, 10, MPI_INT, &status) ;
MPI_File_sync(fhO) ;
MPI_Barrier(MPI_COMM_WORLD) ;
MPI_File_sync(fhO) ;

/* Process 1 */
int b[10] ;
MPI_File_open(MPI_COMM_WORLD, workfile,
 MPI_MODE_RDWR I MPI_MODE_CREATE,
 MPI_INFO_NULL, &fh1) ;
MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT,
 native, MPI_INFO_NULL) ;
MPI_File_sync(fh1) ;
MPI_Barrier(MPI_COMM_WORLD) ;
MPI_File_sync(fh1) ;
MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

The sync-barrier-sync construct is required because:

The barrier ensures that the write on process 0 occurs before the read on process 1.

The first sync guarantees that the data written by all processes is transferred to the storage device.

The second sync guarantees that all data which has been transferred to the storage device is visible to all processes.
(This does not affect process 0 in this example.)

The following program represents an erroneous attempt to achieve consistency by eliminating the apparently
superfluous second sync call for each process.

/*---------------- THIS EXAMPLE IS ERRONEOUS --------------- */
/* Process 0 */
int i, a [10] ;
for (i=0;i<10;i++)
 a[i] = 5 ;

MPI_File_open(MPI_COMM_WORLD, workfile,

< previous page page_251 next page >

page_252

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_252.html[2011-2-17 2:06:55]

< previous page page_252 next page >

Page 252

 MPI_MODE_RDWR I MPI_MODE_CREATE,
 MPI_INFO_NULL, &fh0) ;
MPI_File_set_view(fhO, 0, MPI_INT, MPI_INT,
 native, MPI_INFO_NULL) ;
MPI_File_write_at(fhO, 0, a, 10, MPI_INT, &status) ;
MPI_File_sync(fhO) ;
MPI_Barrier(MPI_COMM_WORLD) ;

/* Process 1 */
int b[10] ;
MPI_File_open(MPI_COMM_WORLD, workfile,
 MPI_MODE_RDWR I MPI_MODE_CREATE,
 MPI_INFO_NULL, &fh1) ;
MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT,
 native, MPI_INFO_NULL) ;
MPI_Barrier(MPI_COMM_WORLD) ;
MPI_File_sync(fh1) ;
MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

The above program also violates the MPI rule against out-of-order collective operations and will deadlock for
implementations in which MPI_FILE_SYNC blocks.

Advice to users. Some implementations may choose to implement MPI_FILE_SYNC as a temporally
synchronizing function. In this case, thesync-barrier-sync construct above could be replaced by a single sync.
However, such code is not portable.

Asynchronous I/O. The behavior of asynchronous I/O operations is determined by applying the rules specified
above for synchronous I/O operations.

The following examples all access a preexisting file myfile. Word 10 in myfile initially contains the integer 2. Each
example writes and reads word 10.

First consider the following code fragment:

int a = 4, b, TRUE=1;
MPI_File_open(MPI_COMM_WORLD, myfile,
 MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;
MPI_File_set_view(fh, 0, MPI_INT, MPI.INT, native,
 MPI_INFO_NULL);

< previous page page_252 next page >

page_253

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_253.html[2011-2-17 2:06:56]

< previous page page_253 next page >

Page 253

/* HPI_File_set_atomicity(fh, TRUE) ;
 Use this to set atomic mode. */
MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;
MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;
MPI_Waitall(2, reqs, statuses) ;

For asynchronous data access operations, MPI specifies that the access occurs at any time between the call to the
asynchronous data access routine and the return from the corresponding request complete routine. Thus, executing
either the read before the write, or the write before the read is consistent with program order. If atomic mode is set,
then MPI guarantees sequential consistency, and the program will read either 2 or 4 into b. If atomic mode is not
set, then sequential consistency is not guaranteed and the program may read something other than 2 or 4 due to the
conflicting data access.

Similarly, the following code fragment does not order file accesses:

int a = 4, b;
MPI_File_open(MPI_COMM_WORLD, myfile,
 MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;
MPI_File_set_view(fh, 0, MPI_INT, MPI_IMT, native,
 MPI_INFO_NULL) ;
/* MPI_File_set_atomicity(fh, TRUE) ;
 Use this to set atomic mode. */
MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;
MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;
MPI_Wait(&reqs[0] , &status) ;
MPI_Wait(&reqs[1], &status) ;

If atomic mode is set, either 2 or 4 will be read into b. Again, MPI does not guarantee sequential consistency in
nonatomic mode.

On the other hand, the following code fragment:

int a = 4;
int b;
MPI_File_open(MPI_COMM_WORLD, myfile,
 MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;
MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, native,
 MPI_INFO_NULL) ;
MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;
MPI_Wait(&reqs[0], &status) ;

< previous page page_253 next page >

page_254

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_254.html[2011-2-17 2:06:57]

< previous page page_254 next page >

Page 254

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;
MPI_Wait(&reqs[1], &status) ;

defines the same ordering as:

int a = 4, b;
MPI_File_open(MPI_COMM_WORLD, myfile,
 MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;
MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, native,
 MPI_INFO_NULL) ;
MPI_File_write_at(fh, 10, &a, 1, MPI_INT, &status) ;
MPI_File_read_at(fh, 10, &b, 1, MPI_INT, &status) ;

Since

nonconcurrent operations on a single file handle are sequentially consistent, and

the program fragments specify an order for the operations,

MPI guarantees that both program fragments will read the value 4 into b. There is no need to set atomic mode for
this example.

Similar considerations apply to conflicting accesses of the form:

MPI_File_write_all_begin(fh,...) ;
MPI_File_iread(fh,...) ;
MPI_Wait(fh,...) ;
MPI_File_write_all_end(fh,...) ;

Recall that constraints governing consistency and semantics are not relevant to the following:

MPI_File_write_all_begin(fh,...) ;
MPI_File_read_all_begin(fh,...) ;
MPI_File_read_all_end(fh,...) ;
MPI_File_write_all_end(fh,...) ;

since split collective operations on the same file handle may not overlap (see Section 7.4.5).

7.7
I/O Error Handling

By default, communication errors are fatalMPI_ERRORS_ARE_FATAL is the default error handler associated
with MPI_COMM_WORLD.I/O errors are usually less catastrophic (e.g., file not found) than communication
errors, and common practice

< previous page page_254 next page >

page_255

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_255.html[2011-2-17 2:06:57]

< previous page page_255 next page >

Page 255

is to catch these errors and continue executing. For this reason, MPI provides additional error facilities for I/O.

Advice to users. MPI does not specify the state of a computation after an erroneous MPI call has occurred. A high-
quality implementation will support the I/O error handling facilities, allowing users to write programs using
common practice for I/O.

Like communicators, each file handle has an error handler associated with it. The MPI I/O error handling routines
are defined in Section 1-7.5.1.

When MPI calls a user-defined error handler resulting from an error on a particular file handle, the first two
arguments passed to the file error handler are the file handle and the error code. For I/O errors that are not
associated with a valid file handle (e.g., in MPI_FILE_OPEN or MPI_FILE_DELETE), the first argument passed
to the error handler is MPI_FILE_NULL.

I/O error handling differs from communication error handling in another important aspect. By default, the
predefined error handler for file handles is MPI_ERRORS_RETURN. The default file error handler has two
purposes: when a new file handle is created (by MPI_FILE_OPEN), the error handler for the new file handle is
initially set to the default error handler, and I/O routines that have no valid file handle on which to raise an error
(e.g., MPI_FILE_OPEN or MPI_FILE_DELETE) use the default file error handler. The default file error handler
can be changed by specifying MPI_FILE_NULL as the fh argument to MPI_FILE_SET_ERRHANDLER. The
current value of the default file error handler can be determined by passing MPI_FILE_NULL as the fh argument
to MPI_FILE_GET_ERRHANDLER.

Rationale. For communication, the default error handler is inherited from MPI_COMM_WORLD. In I/O, there is
no analogous root file handle from which default properties can be inherited. Rather than invent a new global file
handle, the default file error handler is manipulated as if it were attached to MPI_FILE_NULL.

7.8
I/O Error Classes

The implementation-dependent error codes returned by the I/O routines can be converted into the error classes in
Table 7.3. In addition, calls to routines in this chapter may raise errors in other MPI classes, such as
MPI_ERR_TYPE.

< previous page page_255 next page >

page_256

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_256.html[2011-2-17 2:06:58]

< previous page page_256 next page >

Page 256

Table 7.3 Error classes for I/O
MPI_ERR_ACCESS Permission denied
MPI_ERR_AMODE Error related to the amode passed to

MPI_FILE_OPEN
MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long)
MPI_ERR_CONVERSION An error occurred in a user supplied data

conversion function.
MPI_ERR_DUP_DATAREP Conversion functions could not be registered

because a data representation identifer that
was already defined was passed to
MPI_REGISTER_DATAREP

MPI_ERR_FILE Invalid file handle
MPI_ERR_FILE_EXISTS File exists
MPI_ERR_FILE_IN_USE File operation could not be completed, as the

file is currently open by some process
MPI_ERR_IO Other I/O error
MPI_ERR_NO_SPACE Not enough space
MPI_ERR_NO_SUCH_FILE File does not exist
MPI_ERR_NOT_SAME Collective argument not identical on all

processes, or collective routines called in a
different order by different processes

MPI_ERR_QUOTA Quota exceeded
MPI_ERR_READ_ONLY Read-only file or file system
MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep passed to

MPI_FILE_SET_VIEW
MPI_ERR_UNSUPPORTED_OPERATIONUnsupported operation, such as seeking on a

file which supports sequential access only

< previous page page_256 next page >

page_257

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_257.html[2011-2-17 2:06:58]

< previous page page_257 next page >

Page 257

7.9
Examples

MPI-2 I/O is flexible and comprehensive, but for that reason it may not be immediately obvious to the casual
reader how its various features can be used together to obtain a desired outcome. Etype, filetype, view,
independent or shared pointer, collective or noncollective: all must be chosen correctly. There are sometimes
several ways to accomplish the same goal, and there are combinations that do not make sense.

In the next several subsections, we illustrate the use of MPI-2 I/O routines with a number of examples. We start
with some general guidelines that are appropriate for many, but not all, cases.

Chose the filetype either to tile the file (no two processes view the same data) or equal to etype (all processes view
the same data).

Use the displacement to skip over information of a type different from what is currently being written (e.g., a
header). Normally the displacement is the same on all processes.

When a file is tiled, use independent pointers or explicit offsetsshared pointers are not allowed. When a file is not
tiled, use shared pointers or explicit offsets.

Use collective operations when possible, especially on tiled files.

7.9.1
Example: I/O to Separate Files

The simplest form of I/O is when every process opens its own private file. Similar functionality can be obtained
using language I/O, but MPI provides additional opportunity for interoperability, improved performance, and in
some cases access to special filesystems.

In this example, each process computes an array of double precision numbers and writes that array to a file. The
number of elements is not known a priori, but depends on runtime data. The files are self-describing, containing an
integer specifying the number of double precision elements, followed by the double precision data (followed by
another integer, double, etc.).

int me, ndata;
MPI_Offset pos;
char filename[100];
double *data;
MPI_File fh;

< previous page page_257 next page >

page_258

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_258.html[2011-2-17 2:06:59]

< previous page page_258 next page >

Page 258

MPI_Comm_rank(MPI_COMM_WORLD, &me);
sprintf(filename, me.%d, me);
/* open with MPI_COMM_SELF to make it private */
MPI_File_open(MPI_COMM_SELF, filename, MPI_MODE_RDWR,
 MPI_INFO_NULL, &fh);

/* data items are computed and stored in the dynamically
 allocated array data. The number of items is ndata */

MPI_File_set_view(fh, 0, MPI_INT, MPI_INT,
 native, MPI_INFO_NULL);
/* note that since the file is opened by a single process,
 semantics of shared and individual pointers are equivalent,
 as are collective and noncollective operations. Use
 the individual file pointer and noncollective
 operations in case the implementation does not
 optimize the special case of one process */
MPI_File_write(fh, &ndata, 1, MPI_INT, MPI_STATUS_IGNORE);

/* Compute where to set the displacement for the start
 of the double array. We know we are at offset 1 w.r.t.
 the current view. Note that we could actually calculate
 this using sizeof() since we are in native mode */
MPI_File_get_byte_offset(fh, (MPI_Offset)1, &pos);

/* now reset the view so we can start writing doubles
 after the integer we just wrote */
MPI_File_set_view(fh, pos, MPI_DOUBLE, MPI_
 native, MPI_INFO_NULL);
MPI_File_write(fh, data, ndata, MPI_DOUBLE, MPI_STATUS_IGNORE);

7.9.2
Example: Log File.

The following example shows one way of implementing a log file. Processes write independently to the log file,
appending a line of information with each write operation. A write from one process should not be interleaved with
a write from another.

To implement a log file, the processes collectively open the file for writing. In this example, they use an etype of
MPI_CHAR since they will be writing character data.

< previous page page_258 next page >

page_259

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_259.html[2011-2-17 2:07:00]

< previous page page_259 next page >

Page 259

The filetype is the same as the etype because no tiling will be needed the file is always accessed using the shared
file pointer, which is automatically incremented with each write. The write operations are noncollective, because
the processes do not write at the same time. Consistency is not an issue when using a shared file pointer, as file
accesses are nonconflicting.

MPI_File log_file;
int result, me, i;
char log_str[200];

MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_File_open(MPI_COMM_WORLD, /logs/mylog,
 MPI_MODE_WRONLY | MPI_MODE_CREATE | MPI_MODE_APPEND,
 MPI_INFO_NULL, &log_file);
MPI_File_set_view(log_file, MPI_DISPLACEMENT_CURRENT, MPI_CHAR,
 MPI_CHAR, external32, MPI_INFO_NULL);

for (i = 0; i < 100; i++) {
 result = process_next_item(me, i);
 if (result != SUCCESS) {
 sprintf(log_str, ERROR on process %d: %s\n, result,
 errstrings[result]);
 MPI_File_write_shared(log_file, log_str, strlen(log_str),
 MPI_CHAR, MPI_STATUS_IGNORE);
 }
}

7.9.3
Example: Writing a Large Matrix to a Single File

In this example, we assume that we have a large (100 × 100) double precision array that we want to write to a
single file. This array is distributed among four processes as shown in Figure 7.4, such that each process has a
block of 25 columns (e.g., process 0 has columns 024, process 1 has columns 2549, etc.

We want to write this array to a single file in the same order it would be if it were in the memory of a single
process. This makes it easy to read the array back in on a single process and is also a useful format if we want to
read it in on any other number of processors.

We take the convention that the first dimension of the array labels the vertical dimension (from top to bottom) and
that the second dimension of the array labels

< previous page page_259 next page >

page_260

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_260.html[2011-2-17 2:07:00]

< previous page page_260 next page >

Page 260

Figure 7.4
Examples array file layout

Figure7.5
Example local array filetype for

process 1

the horizontal dimension. If the array is a Fortran array (Fortran has column-major array ordering), each process
writes a large contiguous block of 100 × 25 = 2500 double precision numbers to the file. If the array is a C array,
each process writes 100 blocks of 25 double precision numbers each at 100 different offsets within the file, so that
rows are stored contiguously.

In either case, the file is tiled by data from the four processes, and we will use a filetype to express this tiling. Each
process will use a filetype containing double

< previous page page_260 next page >

page_261

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_261.html[2011-2-17 2:07:00]

< previous page page_261 next page >

Page 261

precision datatypes where it will write data and holes where other processes will write data, as shown in Figure 7.5.

We show how to construct the filetype in two ways. The first uses MPI-1 constructors. The second uses theMPI-2
constructor MPI_Type_create_subarray. In practice one would always use this constructor, but we show both for
illustration.

The local subarray and filetype are declared as:

double subarray[100][25];
MPI_Datatype filetype;

There are several ways to do the first construction. In our example, we note that the filetype can be constructed
recursively. The basic element of the filetype is a row which has 3 blocks of 25 holes and 1 block of 25 doubles,
where the position of the doubles depends on the processor number. The full file type is just 100 contiguous copies
of this row datatype. We create the row datatype by creating a struct datatype with the appropriate number of holes
at the beginning, followed by the 25 contiguous doubles. Finally, we pad the row datatype with the right number of
holes at the end. We assume we're using native representation so that we can compute file displacements using
sizeof().

MPI_Datatype filetype, type, rowtype, padded_rowtype;
int blocklength, me;
MPI_Aint displacement;

MPI_Comm_rank(MPI_COMM_WORLD, &me);
blocklength = 25;
displacement = me*25*sizeof(double);
type = MPI_DOUBLE;
MPI_Type_create_struct(1, &blocklength, &displacement,
 &type, &rowtype);
MPI_Type_create_resized(rowtype, (MPI_Aint)0,
 (MPI_Aint)100*sizeof(double),
 &padded_rowtype);
MPI_Type_contiguous(100, padded_rowtype, &filetype);
MPI_Type_commit(&filetype);
MPI_Type_free(&rowtype);
MPI_Type_free(&padded_rowtype);

A better way to create a filetype with the same typemap is to use the subarray constructor, as shown below.

< previous page page_261 next page >

page_262

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_262.html[2011-2-17 2:07:01]

< previous page page_262 next page >

Page 262

MPI_Datatype filetype;
int sizes[2], subsizes[2], starts[2];
int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
sizes[0]=100; sizes[1]=100;
subsizes[0]=100; subsizes[1]=25;
starts[0]=0; starts[1]=rank*subsizes[1];

MPI_Type_create_subarray(2, sizes, subsizes, starts, MPI_ORDER_C,
 MPI_DOUBLE, &filetype);

In Fortran, the corresponding code looks nearly identical, though of course it creates a filetype appropriate for
Fortran's column-major ordering.

double precision subarray(100,25)
integer filetype, rank, ierror
integer sizes(2), subsizes(2), starts(2)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)
sizes(1)=100
sizes(2)=100
subsizes(1)=100
subsizes(2)=25
starts(1)=0
starts(2)=rank*subsizes(2)

call MPI_TYPE_CREATE_SUBARRAY(2, sizes, subsizes, starts, &
 MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, &
 filetype, ierror)

Now that we have shown how to create the filetype, here is how to use it in a program. Since we know that this
example will benefit from collective buffering, we specify a hint through the info argument that lets MPI know
this. We don't change the behavior of the program by giving the hint, but we may change the performance.

MPI_File fh;
MPI_Info myinfo;

< previous page page_262 next page >

page_263

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_263.html[2011-2-17 2:07:02]

< previous page page_263 next page >

Page 263

double subarray[100][25];
MPI_Datatype filetype;

/* assume that subarray is filled with data and filetype is
 created as above */

MPI_Info_create(&myinfo);
MPI_Info_set(myinfo, collective_buffering, true);

MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_File_open(MPI_COMM_WORLD, matrixfile,
 MPI_MODE_WRONLY | MPI_MODE_CREATE,
 my info, &fh);
MPI_File_set_view(fh, 0, MPI_DOUBLE, filetype, native,
 MPI_INFO_NULL);

/* process data will be automatically tiles in the
 file, even though it looks like we're writing
 2500 contiguous doubles */
MPI_File_write_all(fh, subarray, 100*25, MPI_DOUBLE,
 MPI_STATUS_IGNORE);

7.9.4
Example: NAS BT Benchmark

This final example is similar to the previous one, but the array decomposition is much more complicated. We
include it to show that a filetype for a complex distribution can be created fairly easily with the subarray
constructor.

The example in this section is based on the BT (Block Tridiagonal) benchmark from the NAS Parallel Benchmark
II suite [1]. BT contains the essential elements of a flow solver heavily used at NASA Ames Research Center, and
solves the Navier-Stokes equations using an Alternating Direction Implicit (ADI) scheme. The core of the solver
calculates the solutions to a large number of independent block-tridiagonal linear systems with 5 × 5 blocks. Each
system of equations corresponds to a grid-line in a three-dimensional Cartesian grid.

In order to obtain good load-balance and coarse-grained communication, the code uses a complex decomposition
of the grid. The resulting parallel algorithm is known as the multipartition method [16].

In the BT code, the data on a cubic three-dimensional grid (Figure 7.6) is divided into N3 subcubes, called cells
(Figure 7.7), where N > 1. In the example figures

< previous page page_263 next page >

page_264

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_264.html[2011-2-17 2:07:02]

< previous page page_264 next page >

Page 264

Figure 7.6
Global data structure for the

nine process version of the BT
solver. The labeled cells are

owned by process five.

N is equal to three. The code must be run on N2 processes, where each process is assigned N disjoint cells. With
each grid point are associated five double precision numbers that correspond to the five physical variables at each
point in space. This data is contained in the variable U.

The cells are distributed among processes so that for any slice through the cube in the x, y or z directions, each
process owns exactly one of the N2 cells in that slice. During the solution of the block-tridiagonal systems,
computations are performed in parallel on a single slice of the cube at a time, each process working on its own cell
within the particular slice. The problem is advanced in time by repeated calls to subroutines that sweep back and
forth across the cube (corresponding to forward elimination and backsubstitution) once for each spatial dimension.
The example below writes U periodically as the calculation proceeds.

MPI datatypes representing the grid points in each cell are combined to form the process's filetype. The grid point
(five words of data) is also an MPI datatype.

To further understand the details of the data distribution in the file and in memory, consider the following. The
components of U owned by a single process are contained in the array:

double precision u(5,-2:cellmax+1,-2:cellmax+1,-2:cellmax+1,ncells)

The first dimension represents the five physical variables at each grid point. The next three dimensions are spatial
grid dimensions containing the cell's sizes in each of the three coordinate direction, including two elements on
either side of each

< previous page page_264 next page >

page_265

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_265.html[2011-2-17 2:07:03]

< previous page page_265 next page >

Page 265

Figure 7.7
Cell used by BT

solver. The data at each grid point is
represented by G.

Figure 7.8
Buffer datatype used by single process in BT

solver. Cell sizes are allowed to differ, although
they are the same in this example.

dimension for boundary data from neighboring cells (see below). The last dimension is an index that determines
the cell number.

The MPI write routines use buffer datatypes to map data from their locations in a single MPI process's memory to
the file view. This datatype (Figure 7.8) is composed of three MPI datatypes, each of which represents a cell's
buffer. The cell's datatype (Figure 7.9) must exclude the boundary conditions from neighboring cells (two grid
points on either side in all dimensions) that are stored in the cell's buffers. A process only writes data that it owns.
(Note that an interesting optimization when reading the solution in from the MPI file is to create filetypes and
buffer datatypes which include the boundary conditions so that no additional message passing is required after the
read completes.)

!--
! - This program fragment highlights those pieces of the code
! relevant to MPI-2 parallel I/O.

< previous page page_265 next page >

page_266

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_266.html[2011-2-17 2:07:03]

< previous page page_266 next page >

Page 266

Figure 7.9
A cell buffer

datatype
(solid-line cube)
and the actual

cell buffer
(dashed-line cube).

! -- btio declarations
 integer ncells, ndims, num_procs, cellmax, PROBLEM_SIZE

 parameter (ndims= 3) ! 3 spatial dimensions
 parameter (num_procs = 9) ! no. of processes
 parameter (ncells = 3) ! sqrt (num_procs)
 parameter (numgridptvars = 5) ! 5 variables per grid pt.
 parameter (PROBLEM_SIZE = 102) ! (102)^3 grid points
 parameter (cellmax = (PROBLEM_SIZE/ncells)+1) ! maximum cell
 ! dimension
! -- the solution array
 double precision u(numgridptvars, -2:cellmax+1, &
 -2:cellmax+1, -2:cellmax+1, ncells)

! -- MPI type declarations
 integer cell_size(ndims, ncells) ! size of each cell,
 ! exclusive of boundary
 ! condition data
 integer cell_low (ndims, ncells) ! starting (zero-based)
 ! index for each cell

! -- MPI I/0-specific declarations
 integer btio_fh, writesize, status(MPI_STATUS_SIZE)
 integer(kind=MPI_OFFSET_KIND) wr_offset, view_displacement
 integer gridpt, gridpt_size, combined_buftype
 integer combined_filetype

! -- build the gridpt type

< previous page page_266 next page >

page_267

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_267.html[2011-2-17 2:07:04]

< previous page page_267 next page >

Page 267

 call build_gridpt (gridpt, gridpt_size)

! -- build the buftype, which describes the layout in memory of
! -- the data owned by the process.
 call build_buftype(gridpt, ndims, ncells, cell_size, &
 cellmax, combined_buftype)
 call MPI_TYPE_SIZE(combined_buftype, writesize, ierr)

! -- build the filetype, which defines the storage order of data
! -- in the file
 call build_filetype(gridpt, ndims, ncells, &
 cell_size, cell_low, &
 PROBLEM_SIZE, combined_filetype)

! -- Open with the default view, and immediately reset to
! -- the btio view.
 call MPI_FILE_OPEN(comm_solve, &
 'ufs:/scratch1/example/out.mpiio-example', &
 MPI_MODE_WRONLY + MPI_MODE_CREATE, &
 MPI_INFO_NULL, btio_fh, ierr)
 view_displacement = 0
 call MPI_FILE_SET_VIEW(btio_fh, view_displacement, gridpt, &
 combined_filetype, native, &
 MPI_INFO_NULL, ierr)

! -- Compute, writing the data every wr_interval steps as we go:
 do iter=1,numiters
 call adi ! do all the computational work here
 if (mod(iter, wr_interval) .eq. 0) then
 call MPI_FILE_WRITE_AT_ALL(btio_fh, wr_offset, u, 1, &
 combined_buftype, status, ierr)

! -- Advance the offset by the size of the buftype, i.e., the amount
! of data written. The next call to MPI_FILE_WRITE_AT_ALL will
! write at this offset in the current view. The data from the
! next collective write will immediately follow what was just
! written.

< previous page page_267 next page >

page_268

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_268.html[2011-2-17 2:07:05]

< previous page page_268 next page >

Page 268

 wr_offset = wr_offset + writesize/gridpt_size
 ! note that wr_offset is expressed in
 ! units of etype = gridpt
 endif
 enddo
! --
 call MPI_FILE_CLOSE(btio_fh, ierr)
 end

!--------------- Begin btio type constructor routines --------------
 subroutine build_gridpt(gridpt, gridpt_size)
 use MPI
 integer gridpt, ierr
 integer(kind=mpi_address_kind) gridpt_size

! gridpt is the solution vector at a single point in a cell,
! and contains five words of data.
 call MPI_TYPE_CONTIGUOUS(5, MPI_DOUBLE_PRECISION, gridpt, &
 ierr)
 call MPI_TYPE_COMMIT(gridpt, ierr)
 call MPI_TYPE_SIZE(gridpt, gridpt_size, ierr)
 return
 end

!--
 subroutine build_filetype(gridpt, ndims, ncells, cell_size, &
 cell_low, &
problem_size, combined_filetype)
 use MPI
 nteger gridpt, ndims, ncells
 integer cell_size(ndims, ncells), cell_low(ndims, ncells)
 integer problem_size
 integer combined_filetype

 integer cell_blklengths(ncells)
 integer(kind=MPI_ADDRESS_KIND) cell_displacements(ncells)
 integer sizes(ndims), starts(ndims), subsizes(ndims)
 integer cell_filetypes(ncells)

< previous page page_268 next page >

page_269

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_269.html[2011-2-17 2:07:05]

< previous page page_269 next page >

Page 269

 integer cell, ierr

! - Build the filetype. The filetype describes where data is stored
! in the file. The data is broken up into cells, which are
! subsets of the overall cubic data structure. Cells may vary
! in size and are not necessarily cubes. The
! MPI_TYPE_CREATE_SUBARRAY calls in the DO loop describe the
! cells that are accessed by this process. No other process
! will access these cells. sizescontains the total problem
! size, and startscontains the starting point for each cell
! in the total array.

! Build an array of MPI types, with one type for each cell:
 sizes(1) = problem_size
 sizes(2) = problem_size
 sizes(3) = problem_size
 do cell = 1, ncells
 subsizes(1) = cell_size(1, cell)
 subsizes(2) = cell_size(2, cell)
 subsizes(3) = cell_size(3, cell)

 starts(1) = cell_low(1, cell) ! cell_low gives the
 starts(2) = cell_low(2, cell) ! starting point for a
 starts(3) = cell_low(3, cell) ! cell in the total array

 call MPI_TYPE_CREATE_SUBARRAY(&
 ndims, sizes, subsizes, starts, &
 MPI_ORDER_FORTRAN, gridpt, &
 cell_filetypes(cell), ierr)
 cell_engths(cell) = 1 ! tells MPI_TYPE_CREATE_STRUCT
 ! that we are passing in a
 ! single block of type
 !cell_filetypes(cell)
 cell_displacements(cell) = 0 ! all displacements are
 ! w.r.t. the origin of the
 ! global data structure u
 enddo

< previous page page_269 next page >

page_270

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_270.html[2011-2-17 2:07:06]

< previous page page_270 next page >

Page 270

! Create the combined_filetype from the array of newly-created
! MPI types:
 call MPI_TYPE_CREATE_STRUCT(ncells, cell_blklengths, &
 cell_displacements, cell_filetypes, &
 combined_filetype, ierr)
 call MPI_TYPE_COMMIT(combined_filetype, ierr)
 return
!
 end
!--
 subroutine build_buftype(gridpt, ndims, ncells, cell_size, &
 cellmax, combined_buftype)
 use MPI
 integer gridpt, ndims, ncells, cellmax
 integer cell_size(ndims, ncells), combined_buftype

 integer sizes(ndims+1), starts(ndims+1), subsizes(ndims+1)
 integer cell_blklengths(ncells)
 integer(kind=MPI_ADDRESS_KIND) cell_displacements(ncells)
 integer cell_buftypes(ncells)
 integer cell, ierr

! -- build the buffer datatype (buftype). The buftype describes the
 location in memory of the data owned by this process.
 For reference, remember that u is dimensioned in each process:
 u(5, -2:cellmax+1, -2:cellmax+1, -2:cellmax+1, ncells)
 (u may be declared to be larger than is needed for a
 particular program invocation, and must be large enough to !
! accommodate the largest cell.)

! The data is broken up into cells, which are subsets of the
! overall cubic data structure. Cells may vary in size and are
! not necessarily cubes. The fifth (ncells) dimension of u
! provides a convenient mechanism for referencing cells. The
! MPI_TYPE_CREATE_SUBARRAY calls in the DO loop describe the
! cells that are accessed by this process, picking out the part
! of memory containing data belonging to the cell proper. (A

< previous page page_270 next page >

page_271

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_271.html[2011-2-17 2:07:06]

< previous page page_271 next page >

Page 271

! cell's boundary condition data is owned by other processes,
! and is not part of the cell.)

! First build an array of MPI types, with one type for each cell.
 sizes(1) = cellmax + 4 ! sizes spans the whole cell,
 sizes(2) = cellmax + 4 ! plus boundary values
 sizes(3) = cellmax + 4
 sizes(4) = ncells

 starts(1) = 2 ! starts is the zero-based starting point
 starts(2) = 2 ! of the subarrary
 starts(3) = 2

 subsizes(4) = 1
 do cell = 1, ncells
 subsizes(1) = cell_size(1, cell) ! subsizes excludes
 subsizes(2) = cell_size(2, cell) ! the boundary
 subsizes(3) = cell_size(3, cell) ! condition data

 starts(4) = cell - 1

 call MPI_TYPE_CREATE_SUBARRAY(ndims+1, sizes, subsizes, &
 starts, MIP_ORDER_FORTRAN, &
 gridpt, &
 cell_buftypes(cell), ierr)
 cell_blklengths(cell) = 1 ! tells
 ! MPI_TYPE_CREATE_STRUCT
 ! that we are passing in a
 ! single block of type
 ! cell_buftypes(cell)
 cell_displacements(cell) = 0 ! all displacements are
 ! w.r.t. the origin of the
 ! local data structure
 enddo

! Create the combined_buftype.
 call MPI_TYPE_CREATE_STRUCT(ncells, cell_blklengths, &
 cell_displacements, &
 cell_buftypes, combined_buftype, &

< previous page page_271 next page >

page_272

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_272.html[2011-2-17 2:07:07]

< previous page page_272 next page >

Page 272

 ierr)
 call MPI_TYPE_COMMIT(combined._buftype, ierr)

! Most of the complexity in this routine is due to the fact that
! cell sizes may vary. If cell sizes were fixed, then all array
! element initialization except for starts(4) could be pulled out
! of the DO loop. If array u were also recast to use offsets
! instead of a special (ncells) index for the different
! cells, the buftype could be built using a single call to
! MPI_TYPE_CREATE_SUBARRAY followed by a call to
! MPI_TYPE_CONTIGUOUS.

 return
 end

7.9.5
Example: Double Buffering with Split Collective I/O

This final example shows how to overlap computation and output. The computation is performed by the function
compute-buffer().

/*==
*
* Function: double_buffer
*
* Synopsis:
* void double_buffer(
* MPI_File fh, ** IN
* MPI_Datatype buftype, ** IN
* int bufcount ** IN
*)
*
* Description:
* Performs the steps to overlap computation with a collective
* write by using a double-buffering technique.
*
* Parameters:
* fh previously opened MPI file handle
* buftype MPI datatype for memory layout (Assumes a

< previous page page_272 next page >

page_273

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_273.html[2011-2-17 2:07:07]

< previous page page_273 next page >

Page 273

* compatible view has been set on fh)
* bufcount # buftype elements to transfer
---/

/* this macro switches which buffer "x" is pointing to */
#define TOGGLE_PTR(x) (((x)==(buffer1)) ? (x=buffer2) : (x=buffer1))

void double_buffer(MPI_File fh, MPI_Datatype buftype, int bufcount)
{

 MPI_Status status; /* status for MPI calls */
 float *buffer1, *buffer2; /* buffers to hold results */
 float *compute_buf_ptr; /* destination buffer */
 /* for computing*/
 float *write_buf_ptr; /* source for writing */
 int done; /* determines when to quit */

 /* buffer initialization */
 buffer1 = (float *)
 malloc(bufcount*sizeof(float));
 buffer2 = (float *)
 malloc(bufcount*sizeof(float));
 compute_buf_ptr = buffer1; /* initially point to buffer1 */
 write_buf_ptr = buffer1; /* initially point to buffer1 */

 /* DOUBLE-BUFFER prolog:
 * compute buffer1; then initiate writing buffer1 to disk
 */
 compute_buffer(compute_buf_ptr, bufcount, &done);
 MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

 /* DOUBLE-BUFFER steady state:
 * Overlap writing old results from buffer pointed to by
 * write_buf_ptr with computing new results into buffer pointed
 * to by compute_buf_ptr.
 *
 * There is always one write-buffer and one compute-buffer in use

< previous page page_273 next page >

page_274

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_274.html[2011-2-17 2:07:08]

< previous page page_274 next page >

Page 274

 * during steady state.
 */
while (!done) {
 TOGGLE_PTR(compute_buf_ptr);
 compute_buffer(compute_ptr, bufcount, &done);
 MPI_File_write_all_end(fI, write_buf_ptr, &status);
 TOGGLE_PTR(write_buf_ptr);
 MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);
 }

 /* DOUBLE-BUFFER epilog:
 * wait for final write to complete.
 */
 MPI_File_write_all_end(fh, write_buf_ptr, &status);

 /* buffer cleanup */
 free(buffer1);
 free(buffer2);
}

< previous page page_274 next page >

page_275

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_275.html[2011-2-17 2:07:09]

< previous page page_275 next page >

Page 275

8
Language Bindings

MPI-1 specifies bindings for C and Fortran 77. MPI-2 adds bindings for C++ and specifies two levels of Fortran
support that allow MPI programs to be written in Fortran-90, the current definition of Fortran.

8.1
C++.

Here we discuss the design of the C++ bindings for MPI. The bindings themselves are given throughout the book
below each function definition.

8.1.1
Overview

This section presents a complete C++ language interface for MPI. There are some issues specific to C++ that must
be considered in the design of this interface that go beyond the simple description of language bindings. In
particular, in C++, we must be concerned with the design of objects and their interfaces, rather than just the design
of a language-specific functional interface to MPI. Fortunately, the original design of MPI was based on the notion
of objects, so a natural set of classes is already part of MPI.

In some cases, MPI-2 provides new names for the C bindings of deprecated MPI-1 functions. In this case, the C++
binding matches the new C name there is no binding for the deprecated name.

8.1.2
Design

The C++ language interface for MPI is designed according to the following criteria:

1. The C+- language interface consists of a small set of classes with a lightweight functional interface to MPI. The
classes are based up the fundamental MPI object types (e.g., communicator, group, etc.).

2. The MPI C++ language bindings provide a semantically correct interface to MPI.

3. To the greatest extent possible, the C++ bindings for MPI functions are member functions of MPI classes.

Rationale. Providing a lightweight set of MPI objects that correspond to the basic MPI types is the best fit to MPI's
implicit object-based design; methods can be supplied for these objects to realize MPI functionality. The existing C
bindings can be used in C++ programs, but much of the expressive power of the C++

< previous page page_275 next page >

page_276

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_276.html[2011-2-17 2:07:09]

< previous page page_276 next page >

Page 276

language is forfeited. On the other hand, while a comprehensive class library would make user programming more
elegant, such a library is not suitable as a language binding for MPI since a binding must provide a direct and
unambiguous mapping to the specified functionality of MPI.

8.1.3
C++ Classes for MPI

All MPI classes, constants, and functions are declared within the scope of an MPI namespace. Thus, instead of
the MPI_ prefix that is used in C and Fortran, MPI functions essentially have an MPI:: prefix.

Advice to implementors. Although namespace is officially part of the draft ANSI C++ standard, as of this
writing it not yet widely implemented in C++ compilers. Implementations using compilers without namespace
may obtain the same scoping through the use of a noninstantiable MPI class. (To make the MPI class
noninstantiable, all constructors must be private.)

The members of the MPI namespace are those classes corresponding to objects implicitly used by MPI. An
abbreviated definition of the MPI namespace for MPI-1 and its member classes is as follows:

namespace MPI {
class Comm {...};
class Intracomm :public Comm {...};
class Graphcomm : public Intracomm {...};
class Cartcomm : public Intracomm {...};
class Intercomm : public Comm {...};
class Datatype {...};
class Errhandler {...};
class Exception {...};
class Group {...};
class Op {...};
class Request {...};
class Prequest :public Request {...};
class Status {...};
};

< previous page page_276 next page >

page_277

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_277.html[2011-2-17 2:07:10]

< previous page page_277 next page >

Page 277

Additionally, the following classes are defined for MPI-2:

namespace MPI {
 class File {...};
 class Grequest : public Request {...};
 class Info {...};
 class Win {...};
};

Note that there are a small number of derived classes and that virtual inheritance is not used.

8.1.4
Class Member Functions for MPI

Besides the member functions that constitute the C++ language bindings for MPI, the C++ language interface has
additional functions (as required by the C++ language). In particular, the C++ language interface must provide a
constructor and destructor, an assignment operator, and comparison operators.

The bindings take advantage of some important C++ features, such as reference and const semantics.
Declarations (which apply to all MPI member classes) for construction, destruction, copying, assignment,
comparison, and mixed-language operability are also provided.

Except where indicated, all nonstatic member functions (except for constructors and the assignment operator) of
MPI member classes are virtual functions.

Rationale. Providing virtual member functions is an important part of design for inheritance. Virtual functions can
be bound at runtime, which allows users of libraries to redefine the behavior of objects already contained in a
library. There is a small performance penalty that must be paid (the virtual function must be looked up before it
can be called). However, users concerned about this performance penalty may be able to force compile-time
function binding.

Example 8.1 This example shows a derived MPI class.

class foo_comm : public MPI::Intracomm {
public:
 void Send (const void* buf, int count, const MPI::Datatype& type,
 int dest, int tag) const
{
 // Class library functionality

< previous page page_277 next page >

page_278

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_278.html[2011-2-17 2:07:11]

< previous page page_278 next page >

Page 278

 MPI::Intracomm::Send(buf, count, type, dest, tag);
 // More class library functionality
}
};

Advice to implementors. Implementors must be careful to avoid unintended side effects from class libraries that use
inheritance, especially in layered implementations. For example, if MPLBCAST is implemented by repeated calls
to MPI_SEND or MPI_RECV, the behavior of MPI_BCAST cannot be changed by derived communicator classes
that might redefine MPI_SEND or MPI_RECV. The implementation of MPI_BCAST must explicitly use the
MPI_SEND (or MPI_RECV) of the base MPI::Comm class.

8.1.5
Semantics.

The semantics of the member functions constituting the C++ language binding for MPI are specified by the MPI
function description itself. Here, we specify the semantics for those portions of the C++ language interface that are
not part of the language binding. In this subsection, functions are prototyped using the type MPI: (CLASS) rather
than listing each function for every MPI class; the word (CLASS) can be replaced with any valid MPI class name
(e.g., Group), except as noted.

Construction and Destruction. The default constructor and destructor are prototyped as follows:

MPI::<CLASS>()

MPI::<CLASS>()

In terms of construction and destruction, opaque MPI user-level objects behave like handles. Default constructors
for all MPI objects except MPI::Status create corresponding MPI::*_NULL handles. That is, when an MPI object
is instantiated, comparing it with its corresponding MPI::*_NULL object will return true. The default
constructors do not create new MPI opaque objects. Some classes have a member function Create () for this
purpose.

Example 8.2 In the following code fragment, the test will return true and the message will be sent to cout.

void foo()
{

< previous page page_278 next page >

page_279

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_279.html[2011-2-17 2:07:11]

< previous page page_279 next page >

Page 279

MPI::Intracomm bar;

if (bar == MPI::COMM_NULL)
 cout < bar is MPI::COMM_NULL < end1;
}

The destructor for each MPI user-level object does not invoke the corresponding MPI_*_FREE function (if it
exists).

Rationale. MPI_*_FREE functions are not automatically invoked for the following reasons:

1. Automatic destruction contradicts the shallow-copy semantics of the MPI classes.

2. The model put forth in MPI makes memory allocation and deallocation the responsibility of the user, not the
implementation.

3. Calling MPI_*_FREE upon destruction could have unintended side effects, including triggering collective
operations (this also affects the copy, assignment, and construction semantics). In the following example, we would
want neither foo-comm nor bar_comm to automatically invoke MPI_*_FREE upon exit from the function.
(The copy constructor and assignment operator used in the example are described in the next section.)

void example_function()
{
 MPI::Intracomm foo_comm(MPI::COMM_WORLD), bar_comm;
 bar_comm = MPI::COMM_WORLD.Dup();
 // rest of function
}

Copy and Assignment. The copy constructor and assignment operator are prototyped as follows:

MPI::<CLASS>(const MPI::<CLASS>& data)

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI::<CLASS>& data)

In terms of copying and assignment, opaque MPI user-level objects behave like handles. Copy constructors
perform handle-based (shallow) copies. MPI::Status objects are exceptions to this rule. These objects perform
deep copies for assignment and copy construction.

< previous page page_279 next page >

page_280

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_280.html[2011-2-17 2:07:12]

< previous page page_280 next page >

Page 280

Advice to implementors. Each MPI user-level object is likely to contain, by value or by reference, implementation-
dependent state information. The assignment and copying of MPI object handles may simply copy such
information.

Example 8.3 Example using assignment operator. In this example, MPI::Intracomm::Dup() is not called for
foo_comm. The object foo_comm is simply an alias for MPI: :COMM_WORLD. But bar_comm is created
with a call to MPI:: Intracomm: :Dup() and is therefore different from foo_comm (and thus different from
MPI: :COMM_WORLD).baz_comm becomes an alias for bar_comm If one of bar_comm or baz_comm is
freed with MPI_COMM_FREE it will be set to MPI::COMM_NULL. The state of the other handle will be
undefinedit will be invalid, but not necessarily set to MPI::COMM_NULL.

MPI::Intracomm foo_comm, bar_comm_ baz_comm;

foo_comm = MPI::COMM_WORLD;
bar_comm = MPI::COMM_WORLD.Dup();
baz_comm = bar_comm;

Comparison. The comparison operators are prototyped as follows:

bool MPI::<CLASS>::operator==(const MPI::<CLASS>& data) const

bool MPI::<CLASS>::operator!=(const MPI::<CLASS>& data) const

The member function operator==() returns true only when the handles reference the same internal MPI
object, false otherwise, operator!=() returns the boolean complement of operator==(). However, since the
Status class is not a handle to an underlying MPI object, it does not make sense to compare Status instances.
Therefore, the operator==() and operator !=() functions are not defined on the Status class.

Constants. Constants are singleton objects and are declared const. Note that not all globally defined MPI objects
are constant. For example, MPI::COMM_WORLD and MPI: :COMM_SELF are not const.

8.1.6
C++ Datatypes

Table 8.1.6 lists all of the C++ predefined MPI datatypes and their corresponding C and C++ datatypes, Table 8.1.6
lists all of the Fortran predefined MPI datatypes and their corresponding Fortran 77 datatypes. Table 8.1.6 lists the
C++ names for all other MPI datatypes.

< previous page page_280 next page >

page_281

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_281.html[2011-2-17 2:07:13]

< previous page page_281 next page >

Page 281

Table 8.1 C++ names for the MPI and C++ predefined datatypes, and their corresponding
C/C++ datatypes.
MPI datatype C datatype C++datatype
MPI::CHAR char char
MPI::WCHAR Wchar_ wchar_t
MPI::SHORT singed short signed short
MPI::INT signed int signed int
MPI::LONG signed long signed long
MPI::SIGNED_CHAR signed char signed char
MPI::UNSIGNED_CHAR unsigned char unsigned char
MPI::UNSIGNED_SHORT unsigned short unsigned short
MPI::UNSIGNED unsigned int unsigned int
MPI::UNSIGNED _LONG unsigned long unsigned long
MPI::FLOAT float float
MPI::DOUBLE double double
MPI::LONG_DOUBLE long double long double
MPI::BOOL bool
MPI::COMPLEX Complex<float>
MPI::DOUBLE_COMPLEX Complex<double>
MPI::LONG_DOUBLE_COMPLEX Complex<long double>
MPI::BYTE
MPI::PACKED

MPI::BYTE and MPI::PACKED conform to the same restrictions as MPI_BYTE and MPI_PACKED (see I-2.2.2
and I-3.12). Table 8.4 defines groups of MPI predefined datatypes. Valid datatypes for each reduction operation
are specified in Table 8.5 in terms of the groups defined in Table 8.4.

MPI::MINLOC and MPI::MAXLOC perform just as their C and Fortran counterparts; see Section I-4.11.3.

8.1.7
Communicators

The MPI:: Comm class hierarchy makes explicit the different kinds of communicators implicitly defined by MPI
and allows them to be strongly typed. Since the original design of MPI defined only one type of handle for all
types of communicators, the following clarifications are provided for the C++ design.

< previous page page_281 next page >

page_282

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_282.html[2011-2-17 2:07:14]

< previous page page_282 next page >

Page 282

MPI datatype Fortan datatype
MPI::CHARACTER CHARACTER(1)
MPI::INTEGER INTEGER
MPI::REAL REAL
MPI::DOUBLE_PRECISION DOUBLE PRECISION
MPI::LOGICAL LOGICAL
MPI::F_COMPLEX COMPLEX
MPI::BYTE
MPI::PACKED

Types of communicators. There are five different types of communicators:
MPI::Comm, MPI::Intercomm, MPI::lntracomm, MPI::Cartcomm, and
MPI::Graphcomm.MPI:: Comm is the abstract base communicator class, encapsulating the functionality
common to all MPI communicators. MPI::Intercomm and MPI:: Intracomm are derived from
MPI::Comm. MPI::Cartcomm and MPI:: Graphcomm are derived from MPI::Intracomm.

Note that functions for collective communication are members of the MPI::Comm class. However, since the
collective operations do not make sense on the base class (since an MPI::Comm is neither an intercommunicator
nor an intracommunicator), these functions are pure virtual.

Advice to users. Initializing a derived class with an instance of a base class is not legal in C++. For instance, it is
not legal to initialize a MPI::Cartcomm from an MPI::lntracomm. Moreover, because MPI::Comm is an abstract
base class, it is noninstantiable, so that it is not possible to have an object of class MPI::Comm. However, it is
possible to have a reference or a pointer to an MPI::Comm.

Example 8.4 The following code is erroneous.

MPI::lntracomm intra = MPI::COMM_WORLD.Dup();
MPI::Cartcomm cart (intra); // This is erroneous

< previous page page_282 next page >

page_283

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_283.html[2011-2-17 2:07:14]

< previous page page_283 next page >

Page 283

Table 8.3 C++names for other MPI datatypes.
Implementations may also define other optional types
(e.g.,MPI::INTEGER16)
MPI datatype Description
MPI::FLOAT_INT C/C++reduction type
MPI::DOUBLE_INT C/C++reduction type
MPI::LONG_INT C/C++reduction type
MPI::TWOINT C/C++reduction type
MPI::SHORT_INT C/C++reduction type
MPI::LONG_DOUBLE_INT C/C++reduction type
MPI::LONG_LONG Optional C/C++type
MPI::UNSIGNED_LONG_LONG Optional C/C++type
MPI::TWOREAL Fortran reduction type
MPI::TWODOUBLE_PRECISION Fortran reduction type
MPI::TWOINTEGER Fortran reduction type
MPI::F_DOUBLE_COMPLEX Optional Fortran type
MPI::INTEGER1 Explicit size type
MPI::INTEGER2 Explicit size type
MPI::INTEGER4 Explicit size type
MPI::INTEGER8 Explicit size type
MPI::REAL4 Explicit size type
MPI::REAL8 Explicit size type
MPI::REAL16 Explicit size type

MPI::COMM_NULL. The specific type of MPI::COMM_NULL is implementation dependent.
MPI::COMM_NULL must be able to be used in comparisons and initializations with all types of communicators.
MPI::COMM_NULL must also be able to be passed to a function that expects a communicator argument in the
parameter list (provided that MPI::COMM_NULL is an allowed value for the communicator argument).

Rationale. There are several possibilities for implementation of MPI::COMM_NULL. Specifying its required
behavior, rather than its realization, provides maximum flexibility to implementors.

Example 8.5 The following example demonstrates the behavior of assignment and comparison using
MPI::COMM_NULL.

< previous page page_283 next page >

page_284

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_284.html[2011-2-17 2:07:15]

< previous page page_284 next page >

Page 284

Table 8.4 Groups of predefined datatypes
C integer: MPI::INT, MPI::LONG, MPI::SHORT,

MPI::UNSIGNED_SHORT, MPI::UNSIGNED
MPI::UNSIGNED_LONG,
MPI::SIGNED_CHAR,
MPI::UNSIGNED_CHAR

Fortran
integer:

MPI::INTEGER

Floating point:MPI::FLOAT, MPI::DOUBLE, MPI::REAL,
MPI::DOUBLE_PRECISION,
MPI::LONG_DOUBLE

Logical: MPI::LOGICAL, MPI::BOOL
Complex: MPI::F_COMPLEX, MPI::COMPLEX,

MPI::F_DOUBLE_COMPLEX,
MPI::DOUBLE_COMPLEX,

BYTE: MPI::BYTE

Table 8.5 Valid datatypes for reduction operations
Op Allowed Types
MPI::MAX, MPI::MIN C integer, Fortran integer, Floating point
MPI::SUM, MPI::PROD C integer, Fortran integer, Floating point

Complex
MPI::LAND, MPI::LOR,
MPI::LXOR

C integer, Logical

MPI::BAND, MPI::BOR,
MPI::BXOR

C integer, Fortran integer, Byte

MPI::Intercomm comm;
comm = MPI::COMM_NULL; // assign with COMM_NULL
if (comm == MPI::COMM_NULL) // true
 cout << comm is NULL << endl;
if (MPI::COMM_NULL == comm) // note -- a different function!
 cout << comm is still NULL << endl;

Dup() is not defined as a member function of MPI::Comm, but it is defined for the derived classes of
MPI::Comm. Dup() is not virtual and it returns its OUT parameter by value.

< previous page page_284 next page >

page_285

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_285.html[2011-2-17 2:07:15]

< previous page page_285 next page >

Page 285

MPI::Comm::Clone(). The C++ language interface for MPI includes a new function Clone().
MPI::Comm::Clone() is a pure virtual function. For the derived communicator classes, Clone() behaves
like Dup() except that it returns a new object by reference. The Clone() functions are prototyped as follows:

namespace MPI {
 Comm& Comm::Clone () const = 0;
 IntraComm& IntraComm::Clone () const;
 InterComm& InterComm::Clone () const;
 CartComm& CartComm::Clone () const;
 GraphComm& GraphComm::Clone () const;
};

Rationale. To be consistent with the language-neutral specification of MPI, Dup() must return its OUT parameter
by value, rather than by reference. Since the Dup() method for each derived class must return a different class by
value, C++ does not allow Dup() to be a virtual function. Clone() instead provides the virtual Dup()
functionality that is expected by C++ programmers and library writers. Since Clone() returns a new object by
reference, users are responsible for eventually deleting the object (this is in contrast with the typical MPI model for
memory management). A new method is introduced to provide this functionality rather than changing the
semantics of Dup().

Advice to implementors. Within their class declarations, prototypes for Clone() and Dup() might look like the
following:

namespace MPI {
 class Comm {
 virtual Comm& Clone() const = 0;
 };

class Intracomm : public Comm {
 Intracomm Dup() const { ... };
 virtual Intracomm& Clone() const { ...};
};

class Intercomm : public Comm {
 Intercomm Dup() const { ... };
 virual Intercomm& Clone() const { ... };

< previous page page_285 next page >

page_286

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_286.html[2011-2-17 2:07:16]

< previous page page_286 next page >

Page 286

 };
 // Cartcomm and Graphcomm are similarly defined
};

Compilers that do not support the variable return type feature of virtual functions may return a reference to Comm.
Users can cast to the appropriate type as necessary.

8.1.8
Exceptions

The C++ language interface for MPI includes the predefined error handler
MPI::ERRORS_THROW_EXCEPTIONS for use with the Set_errhandler() member functions.
MPI::ERRORS_THROW_EXCEPTIONS can only be set or retrieved by C++ functions. If a non-C++ program
causes an error that invokes theMPI::ERRORS_THROW_EXCEPTIONS error handler, the exception will pass up
the calling stack until C++ code can catch it. If there is no C++ code to catch it, the behavior is undefined. In a
multithreaded environment or if a nonblocking MPI call throws an exception while making progress in the
background, the behavior is implementation dependent.

The error handler MPI::ERRORS_THROW_EXCEPTIONS causes an MPI::Exception to be thrown for any
MPI result code other than MPI::SUCCESS. The public interface to MPI::Exception class is defined as
follows:

namespace MPI {
 class Exception {
 public:

Exception (int error_code) ;

int Get_error_code () const;
 int Get_error_class () const;
 const char *Get_error_string () const;
 };
};

Advice to implementors. The exception will be thrown within the body of
MPI::ERRORS_THROW_EXCEPTIONS. It is expected that control will be returned to the user when the
exception is thrown. Some MPI functions specify certain return information in their parameters if an error occurs
and MPI_ERRORS_RETURN has been

< previous page page_286 next page >

page_287

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_287.html[2011-2-17 2:07:17]

< previous page page_287 next page >

Page 287

specified. The same type of return information must be provided when exceptions are thrown. For example,
MPI_WAITALL puts an error code for each request in the corresponding entry in the status array and returns
MPI_ERR_IN_STATUS. When using MPI::ERRORS_THROW_EXCEPTIONS, it is expected that the error codes
in the status array will be set appropriately before the exception is thrown.

8.1.9
Mixed-Language Operability

The C++ language interface provides functions listed below for mixed-language operability. These functions
provide for a seamless transition between C and C++. For the case where the C++ class corresponding to
<CLASS> has derived classes, functions are also provided for converting between the derived classes and the C

MPI_<CLASS>.

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI_<CLASS>& data)

MPI::<CLASS> (const MPI_<CLASS>& data)

MPI::<CLASS>::operator MPI_<CLASS>() const

These functions are discussed in Section 2.2.4.

8.1.10
Profiling.

This section specifies the requirements of a C++ profiling interface to MPI.

Advice to implementors. Since the main goal of profiling is to intercept function calls from user code, it is the
implementor's decision how to layer the underlying implementation to allow function calls to be intercepted and
profiled. If an implementation of the MPI C++ bindings is layered on top of MPI bindings in another language
(such as C), or if the C++ bindings are layered on top of a profiling interface in another language, no extra profiling
interface is necessary because the underlying MPI implementation already meets the MPI profiling interface
requirements.

Native C++ MPI implementations that do not have access to other profiling interfaces must implement an interface
that meets the requirements outlined in this section.

High-quality implementations can implement the interface outlined in this section in order to promote portable
C++ profiling libraries. Implementors may wish to provide an option whether to build the C++ profiling interface
or not; C++ implementations that are already layered on top of bindings in another language or

< previous page page_287 next page >

page_288

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_288.html[2011-2-17 2:07:18]

< previous page page_288 next page >

Page 288

another profiling interface will have to insert a third layer to implement the C++ profiling interface.

To meet the requirements of the C++ MPI profiling interface, an implementation of the MPI functions must:

1. Provide a mechanism through which all of the MPI defined functions may be accessed with a name shift. Thus
all of the MPI classes and static member functions (which normally start with the prefix MPI::) should also be
accessible with the prefix PMPI::.

2. Ensure that those MPI functions that are not replaced may still be linked into an executable image without
causing name clashes.

3. Document the implementation of different language bindings of the MPI interface if they are layered on top of
each other, so that profiler developers know whether they must implement the profile interface for each binding, or
can economize by implementing it only for the lowest level routines.

4. Where the implementation of different language bindings is is done through a layered approach (e.g., the C++
binding is a set of wrapper functions which call the C implementation), ensure that these wrapper functions are
separable from the rest of the library.

This is necessary to allow a separate profiling library to be correctly implemented, since (at least with Unix linker
semantics) the profiling library must contain these wrapper functions if it is to perform as expected. This
requirement allows the author of the profiling library to extract these functions from the original MPI library and
add them into the profiling library without bringing along any other unnecessary code.

5. Provide a no-op routine MPI::Pcontrol in the MPI library.

Advice to implementors. There are (at least) two apparent options for implementing the C++ profiling interface:
inheritance or containment. An inheritance-based approach may not be attractive because it may require a virtual
inheritance implementation of the communicator classes. Thus, it is most likely that implementors will contain
PMPI objects within the corresponding PMPI objects. The containment scheme is outlined below.

The real entry points to each routine can be provided within a namespace PMPI. The nonprofiling version can
then be provided within a namespace MPI.

< previous page page_288 next page >

page_289

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_289.html[2011-2-17 2:07:18]

< previous page page_289 next page >

Page 289

Containing instances of PMPI objects in the MPI handles provides the has a relationship that is necessary to
implement the profiling scheme.

Each instance of an MPI object simply wraps up an instance of a PMPI object. MPI objects can then perform
profiling actions before invoking the corresponding function on their internal PMPI object. This is true for base
classes and derived classes; there is a PMPI class hierarchy directly corresponding to the MPI hierarchy.

The key to making the profiling work by simply re-linking programs is to have a header file that declares all the
MPI functions. The functions must be defined elsewhere, and compiled into a library. MPI constants should be
declared extern in the MPI namespace. For example, the following is an excerpt from a sample mpi.h file:

Example 8.6 Sample mpi.h file.

namespace PMPI {
 class Comm {
 public:
 int Get_size() const;
 };
 // etc.
};

namespace MPI {
public:
 class Comm {
 public:
 int Get_size() const;

private:
 PMPI::Comm pmpi_comm;
 };
};

Note that all constructors, the assignment operator, and the destructor in the MPI class will need to
initialize/destroy the internal PMPI object as appropriate.

The definitions of the functions must be in separate object files; the PMPI class member functions and the
nonprofiling versions of the MPI class member functions

< previous page page_289 next page >

page_290

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_290.html[2011-2-17 2:07:19]

< previous page page_290 next page >

Page 290

can be compiled into libmpi.a, while the profiling versions can be compiled into libpmpi.a. Note that the
PMPI class member functions and the MPI constants must be in different object files from the nonprofiling MPI
class member functions in the libmpi.a library to prevent multiple definitions of MPI class member function
names when linking both libpmpi.a and libpmpi.a. For example:

Example 8.7 pmpi.cc, to be compiled into libmpi.a.
int PMPI::Comm::Get_size() const

{
 // Implementation of MPI_COMM_SIZE
}

Example 8.8

constants.cc, to be compiled into libmpi.a.

const MPI::Intracomm MPI::COMM_WORLD;

Example 8.9

mpi_no_profile.cc, to be compiled into libmpi.a.

int MPI::Comm::Get_size() const
{
 return pmpi_comm.Get_size();
}

Example 8.10

mpi_profile.cc, to be compiled into libpmpi.a:.

int MPI::Comm::Get_size() const
{
 // Do profiling stuff
 int ret = pmpi_comm.Get_size();
 // More profiling stuff
 return ret;
}

< previous page page_290 next page >

page_291

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_291.html[2011-2-17 2:07:19]

< previous page page_291 next page >

Page 291

8.1.11
Cross-Reference

The C++ bindings use *this and return values in place of IN and OUT function arguments. To clarify the
relationship between the language independent specification of function arguments and the C++ bindings, the
following tables provide a cross-reference of all MPI functions and their corresponding C++ bindings. Also given
in the tables is a listing of the MPI arguments that correspond to *this and to returned values.

< previous page page_291 next page >

page_292

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_292.html[2011-2-17 2:07:20]

< previous page page_292 next page >

Page 292

Arguments
MPI Function C++ Function *this Return
MPI_ABORT Comm::Abort() comm void
MPI_ACCUMULATE Win::Accumulate() win void
MPI_ADDRESS <none>
MPI_ADD_ERROR_CLASS Add_error_class() <none> errorclass
MPI_ADD_ERROR_CODE Add_error_code() <none> errorcode
MPI_ADD_ERROR_ Add_error_string() <none> void
STRING
MPI_ALLGATHERV Comm::Allgatherv() comm void
MPI_ALLGATHER Comm::Allgather() comm void
MPI_ALLOC_MEM Alloc_mem() <none> baseptr
MPI_ALLREDUCE Comm::Allreduce() comm void
MPI_ALLTOALLV Comm::Alltoallv() comm void
MPI_ALLTOALLW Comm::alltoallw() comm void
MPI_ALLTOALL Comm::Alltoall() comm void
MPI_ATTR_DELETE <none>
MPI_ATTR_GET <none>
MPI_ATTR_PUT <none>
MPI_BARRIER Comm::Barrier() comm void
MPI_BCAST Comm::Bcast() comm void
MPI_BSEND_INIT Comm::Bsend_init() comm request
MPI_BSEND Comm::Bsend() comm void
MPI_BUFFER_ATTACH Attach_buffer() <none> void
MPI_BUFFER_DETACH Detach_buffer() <none> size
MPI_CANCEL Request::Cancel() request void
MPI_CARTDIM_GET Cartcomm::Get_dim() comm ndims
MPI_CART_COORDS Cartcomm::Get_coords() comm void
MPI_CART_CREATE Intracomm::Create_cart() comm_old comm_cart
MPI_CART_GET Cartcomm::Get_topo() comm void
MPI_CART_MAP Cartcomm::Map() comm newrank
MPI_CART_RANK Cartcomm::Get_cart_rank() comm rank
MPI_CART_SHIFT Cartcomm::Shift() comm void
MPI_CART_SUB Cartcomm::Sub() comm newcomm
MPI_CLOSE_PORT Close_port() <none> void
MPI_COMM_ACCEPT Intracomm::Accept() comm newcomm
MPI_COMM_CALL_ERRHANDLER Comm::Call_errhandler() comm void
MPI_COMM_COMPARE static Comm::Compare() <none> result
MPI_COMM_CONNECT Intracomm::Connect() comm newcomm
MPI_COMM_CREATE_ERRHANDLER static Comm::Create_errhandler() <none> errhandler

(table continued on next page)

< previous page page_292 next page >

page_293

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_293.html[2011-2-17 2:07:21]

< previous page page_293 next page >

Page 293

(table continued from previous page)

Arguments
MPI Function C++ Function *this Return
MPI_COMM_CREATE_KEYVAL static Comm::Create_keyval() <none> comm_keyval
MPI_COMM_CREATE Intercomm::Create() comm newcomer

Intercomm::Create() comm newcomm
MPI_COMM_DELETE_ATTAR Comm::Delete_attr() comm void
MPI_COMM_DISCONNECT Comm::Disconnect() comm void
DISCONNECT_MPI_COMM_DUP Intracomm::Dup() comm newcomm

Intercomm::Dup() comm newcomm
Comm::Clone() comm &newcomm

MPI_COMM_FREE_KEYVAL static Comm::Free_keyval() <none> void
MPI_COMM_FREE Comm::Free() comm void
MPI_COMM_GET_ATTR Comm::Get_attr() comm flag
MPI_COMM_GET_ERRHANDLER Comm::Get_errhandler() comm errhandler
MPI_COMM_GET_NAME Comm::Get_name() comm void
MPI_COMM_GET_PARENT static Comm::Get_parent() <none> parent
MPI_COMM_GROUP Comm::Get_group() comm group
MPI_COMM_JOIN static Comm::Join() <none> intercomm
MPI_COMM_RANK Comm::Get_rank() comm rank
MPI_COMM_REMOTE_GROUP Intercomm::Get_remote_group() comm group
MPI_COMM_REMOTE_SIZE Intercomm::Get_remote_size() comm size
MPI_COMM_SET_ATTR Comm::Set_attr() comm void
MPI_COMM_SET_ERRHANDLER Comm::Set_errhandler() comm void
MPI_COMM_SET_NAME Comm::Set_name() comm void
MPI_COMM_SIZE Comm::Get_size() comm size
MPI_COMM_SPAWN_MULTIPLE Intracomm::Spawn_multiple() comm intercomm
MPI_COMM_SPAWN Intracomm::Spawn() comm intercomm
MPI_COMM_SPLIT Intercomm::Split() comm newcomm

Intracomm::Split() comm newcomm
MPI_COMM_TEST_INTER Comm::Is_inter() comm flag
MPI_DIMS_CREATE Compute_dims() <none> void
MPI_ERRHANDLER_CREATE <none>
MPI_ERRHANDLER_CREATE <none>

(table continued on next page)

< previous page page_293 next page >

page_294

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_294.html[2011-2-17 2:07:22]

< previous page page_294 next page >

Page 294

(table continued from previous page)

Arguments
MPI Function C++ Function &astric;this Return
MPI_ERRHANDLER_FREE Errhandler::Free() errhandler void
MPI_ERRHANDLER_GET <none>
MPI_ERRHANDLER_SET <none>
MPI_ERROR_CLASS Get_error_class() <none> errorclass
MPI_ERROR_STRING Get_error_string() <none> void
MPI_EXSCAN Intracomm::Exscan() comm void
MPI_FILE_CALL_ERRHANDLER File::Call_errhandler() fh void
MPI_FILE_CLOSE File::Close() fh void
MPI_FILE_CREATE_ERRHANDLER static File::Create_errhandler() <none> errhandler
MPI_FILE_DELETE static File::Delete() <none> void
MPI_FILE_GET_AMODE File::Get_amode() fh amode
MPI_FILE_GET_ATOMICITY File::Get_atomicity() fh flag
MPI_FILE_GET_BYTE_OFFSET File::Get_byte_offset() fh offset
MPI_FILE_GET_ERRHANDLER File::Get_errhandler() file errhandler
MPI_FILE_GET_GROUP File::Get_group() fh group
MPI_FILE_GET_INFO File::Get_info() gh info_used
MPI_FILE_GET_POSITION_SHARED File::Get_position_shared() fh offset
MPI_FILE_GET_POSITION File::Get_position() fh offset
MPI_FILE_GET_SIZE File:: Get_size() fh size
MPI_FILE_GET_TYPE_EXTENT File:: Get_type_extent() fh extent
MPI_FILE_GET_VIEW File :: Get_view() fh void
MPI_FILE_IREAD_AT File :: Iread_at() fh request
MPI_FILE_IREAD_SHARED File :: Iread_shared() fh request
MPI_FILE_IREAD File :: Iread() fh request
MPI_FILE_IWRITE_AT File :: Iwrite_at() fh request
MPI_FILE_IWRITE_SHARED File :: Iwrite_shared() fh request
MPI_FILE_IWRITE File :: Iwrite() fh request
MPI_FILE_OPEN static File :: Open() <none> fh
MPI_FILE_PREALLOCATE File :: Preallocate() fh void
MPI_FILE_READ_ALL_BEGIN File :: Read_all_begin() fh void
MPI_FILE_READ_ALL_END File :: Read_all_end() fh void
MPI_FILE_READ_ALL File :: Read_all() fh void

(table continued on next page)

< previous page page_294 next page >

page_295

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_295.html[2011-2-17 2:07:22]

< previous page page_295 next page >

Page 295

(table continued from previous page)

Arguments
MPI Function C++ Function *this Return
MPI_FILE_READ_AT_ALL_BEGIN File :: Read_at_all_begin() fh void
MPI_FILE_READ_AT_ALL_END File::Read_at_all_end() fh void
MPI_FILE_READ_AT_ALL_ File :: Read_at_all() fh void
MPI_FILE_READ_AT File :: Read_at() fh void
MPI_FILE_READ_ORDERED_BEGIN File :: Read_ordered_begin() fh void
MPI_FILE_READ_ORDERED_END File :: Read_ordered_end() fh void
MPI_FILE_READ_ORDERED File :: Read_ordered() fh void
MPI_FILE_READ_SHARED File :: Read_shared() fh void
MPI_FILE_READ File :: Read() fh void
MPI_FILE_SEEK_SHARED File :: Seek_shared() fh void
MPI_FILE_SEEK File :: Seek() fh void
MPI_FILE_SET_ATOMICITY File :: Set_atomicity() fh void
MPI_FILE_SET_ERRHANDLER File :: Set_errhandler() file void
MPI_FILE_SET_INFO File :: Set_info() fh void
MPI_FILE_SET_SIZE File :: Set_size() fh void
MPI_FILE_SET_VIEW File :: Set_view() fh void
MPI_FILE_SYNC File :: Sync() fh void
MPI_FILE_WRITE_ALL_BEGIN File :: Write_all_begin() fh void
MPI_FILE_WRITE_ALL_END File :: Write_all_end() fh void
MPI_FILE_WRITE_ALL File :: Write_all() fh void
MPI_FILE_WRITE_AT_ALL_BEGIN File :: Write_at_all_begin() fh void
MPI_FILE_WRITE_AT_ALL File :: Write_at_all() fh void
MPI_FILE_WRITE_AT_END File :: Write_at_all_end() fh void
MPI_FILE_WRITE_AT File :: Write_at() fh void
MPI_FILE_WRITE_ORDERED_BEGIN File :: Write_ordered_begin() fh void
MPI_FILE_WRITE_ORDERED_END File :: Write_ordered_end() fh void
MPI_FILE_WRITE_ORDERED File :: Write_ordered() fh void
MPI_FILE_WRITE_SHARED File :: Write_shared() fh void

(table continued on next page)

< previous page page_295 next page >

page_296

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_296.html[2011-2-17 2:07:23]

< previous page page_296 next page >

Page 296

(table continued from previous page)

Arguments
MPI Function C++ Function *this Return
MPI_FILE_WRITE File :: Write() fh void
MPI_FINALIZE Finalize() <none> void
MPI_FINALIZED Is_finalized() <none> flag
MPI_FREE_MEM Free_mem() <none> void
MPI_GATHERV Comm:: Gatherv() comm void
MPI_GATHER Comm:: Gather() comm void
MPI_GET_ADDRESS Get_address() <none> address
MPI_GET_COUNT Status:: Get_count() status count
MPI_GET_ELEMENTS Status :: Get_elements() status count
MPI_GET_PROCESSOR_NAME Get_processor_name() <none> void
MPI_GET Win :: Get() win void
MPI_GRAPHDIMS_GET Graphcomm :: Get_dims() comm void
MPI_GRAPH_CREATE Intracomm :: Create_graph() comm_old comm_graph
MPI_GRAPH_GET Graphcomm :: Get_topo() comm void
MPI_GRAPH_MAP Graphcomm :: Map() comm newrank
MPI_GRAPH_NEIGHBORS_COUNT Graphcomm :: Get_neighbors_count() comm nneighbors
MPI_GRAPH_NEIGHBORS Graphcomm :: Get_neighbors() comm void
MPI_GREQUEST_COMPLETE Grequest :: Complete() request void
MPI_GREQUEST_START static Grequest :: Start() <none> request
MPI_GROUP_COMPARE static Group :: Compare() <none> result
MPI_GROUP_DIFFERENCE static Group :: Difference() <none> newgroup
MPI_GROUP_EXCL Group :: Excl() group newgroup
MPI_GROUP_FREE Group :: Free() group void
MPI_GROUP_INCL Group :: Incl() group newgroup
MPI_GROUP_INTERSECTION static Group :: Intersect() <none> newgroup
MPI_GROUP_RANGE_EXCL Group :: Range_excl() group newgroup
MPI_GROUP_RANGE_INCL Group :: Range_incl() group newgroup
MPI_GROUP_RANK Group :: Get_rank() group rank
MPI_GROUP_SIZE Group :: Get_size() group size
MPI_GROUP_TRANSLATE_RANKS static Group :: Translate_ranks() <none> void

(table continued on next page)

< previous page page_296 next page >

page_297

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_297.html[2011-2-17 2:07:24]

< previous page page_297 next page >

Page 297

(table continued from previous page)

Arguments
MPI Function C++ Function *this Return
MPI_GROUP_UNION static Group :: Union() <none> newgroup
MPI_IBSEND Comm :: Ibsend() comm request
MPI_INFO_CREATE static Info :: Create() <none> info
MPI_INFO_DELETE Info :: Delete() info void
MPI_INFO_DUP Info :: Dup() info newinfo
MPI_INFO_FREE Info :: Free() info void
MPI_INFO_GET_NKEYS Info :: Get_nkeys() info nkeys
MPI_INFO_GET_NTHKEY Info :: Get_nthkey() info void
MPI_INFO_GET_VALUELEN Info :: Get_valuelen() info flag
MPI_INFO_GET Info :: Get() info flag
MPI_INFO_SET Info :: Set() info void
MPI_INITIALIZED Is_initialized() <none> flag
MPI_INIT_THREAD Init_thread() <none> provided
MPI_INIT Init() <none> void
MPI_INTERCOMM_CREATE Intracomm :: Create_intercomm() local_comm newintercomm
MPI_INTERCOMM_MERGE Intercomm :: Merge() intercomm newintracomm
MPI_IPROBE Comm :: Iprobe() comm flag
MPI_IRECV Comm :: Irecv() comm request
MPI_IRSEND Comm :: Irsend() comm request
MPI_ISEND Comm :: Isend() comm request
MPI_ISSEND comm :: Issend() comm request
MPI_IS_THREAD_MAIN Is_thread_main() <none> flag
MPI_KEYVAL_CREATE <none>
MPI_KEYVAL_FREE <none>
MPI_LOOKUP_NAME Lookup_name() <none> void
MPI_OPEN_PORT Open_port() <none> void
MPI_OP_CREATE Op :: Init() op void
MPI_OP_FREE Op :: Free() op void
MPI_PACK_EXTERNAL_SIZE Datatype : :Pack_external_size() datatype size
MPI_PACK_EXTERNAL Datatype : : Pack_external() datatype void
MPI_PACK_SIZE Datatype :: Pack_size() datatype size
MPI_PACK Datatype :: Pack() datatype void
MPI_PCONTROL Pcontrol() <none> void
MPI_PROBE Comm :: Probe() comm void
MPI_PUBLISH_NAME Publish_name() <none> void
MPI_PUT Win :: Put() win void
MPI_QUERY_THREAD Query_thread() <none> provided
MPI_RECV_INIT Comm :: Recv_init() comm request

(table continued on next page)

< previous page page_297 next page >

page_298

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_298.html[2011-2-17 2:07:25]

< previous page page_298 next page >

Page 298

(table continued from previous page)

Arguments
MPI Function C++ Function *this Return
MPI_RECV Comm::Recv() comm void
MPI_REDUCE_SCATTER Comm::Reduce_scatter() comm void
MPI_REDUCE Comm::Reduce() comm void
MPI_REGISTER_DATAREP Register_datarep() <none> void
MPI_REQUEST_FREE Request::Free() request void
MPI_REQUEST_GET Request::Get_Status() request flag
Status
MPI_RSEND_INIT Comm::Rsend_init() comm request
MPI_RSEND Comm::Rsend() comm void
MPI_SCAN Intracomm::Scan() comm void
MPI_SCATTERY Comm::Scatterv() comm void
MPI_SCATTER Comm::Scatter() comm void
MPI_SENDRECV comm::Sendrecv comm void
REPLACE replace()
MPI_SENDRECV Comm::Sendrecv() comm void
MPI_SEND_INIT Comm::Send_init() comm request
MPI_SEND Comm::Send() comm void
MPI_SSEND_INIT Comm::Ssend_init() comm request
MPI_SSEND Comm::Ssend() comm void
MPI_STARTALL static <none> void

Prequest::Startall()
MPI_START Prequest::Start() request void
MPI_STATUS_SET_CANCELLED Status::Set_cancelled() Status void
MPI_STATUS_SET_ELEMENTS Status::Set_elements() status void
MPI_TESTALL static <none> flag

Request::Testall()
MPI_TESTANY static <none> flag

Request::Testany()
MPI_TESTSOME static <none> outcount

Request::Testany()
MPI_TEST_CANCELLED Status::Is_cancelled() status flag
MPI_TEST Request::Test() request flag
MPI_TOPO_TEST Comm::Get_topology() comm status
MPI_TYPE_COMMIT Datatype::Commit() datatype void
MPI_TYPE_CONTIGUOUS Datatype::Create_contiguous() oldtype newtype
MPI_TYPE_CREATE_DARRAY Datatype::Create_darray() oldtype newtype

(table continued on next page)

< previous page page_298 next page >

page_299

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_299.html[2011-2-17 2:07:25]

< previous page page_299 next page >

Page 299

(table continued from previous page)

Arguments
MPI Function C++ Function *this Return
MPI_TYPE_CREATE_F90_COMPLEX static

Datatype::Create_f90_complex()
<none> newtype

MPI_TYPE_CREATE_F90_INTEGER static
Datatype::Create_f90_integer()

<none> newtype

MPI_TYPE_CREATE_F90_REAL static
Datatype::Create_f90_real()

<none> newtype

MPI_TYPE_CREATE_HINDEXED Datatype::Create_hindexed() oldtype newtype
MPI_TYPE_CREATE_HVECTOR Datatype::Create_hvector() oldtype newtype
MPI_TYPE_CREATE_INDEXED_BLOCK Datatype::Create_indexed_block() oldtype newtype
MPI_TYPE_CREATE_KEYVAL static

Datatype::Create_keyval()
keyval

MPI_TYPE_CREATE_RESIZED Datatype::Resized() oldtype newtype
MPI_TYPE_CREATE_STRUCT static

Datatype::Create_struct()
MPI_TYPE_CREATE_SUBARRAY Datatype::Create_subarray() oldtype newtype
MPI_TYPE_DELETE_ATTR Datatype::Delete_attr() type newtype
MPI_TYPE_DUP Datatype::Dup() type newtype
MPI_TYPE_EXTENT <none>
MPI_TYPE_FREE_KEYVAL static

Datatype::Free_keyval()
<none> void

MPI_TYPE_FREE Datatype::Free() datatype void
MPI_TYPE_GET_ATTR Datatype::Get_attr() type flag
MPI_TYPE_GET_CONTENTS Datatype::Get_contents() datatype void
MPI_TYPE_GET_ENVELOPE Datatype::Get_envelope() datatype void
MPI_TYPE_GET_EXTENT Datatype::Get_extent() datatype void
MPI_TYPE_GET_NAME Datatype::Get_name() type void
MPI_TYPE_GET_TRUE_EXTENT Datatype::Get_true_extent() datatype void
MPI_TYPE_HINDEXED <none>

(table continued on next page)

< previous page page_299 next page >

page_300

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_300.html[2011-2-17 2:07:26]

< previous page page_300 next page >

Page 300

(table continued from previous page)

Arguments
MPI Function C++ Function *this Return
MPI_TYPE_HVECTOR <none>
MPI_TYPE_INDEXED Datatype::Create_indexed() oldtype newtype
MPI_TYPE_LB <none>
MPI_TYPE_MATCH_SIZE static

Datatype::Match_size()
<none> type

MPI_TYPE_SET_ATTR Datatype::Set_attr() type void
MPI_TYPE_SET_NAME Datatype::Set_name() type void
MPI_TYPE_SIZE Datatype::Get_size() datatype size
MPI_TYPE_STRUCT <none>
MPI_TYPE_UB <none>
MPI_TYPE_VECTOR Datatype::Create_vector() oldtype newtype
MPI_UNPACK_EXTERNAL Datatype::Unpack_external() datatype void
MPI_UNPACK Datatype::Unpack() datatype void
MPI_UNPUBLISH_NAME Unpublish_name() <none> void
MPI_UNPUBLISH_NAME static

Request::Waitall()
<none> void

MPI_WAITANY static
Request::Waitany()

<none> index

MPI_WAITSOME static
Request::Waitsome()

<none> outcount

MPI_WAIT Request::Wait() request void
MPI_WIN_CALL_ERRHANDLER Win::Call_errhandler() win void
MPI_WIN_COMPLETE Win::Complete() win void
MPI_WIN_CREATE_ERRHANDLER staticWin::Create_errhandler() <none> errhandler
MPI_WIN_CREATE_KEYVAL static

Win::Create_Keyval()
<none> win_keyval

MPI_WIN_CREATE static Win::Create() <none> win
MPI_WIN_DELETE_ATTR Win::Delete_attr() win void
MPI_WIN_FENCE Win::Fence() win void
MPI_WIN_FREE_KEYVAL static

win::Free_keyval()
MPI_WIN_FREE win::Free() win void
MPI_WIN_GET_ATTR Win::Get_attr() win flag
MPI_WIN_GET_ERRHANDLER
MPI_WIN_GET_GROUP win::Get_group() win group
MPI_WIN_GET_NAME win::Get_name() win void
MPI_WIN_LOCK win::Lock() win void

(table continued on next page)

< previous page page_300 next page >

page_301

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_301.html[2011-2-17 2:07:26]

< previous page page_301 next page >

Page 301

(table continued from previous page)

Arguments
MPI Function C++ Function *this Return
MPI_WIN_POST Win::Post() win void
MPI_WIN_SET_ATTR win::Set_attr() win void
MPI_WIN_SET_ERRHANDLER win::Set_errhandler() win void
MPI_WIN_SET_NAME win::Set_name() win void
MPI_WIN_START win::Start() win void
MPI_WIN_TEST win::Test() win flag
MPI_WIN_UNLOCK win::Unlock() win void
MPI_WIN_WAIT win::Wait() win void
MPI_WTICK wtick() <none> wtick
MPI_WTIME wtime() <none> wtime

8.2
Fortran Support

8.2.1
Overview

Fortran 90 is the current international Fortran standard. MPI-2 Fortran bindings are Fortran 90 bindings that in most
cases are Fortran 77 friendly. That is, with few exceptions (e.g., KINDparameterized types and the MPI module, both of
which can be avoided) Fortran 77 compilers should be able to compile MPI programs.

Rationale. Fortran 90 contains numerous features designed to make it a more modern language than Fortran 77. It seems
natural that MPI should be able to take advantage of these new features with a set of bindings tailored to Fortran 90. MPI
does not (yet) use many of these features because of a number of technical difficulties.

MPI defines two levels of Fortran support, described in Sections 8.2.3 and 8.2.4. A third level of Fortran support is
envisioned, but is not included in MPI-2. In the rest of this section, Fortran shall refer to Fortran 90 (or its successor)
unless qualified.

Basic Fortran Support: An implementation with this level of Fortran support provides the original Fortran bindings
specified in MPI-1, with small additional requirements specified in Section 8.2.3.

Extended Fortran Support: An implementation with this level of Fortran support provides Basic Fortran Support plus
additional features that specifically support Fortran 90, as described in Section 8.2.4.

< previous page page_301 next page >

page_302

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_302.html[2011-2-17 2:07:27]

< previous page page_302 next page >

Page 302

A compliant MPI-2 implementation providing a Fortran interface must provide Extended Fortran Support unless
the target compiler does not support modules or KINDparameterized types.

8.2.2
Problems with Fortran Bindings for MPI

This section discusses a number of problems that may arise when using MPI in a Fortran program. It is intended as
advice to users, and clarifies how MPI interacts with Fortran. It does not add to the standard, but is intended to
clarify the standard.

As noted in the original MPI specification, the interface violates the Fortran standard in several ways. While these
cause few problems for Fortran 77 programs, they become more significant for Fortran 90 programs, so that users
must exercise care when using new Fortran 90 features. The violations were originally adopted and have been
retained because they are important for the usability of MPI. The rest of this section describes the potential
problems in detail. It supersedes and replaces the discussion of Fortran bindings in the original MPI specification
(for Fortran 90, not Fortran 77). The following MPI features are inconsistent with Fortran 90.

1. An MPI subroutine with a choice argument may be called with different argument types.

2. An MPI subroutine with an assumed-size dummy argument may be passed an actual scalar argument.

3. Many MPI routines assume that actual arguments are passed by address and that arguments are not copied on
entrance to or exit from the subroutine.

4. An MPI implementation may read or modify user data (e.g., communication buffers used by nonblocking
communications) concurrently with a user program that is executing outside of MPI calls.

5. Several named constants, such as MPI_BOTTOM, MPI_INPLACE, MPI_STATUS_IGNORE,
MPI_STATUSES_IGNORE, MPI_ERRCODES_IGNORE, MPI_ARGV_NULL, and MPI_ARGVS_NULL are
not ordinary Fortran constants and require a special implementation. See Section 1.5.4 for more information.

6. The memory allocation routine MPI_ALLOC_MEM can't be usefully used in Fortran without a language
extension that allows the allocated memory to be associated with a Fortran variable.

MPI-1 contains several routines that take address-sized information as input or return address-sized information as
output. In C such arguments are of type MPI_Aint and in Fortran of type INTEGER. On machines where integers
are smaller than

< previous page page_302 next page >

page_303

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_303.html[2011-2-17 2:07:28]

< previous page page_303 next page >

Page 303

addresses, these routines can lose information. In MPI the use of these functions has been deprecated and they
have been replaced by routines taking INTEGER arguments of KIND=MPI_ADDRESS_KIND. A number of new
MPI functions also take INTEGER arguments of nondefault KIND. See Section 1.6 for more information.

Problems Due to Strong Typing. All MPI functions with choice arguments associate actual arguments of different
Fortran datatypes with the same dummy argument. This is not allowed by Fortran 77, and in Fortran 90 is
technically only allowed if the function is overloaded with a different function for each type. In C, the use of
void* formal arguments avoids these problems.

The following code fragment is technically illegal and may generate a compiletime error.

integer i(5)
real x(5)
...
call mpi_send(x, 5, MPI_REAL, ...)
call mpi_send(i, 5, MPI_INTEGER, ...)

In practice, it is rare for compilers to do more than issue a warning, though there is concern that Fortran 90
compilers are more likely to return errors.

It is also technically illegal in Fortran to pass a scalar actual argument to an array dummy argument. Thus the
following code fragment may generate an error since the buf argument to MPI_SEND is declared as an assumed-
size array <type> buf(*).

integer a
call mpi_send(a, 1, MPI_INTEGER, ...)

Advice to users. In the event that you run into one of the problems related to type checking, you may be able to
work around it by using a compiler flag, by compiling separately, or by using an MPI implementation with
Extended Fortran Support as described in Section 8.2.4. An alternative that will usually work with variables local
to a routine but not with arguments to a function or subroutine is to use the EQUIVALENCE statement to create
another variable with a type accepted by the compiler.

Problems Due to Data Copying and Sequence Association. Implicit in MPI is the idea of a contiguous chunk of
memory accessible through a linear address space. MPI copies data to and from this memory. An MPI program
specifies the

< previous page page_303 next page >

page_304

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_304.html[2011-2-17 2:07:29]

< previous page page_304 next page >

Page 304

location of data by providing memory addresses and offsets. In the C language, sequence association rules plus
pointers provide all the necessary low-level structure.

In Fortran 90, user data is not necessarily stored contiguously. For example, the array section A(1:N:2) involves
only the elements of A with indices 1, 3, 5, . The same is true for a pointer array whose target is such a section.
Most compilers ensure that an array that is a dummy argument is held in contiguous memory if it is declared with
an explicit shape (e.g., B(N)) or is of assumed size (e.g., B(*)). If necessary, they do this by making a copy of
the array into contiguous memory. Both Fortran 77 and Fortran 90 are carefully worded to allow such copying to
occur, but few Fortran 77 compilers do it.1

Because MPI dummy buffer arguments are assumed-size arrays, this leads to a serious problem for a nonblocking
call: the compiler copies the temporary array back on return but MPI continues to copy data to the memory that
held it. For example, consider the following code fragment:

real a(100)
call MPI_IRECV(a(1:100:2), MPI_REAL, 50, ...)

Since the first dummy argument to MPI_IRECV is an assumed-size array (<type> buf (*)), the array section
a(1:100:2) is copied to a temporary before being passed to MPI_IRECV, so that it is contiguous in memory.
MPI_IRECV returns immediately, and data is copied from the temporary back into the array a. Sometime later,
MPI may write to the address of the deallocated temporary. Copying is also a problem for MPI_ISEND since the
temporary array may be deallocated before the data has all been sent from it.

Most Fortran 90 compilers do not make a copy if the actual argument is the whole of an explicit-shape or
assumed-size array or is a simple section such as A(1:N) of such an array. (We define simple more fully in the
next paragraph.) Also, many compilers treat allocatable arrays the same as they treat explicit-shape arrays in this
regard (though we know of one that does not). However, the same is not true for assumed-shape and pointer arrays;
since they may be discontiguous, copying is often done. It is this copying that causes problems for MPI as
described in the previous paragraph.

Our formal definition of a simple array section is

name ([:,]... [<subscript>]:[<subscript>] [,<subscript>]...)

1 Technically, the Fortran standards are worded to allow noncontiguous storage of any array data.

< previous page page_304 next page >

page_305

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_305.html[2011-2-17 2:07:29]

< previous page page_305 next page >

Page 305

That is, there are zero or more dimensions that are selected in full, then one dimension selected without a stride,
then zero or more dimensions that are selected with a simple subscript. Examples are

A(1:N), A(:,N), A(:,1:N,1), A(1:6,N), A(:,:,1:N)

Because of Fortran's column-major ordering, where the first index varies fastest, a simple section of a contiguous
array will also be contiguous.2

The same problem can occur with a scalar argument. Some compilers, even for Fortran 77, make a copy of some
scalar dummy arguments within a called procedure. That this can cause a problem is illustrated by the example

call user1(a,rq)
call MPI_WAIT(rq,status,ierr)
write (*,*) a

subroutine user1(buf,request)
call MPI_IRECV(buf,...request,...)
end

If a is copied, MPI_IRECV will alter the copy when it completes the communication and will not alter a itself.

Note that copying will almost certainly occur for an argument that is a nontrivial expression (one with at least one
operator or function call), a section that does not select a contiguous part of its parent (e.g., A(1:n:2)), a pointer
whose target is such a section, or an assumed-shape array that is (directly or indirectly) associated with such a
section.

If there is a compiler option that inhibits copying of arguments, in either the calling or called procedure, this should
be employed.

If a compiler makes copies in the calling procedure of arguments that are explicitshape or assumed-size arrays,
simple array sections of such arrays, or scalars, and if there is no compiler option to inhibit this, then this compiler
cannot be used for applications that use MPI_GET_ADDRESS, or any nonblocking MPI routine. If a compiler
copies scalar arguments in the called procedure and there is no compiler option to inhibit this, then this compiler
cannot be used for applications that use memory references across subroutine calls as in the example above.

2 To keep the definition of simple simple, we have chosen to require all but one of the section subscripts to
be without bounds. A colon without bounds makes it obvious both to the compiler and to the reader that the
whole of the dimension is selected. It would have been possible to allow cases where the whole dimension
is selected with one or two bounds, but this means for the reader that the array declaration or most recent
allocation has to be consulted and for the compiler that a runtime check may be required.

< previous page page_305 next page >

page_306

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_306.html[2011-2-17 2:07:30]

< previous page page_306 next page >

Page 306

Special Constants. MPI requires a number of special constants that cannot be implemented as normal Fortran
constants, including MPI_BOTTOM, MPI_STATUS_IGNORE, MPI_IN_PLACE, MPI_STATUSES_IGNORE
and MPI_ERRCODES_iGNORE. In C, these are implemented as constant pointers, usually as NULL and are used
where the function prototype calls for a pointer to a variable, not the variable itself.

In Fortran the implementation of these special constants may require the use of language constructs that are outside
the Fortran standard. Using special values for the constants (e.g., by defining them through parameter
statements) is not possible because an implementation cannot distinguish these values from legal data. Typically
these constants are implemented as predefined static variables (e.g., a variable in an MPI-declared COMMON block),
relying on the fact that the target compiler passes data by address. Inside the subroutine, this address can be
extracted by some mechanism outside the Fortran standard (e.g., by Fortran extensions or by implementing the
function in C).

Fortran 90 Derived Types. MPI does not explicitly support passing Fortran 90 derived types to choice dummy
arguments. Indeed, for MPI implementations that provide explicit interfaces through the MPI module a compiler
will reject derived type actual arguments at compile time. Even when no explicit interfaces are given, users should
be aware that Fortran 90 provides no guarantee of sequence association for derived types or arrays of derived
types. For instance, an array of a derived type consisting of two elements may be implemented as an array of the
first elements followed by an array of the second. Use of the SEQUENCE attribute may help here.

The following code fragment shows one possible way to send a derived type in Fortran. The example assumes that
all data is passed by address.

type mytype
 integer i
 real x
 double precision d
end type mytype

type(mytype) foo
integer blocklen(3), type(3)
integer(MPI_ADDRESS_KIND) disp(3), base

call MPI_GET_ADDRESS(foo%i, disp(1), ierr)
call MPI_GET_ADDRESS(foo%x, disp(2), ierr)

< previous page page_306 next page >

page_307

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_307.html[2011-2-17 2:07:31]

< previous page page_307 next page >

Page 307

 call MPI_GET_ADDRESS(foo%d, disp(3), ierr)
 base = disp(1)
 disp(1) = disp(1) - base
 disp(2) = disp(2) - base
 disp(3) = disp(3) - base

 blocklen(1) = 1
 blocklen(2) = 1
 blocklen(3) = 1

 type(1) = MPI_INTEGER
 type(2) = MPI_REAL
 type(3) = MPI_DOUBLE_PRECISION

 call MPI_TYPE_CREATE_STRUCT(3, blocklen, disp, type, newtype, &
 ierr)
 call MPI_TYPE_COMMIT(newtype, ierr)

! unpleasant to send foo%i instead of foo, but it works for scalar
! entities of type mytype
 call MPI_SEND(foo%i, 1, newtype,...)

A Problem with Register Optimization. MPI provides operations that may be hidden from the user code and run
concurrently with it, accessing the same memory as user code. Examples include the data transfer for an
MPI_IRECV. The optimizer of a compiler will assume that it can recognize periods when a copy of a variable can
be kept in a register without reloading from or storing to memory. When the user code is working with a register
copy of some variable while the hidden operation reads or writes the memory copy, problems occur. This section
discusses register optimization pitfalls.

When a variable is local to a Fortran subroutine (i.e., not in a module or COMMON block), the compiler will
assume that it cannot be modified by a called subroutine unless it is an actual argument of the call. In the most
common linkage convention, the subroutine is expected to save and restore certain registers. Thus, the optimizer
will assume that a register which held a valid copy of such a variable before the call will still hold a valid copy on
return.

< previous page page_307 next page >

page_308

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_308.html[2011-2-17 2:07:31]

< previous page page_308 next page >

Page 308

Normally users are not afflicted with this. But the user should pay attention to this section if in his/her program a buffer argument to an MPI_SEND, MPI_RECV, etc., uses a name which hides
the actual variables involved. MPI_BOTTOM with an MPI_Datatype containing absolute addresses is one example. Another way is to create a datatype that uses one variable as an anchor and
brings along others by using MPI_GET_ADDRESS to determine their offsets from the anchor. The anchor variable would be the only one mentioned in the call. Also attention must be paid if MPI
operations are used that run in parallel with the user's application.

The following example shows what Fortran compilers are allowed to do.
This source can be compiled as:

call MPI_GET_ADDRESS(buf,bufaddr, call MPI_GET_ADDRESS(buf,...)
 ierror)
call MPI_TYPE_CREATE_STRUCT(1,1, call MPI_TYPE_CREATE_STRUCT(...)
 bufaddr,
 MPI_REAL,type,ierror)
call MPI_TYPE_COMMIT(type,ierror) call MPI_TYPE_COMMIT(...)
val_old = buf register = buf
 val_old = register
call MPI_RECV(MPI_BOTTOM,1, call MPI_RECV(MPI_BOTTOM,...)
 type,...)
val_new = buf val_new = register

The compiler does not invalidate the register because it cannot see that MPI_RECV changes the value of buf. The access of buf is hidden by the use of MPI_GET_ADDRESS and MPI_BOTTOM.

The compiler does not invalidate the register because it cannot see that MPI_RECV changes the value of buf. The access of buf is hidden by the use of MPI_GET_ADDRESS and MPI_BOTTOM.

The next example shows extreme, but allowed, possibilities.

Source compiled as or compiled as

call MPI_IRECV(buf,...req) call MPI_IRECV(buf,...req) call MPI_IRECV(buf,...req)
 register = buf b1 = buf
call MPI_WAIT(req,...) call MPI_WAIT(req,...) call MPI_WAIT(req,...)
b1 = buf b1 := register

MPI_WAIT on a concurrent thread modifies buf between the invocation of MPI_IRECV and the finish of MPI_WAIT. But the compiler cannot see any possibility that buf can be changed after
MPI_IRECV has returned, and may schedule the load of buf earlier than typed in the source. It has no reason to avoid using a register to hold buf across the call to MPI_WAIT. It also may reorder
the instructions as in the case on the right.

< previous page page_308 next page >

page_309

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_309.html[2011-2-17 2:07:32]

< previous page page_309 next page >

Page 309

To prevent instruction reordering or the allocation of a buffer in a register there are two possibilities in portable
Fortran code:

The compiler may be prevented from moving a reference to a buffer across a call to an MPI subroutine by
surrounding the call by calls to an external subroutine with the buffer as an actual argument. Note that if the intent
is declared in the external subroutine, it must be OUT or INOUT. The subroutine itself may have an empty body,
but the compiler does not know this and has to assume that the buffer may be altered. For example, the above call
of MPI_RECV might be replaced by

call DD(buf)
call MPI_RECV(MPI_BOTTOM,...)
call DD(buf)

with the separately compiled

subroutine DD(buf)
integer buf
end

(assuming that buf has type INTEGER). The compiler may be similarly prevented from moving a reference to a
variable across a call to an MPI subroutine.

In the case of a nonblocking call, as in the above call of MPI_WAIT, no reference to the buffer is permitted until it
has been verified that the transfer has been completed. Therefore, in this case, the extra call ahead of the MPI call
is not necessary, that is, the call of MPI_WAIT in the example might be replaced by

call MPI_WAIT(req,...)
call DD(buf)

An alternative is to put the buffer or variable into a module or a common block and access it through a USE or
COMMON statement in each scope where it is referenced, defined or appears as an actual argument in a call to an
MPI routine. The compiler will then have to assume that the MPI procedure (MPI_RECV in the above example)
may alter the buffer or variable, provided that the compiler cannot analyze that the MPI procedure does not
reference the module or common block.

In the longer term, the attribute VOLATILE is under consideration for Fortran 2000 and would give the buffer or
variable the properties needed, but it would inhibit optimization of any code containing the buffer or variable.

< previous page page_309 next page >

page_310

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_310.html[2011-2-17 2:07:32]

< previous page page_310 next page >

Page 310

In C, subroutines that modify variables that are not in the argument list will not cause register optimization
problems. This is because taking pointers to storage objects by using the & operator and later referencing the
objects by way of the pointer is an integral part of the language. A C compiler understands the implications, so that
the problem should not occur, in general. However, some compilers do offer optional aggressive optimization
levels which may not be safe.

8.2.3
Basic Fortran Support.

Because Fortran 90 is (for all practical purposes) a superset of Fortran 77, Fortran 90 (and future) programs can
use the original Fortran interface. The following additional requirements are added:

1. Implementations are required to provide the file mpif .h, as described in the original MPI-1 specification.

2. mpif .h must be valid and equivalent for both fixedand freesource form.

Advice to implementors. To make mpif. h compatible with both fixedand freesource forms, to allow automatic
inclusion by preprocessors, and to allow extended fixed-form line length, it is recommended that requirement two
be met by constructing mpif.h without any continuation lines. This should be possible because mpif. h
contains only declarations and because common block declarations can be split among several lines. To support
Fortran 77 as well as Fortran 90, it may be necessary to eliminate all comments from mpif. h.

8.2.4
Extended Fortran Support

Implementations with Extended Fortran Support must provide:

1. An MPI module.

2. A new set of functions to provide additional support for Fortran intrinsic numeric types, including parameterized
types: MPI_SIZEOF, MPI_TYPE_MATCH_SIZE, MPI_TYPE_CREATE_F90_INTEGER,
MPI_TYPE_CREATE_F90_REAL and MPI_TYPE_CREATE_F90_COMPLEX. Parameterized types are Fortran
intrinsic types that are specified using KIND type parameters. These routines are described in detail in Section
8.2.5.

Additionally, high-quality implementations should provide a mechanism to prevent fatal type mismatch errors for
MPI routines with choice arguments.

< previous page page_310 next page >

page_311

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_311.html[2011-2-17 2:07:33]

< previous page page_311 next page >

Page 311

The mpi Module. An MPI implementation must provide a module named mpi that can be USEd in a Fortran 90
program. This module must:

Define all named MPI constants.

Declare MPI functions that return a value.

An MPI implementation may provide in the mpi module other features that enhance the usability of MPI while
maintaining adherence to the standard. For example, it may:

Provide interfaces for all or for a subset of MPI routines.

Provide INTENT information in these interface blocks.

Advice to implementors. The appropriate INTENT may be different from what is given in the MPI generic
interface. Implementations must choose INTENT so that the function adheres to the MPI standard.

Rationale. The intent given by the MPI generic interface does not in all cases correspond to the correct Fortran
INTENT. For instance, receiving into a buffer specified by a datatype with absolute addresses may require
associating MPI_BOTTOM with a dummy OUT argument. Moreover, constants such as MPI_BOTTOM and
MPI_STATUS_IGNORE are not constants as defined by Fortran, but special addresses used in a nonstandard way.
Finally, the MPI-1 generic intent is changed in several places by MPI-2. For instance, MPI_IN_PLACE changes
the sense of an OUT argument to be INOUT.

Applications may use either the mpi module or the mpif.h include file. An implementation may require use of
the module to prevent type mismatch errors (see below).

Advice to users. It is recommended that the mpi module be used even if it is not necessary to use it to avoid type
mismatch errors on a particular system. Using a module provides several potential advantages over using an
include file.

It must be possible to link together routines some of which USE mpi and others of which INCLUDE mpif.h.

No Type Mismatch Problems for Subroutines with Choice Arguments. A high-quality MPI implementation should
provide a mechanism to ensure that MPI choice arguments do not cause fatal compile-time or runtime errors due to
type mismatch. An MPI implementation may require applications to use the mpi

< previous page page_311 next page >

page_312

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_312.html[2011-2-17 2:07:34]

< previous page page_312 next page >

Page 312

module, or require that it be compiled with a particular compiler flag, in order to avoid type mismatch problems.

Advice to implementors. In the case where the compiler does not generate errors, nothing needs to be done to the
existing interface. In the case where the compiler may generate errors, a set of overloaded functions may be used
(see the paper of M. Hennecke [11]). Even if the compiler does not generate errors, explicit interfaces for all
routines would be useful for detecting errors in the argument list. Also, explicit interfaces which give INTENT
information can reduce the amount of copying for BUF(*) arguments.

8.2.5
Additional Support for Fortran Numeric Intrinsic Types

The routines in this section are part of Extended Fortran Support described in Section 8.2.4.

MPI-1 provides a small number of named datatypes that correspond to named intrinsic types supported by C and
Fortran. These include MPI-INTEGER, MPI-REAL, MPI-INT, MPI-DOUBLE, etc., as well as the optional types
MPI-REAL4, MPI-REAL8, etc. There is a one-to-one correspondence between language declarations and MPI
types.

Fortran (starting with Fortran 90) provides so-called KIND-parameterized types. These types are declared using an
intrinsic type (one of INTEGER,REAL,COMPLEX,LOGICAL and CHARACTER) with an optional integer KIND
parameter that selects from among one or more variants. The specific meaning of different KIND values
themselves are implementation dependent and not specified by the language. Fortran provides the KIND selection
functions $

selected_real_kind for REAL and COMPLEX types, and selected_int_kind for INTEGER types that
allow users to declare variables with a minimum precision or number of digits. These functions provide a portable
way to declare KIND- parameterized REAL,COMPLEX and INTEGER variables in Fortran. This scheme is
backward compatible with Fortran 77. REAL and INTEGER Fortran variables have a default KIND if none is
specified. Fortran DOUBLE PRECISION variables are of intrinsic type REAL with a nondefault KIND. The
following two declarations are equivalent:

double precision X
real(KIND(O.OdO)) X

MPI provides two orthogonal methods to communicate using numeric intrinsic types. The first method can be used
when variables have been declared in a portable

< previous page page_312 next page >

page_313

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_313.html[2011-2-17 2:07:35]

< previous page page_313 next page >

Page 313

wayusing default KIND or using KIND parameters obtained with the
selected_int_kind or selected_real_kind functions. With this method, MPI automatically
selects the correct data size (e.g., 4 or 8 bytes) and provides representation conversion in heterogeneous
environments. The second method gives the user complete control over communication by exposing machine
representations.

Parameterized Datatypes with Specified Precision and Exponent Range.

MPI-1 provides named datatypes corresponding to standard Fortran 77 numeric typesMPI_INTEGER,
MPI_COMPLEX, MPI-REAL, MPI_DOUBLE_PRECISION and MPI_DOUBLE_COMPLEX. MPI automatically
selects the correct data size and provides representation conversion in heterogeneous environments. The
mechanism described in this section extends this MPI-1 model to support portable parameterized numeric types.

The model for supporting portable parameterized types is as follows. Real variables are declared (perhaps
indirectly) using selected_real_kind(p, r) to determine the KIND parameter, where p is decimal digits
of precision and r is an exponent range. Implicitly MPI maintains a two-dimensional array of predefined MPI
datatypes D(p, r).D(p, r) is defined for each value of (p, r) supported by the compiler, including pairs
for which one value is unspecified. Attempting to access an element of the array with an index (p, r) not
supported by the compiler is erroneous. MPI implicitly maintains a similar array of COMPLEX datatypes. For
integers, there is a similar implicit array related to selected_int_kind and indexed by the requested number
of digits r. Note that the predefined datatypes contained in these implicit arrays are not the same as the named
MPI datatypes MPI_REAL, etc., but a new set.

Advice to implementors. The above description is for explanatory purposes only. It is not expected that
implementations will have such internal arrays.

Advice to users. selected_real_kind() maps a large number of (p,r) pairs to a much smaller number of
KIND parameters supported by the compiler. KIND parameters are not specified by the language and are not
portable. From the language point of view intrinsic types of the same base type and KIND parameter are of the
same type. In order to allow interoperability in a heterogeneous environment, MPI is more stringent. The
corresponding MPI datatypes match if and only if they have the same (p,r) value (REAL and COMPLEX) or r
value (INTEGER). Thus MPI has many more datatypes than there are fundamental language types.

< previous page page_313 next page >

page_314

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_314.html[2011-2-17 2:07:35]

< previous page page_314 next page >

Page 314

MPI_TYPE_CREATE_F90_REAL(p, r, newtype)

IN
p precision in decimal digits (integer)

IN
r decimal exponent range (integer)

OUT
newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)
 INTEGER P, R, NEWTYPE, IERROR

static MPI:: Datatype MPI:: Datatype: :Create_f90_real (int p, int r)

This function returns a predefined MPI datatype that matches a REAL variable of
KIND selected_real_kind (p, r). In the model described above it returns a handle for the element
D(p, r), Either p or r may be omitted from calls to selected_real_kind(p, r), but not both.
Analogously, either p or r may be set to MPI_UNDEFINED. In communication, an MPI datatype A returned by
MPI_TYPE_CREATE_F90_REAL matches a datatype B if and only if B was returned by
MPI_TYPE_CREATE_F90_REAL called with the same values for p and r or B is a duplicate of such a datatype.
Restrictions on using the returned datatype with the external32 data representation are given on page 316.

It is erroneous to supply values for p and r not supported by the compiler.

MPI_TYPE_CREATE_F90_REAL(p, r, newtype)

IN
p precision in decimal digits (integer)

IN
r decimal exponent range (integer)

OUT
newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)
 INTEGER P, R, NEWTYPE, IERROR

static MPI:: Datatype MPI:: Datatype: :Create_f90_complex (int p, int r)

This function returns a predefined MPI datatype that matches a COMPLEX variable of
KIND selected_real_kind (p, r), Either p or r may be omitted from calls to
selected_real_kind(p, r), but not both. Analogously, either p or r may be set to MPI_UNDEFINED.
Matching rules for datatypes created by this function are

< previous page page_314 next page >

page_315

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_315.html[2011-2-17 2:07:36]

< previous page page_315 next page >

Page 315

analogous to the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL. Restrictions on using
the returned datatype with the external32 data representation are given on page 316.

It is erroneous to supply values for p and r not supported by the compiler.

MPI_TYPE_CREATE_F90_INTEGER(r newtype)

IN
r decimal exponent range, i.e., number of decimal digits (integer)

OUT
newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)
 INTEGER R, NEWTYPE, IERROR

static MPI:: Datatype MPI: :Datatype: :Create_f90_integer(int r)

This function returns a predefined MPI datatype that matches an INTEGER variable of
KIND selected_int_kind(r). Matching rules for datatypes created by this function are analogous to the
matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL. Restrictions on using the returned
datatype with the external32 data representation are given on page 316.

It is erroneous to supply a value for r that is not supported by the compiler.

Example 8.11 This shows how to create the MPI datatypes corresponding to two Fortran types specified with
selected_int_kind and selected_real_kind.

integer longtype, quadtype
integer, parameter :: long = selected_int_kind(15)
integer(long) ii(10)
real(selected_real_kind(30) x(10)
call MPI_TYPE_CREATE_F90_INTEGER(15, longtype, ierror)
call MPI_TYPE_CREATE_F90_REAL(30, MPI_UNDEFINED, quadtype, ierror)
...

call MPI_SEND(ii, 10, longtype, ...)
call MPI_SEND(x, 10, quadtype, ...)

Advice to users. The datatypes returned by the above functions are predefined datatypes. They cannot be freed;
they do not need to be committed; they can

< previous page page_315 next page >

page_316

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_316.html[2011-2-17 2:07:37]

< previous page page_316 next page >

Page 316

be used with predefined reduction operations. There are two situations in which they behave differently
syntactically, but not semantically, from the MPI named predefined datatypes.

1. MPI_TYPE_GET_ENVELOPE returns special combiners that allow a program to retrieve the values of p and r.

2. Because the datatypes are not named, they cannot be used as compiletime initializers or otherwise accessed
before a call to one of the MPI_TYPE_CREATE_F90_routines.

If a variable was declared specifying a nondefault KIND value that was not obtained with
selected_real_kind() or selected_int_kind(), the only way to obtain a matching MPI datatype is
to use the size-based mechanism described in the next section.

Rationale. The MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER interface needs as input the original
range and precision values to be able to define useful and compiler-independent external (Section 7.5.2) or user-
defined (Section 7.5.3) data representations, and in order to be able to perform automatic and efficient data
conversions in a heterogeneous environment.

Datatypes and external32 representation. We now specify how the datatypes described in this section behave when
used with the external32 external data representation described in Section 7.5.2.

The external32 representation specifies data formats for integer and floating point values. Integer values are
represented in two's complement big-endian format. Floating point values are represented by one of three IEEE
formats. These are the IEEE Single, Double and Double Extended formats, requiring 4, 8 and 16 bytes of storage,
respectively. For the IEEE Double Extended formats, MPI specifies a Format Width of 16 bytes, with 15 exponent
bits, bias = +10383, 112 fraction bits, and an encoding analogous to the Doubleformat.

The external32 representations of the datatypes returned by
MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER are given by the following rules. For
MPI_TYPE_CREATE_F90REAL:

if (p > 33) or (r > 4931) then external32 representation
 is undefined
else if (p > 15) or (r > 307) then external32_size = 16
else if (p > 6) or (r > 37) then external32_size = 8
else external_32_size = 4

< previous page page_316 next page >

page_317

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_317.html[2011-2-17 2:07:37]

< previous page page_317 next page >

Page 317

For MPI_TYPE_CREATE_F90_COMPLEX: twice the size as for MPI_TYPE_CREATE_F90_REAL. For
MPI_TYPE_CREATE_F90_INTEGER:

if (r > 38) then external32 representation is undefined
else if (r > 18) then external32_size = 16
else if (r > 9) then external32_size = 8
else if (r > 4) then external32_size = 4
else if (r > 2) then external32_size = 2
else external32_size = 1

If the external32 representation of a datatype is undefined, the result of using the datatype directly or indirectly
(i.e., as part of another datatype or through a duplicated datatype) in operations that require the external32
representation is undefined. These operations include MPI_PACK_EXTERNAL, MPI_UNPACK_EXTERNAL
and many M PI_FILE functions, when the external32 data representation is used. The ranges for which the
external32 representation is undefined are reserved for future standardization.

Support for Size-specific MPI Datatypes. MPI-1 provides named datatypes corresponding to optional Fortran 77
numeric types that contain explicit byte lengthsMPI_REAL4, MPI_INTEGER8, etc. This section describes a
mechanism that generalizes this model to support all Fortran numeric intrinsic types.

We assume that for each typeclass (integer, real, complex) and each word size there is a unique machine
representation. For every pair (typeclass, n) supported by a compiler, MPI must provide a named size-specific
datatype. The name of this datatype is of the form MPI_<TYPE>n C and Fortran and of the form MPI ::<TYPE>n
in C++ where <TYPE> is one of REAL, INTEGER and COMPLEX, and n is the length in bytes of the machine
representation. This datatype locally matches all variables of type (typeclass, n). The list of names for such types
includes:

MPI_REAL4 MPI_INTEGER1
MPI_REAL8 MPI_INTEGER2
MPI_REAL16 MPI_INTEGER4
MPI_COMPLEX8 MPI_INTEGER8
MPI_COMPLEX16 MPI_INTEGER16
MPI_COMPLEX32

In MPI-1 these datatypes are all optional and correspond to the optional, nonstandard declarations supported by
many Fortran compilers. In MPI-2, one datatype

< previous page page_317 next page >

page_318

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_318.html[2011-2-17 2:07:38]

< previous page page_318 next page >

Page 318

is required for each representation supported by the compiler. To be backward compatible with the interpretation of
these types in MPI-1, we assume that the nonstandard declarations REAL*n,INTEGER*n, always create a
variable whose representation is of size n. All these datatypes are predefined.

Additional size-specific types, such as MPI_LOGICAL1 (corresponding to LOGICAL*1) may be defined by
implementations, but are not required by the MPI standard.

The following functions allow a user to obtain a size-specific MPI datatype for any intrinsic Fortran type.

MPI_SIZEOF(X,SIZE)

IN
X a Fortran variable of numeric intrensic type (choice)

OUT
SIZE size of machine representation of that type (integer)

MPI_SIZEOF(x, size, IERROR)
 <type> X
 INTEGER SIZE, IERROR

This function returns the size in bytes of the machine representation of the given variable. It is a generic Fortran
routine and has a Fortran binding only.

Advice to users. This function is similar to the C and C++ size of operator but behaves slightly differently. If given
an array argument, it returns the size of the base element, not the size of the whole array.

Rationale. This function is not available in other languages because it is not necessary.

MPI_TYPE_MATCH_SIZE(typeclass, size, type)

IN
typeclass generic type specifier (integer)

IN
size size, in bytes, of representation (integer)

OUT
type datatype with correct type, size (handle)

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type)

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, TYPE, IERROR)

< previous page page_318 next page >

page_319

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_319.html[2011-2-17 2:07:39]

< previous page page_319 next page >

Page 319

 INTEGER TYPECLASS, SIZE, TYPE, IERROR

static MPI::Datatype MPI::Datatype::Match_size(int typeclass,
 int size)

typeclass is one of MPI_TYPECLASS_REAL, MPI_TYPECLASS_INTEGER and
MPI_TYPECLASS_COMPLEX, corresponding to the desired typeclass (MPI::TYPECLASS_REAL,
MPI::TYPECLASS_INTEGER and MPI::TYPECLASS_COMPLEX in C++). The function returns an MPI
datatype matching a local variable of type (typeclass,size).

This function returns a reference (handle) to one of the predefined named datatypes, not a duplicate. This type
cannot be freed. MPLTYPE_MATCH_SIZE can be used to obtain a size-specific type that matches a Fortran
numeric intrinsic type by first calling MPI_SIZEOF in order to compute the variable size, and then calling
MPI_TYPE_MATCH_SIZE to find a suitable datatype. In C and C++, one can use the C function sizeof(), instead
of MPI_SIZEOF. In addition, for variables of default kind the variable's size can be computed by a call to
MPI_TYPE_GET_EXTENT, if the typeclass is known. It is erroneous to specify a size not supported by the
compiler.

Rationale. This is a convenience function. Without it, it can be tedious to find the correct named type. See advice
to implementors below.

Advice to implementors. This function can be implemented as a series of tests.

int MPI_Type_match_size(int typecasts, int size,
 MPI_Datatype *rtype)
{
 switch (typeclass) {
 case MPI_TYPECLASS_REAL: switch(size) {
 case 4: *rtype = MPI_REAL4; return MPI_SUCCESS;
 case 8: *rtype = MPI_REAL8; return MPI_SUCCESS;
 default: error(...);
 }
 case MPI_TYPECLASS_INTEGER: switch(size) {
 case 4: *rtype = MPI_INTEGER4; return MPI_SUCCESS;
 case 8: *rtype = MPI_INTEGER8; return MPI_SUCCESS;
 default: error(...);
 }

< previous page page_319 next page >

page_320

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_320.html[2011-2-17 2:07:39]

< previous page page_320 next page >

Page 320

 ... etc ...
 }
}

Communication With Size-specific Types. The usual type matching rules apply to size-specific datatypes: a value
sent with datatype MPI_<TYPE>n can be received with this same datatype on another process. Most modern
computers use 2's complement for integers and IEEE format for floating point. Thus, communication using these
size-specific datatypes will not entail loss of precision or truncation errors.

Advice to users. Care is required when communicating in a heterogeneous environment. Consider the following
code:

real(selected_real_kind(5)) x(100)
call MPI_SIZEOF(x, size, ierror)
call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)
if (myrank .eq. 0) then
 ... initialize x ...
 call MPI_SEND(x, xtype, 100, 1, ...)
else if (myrank .eq. 1) then
 call MPI_RECV(x, xtype, 100, 0, ...)
endif

This may not work in a heterogeneous environment if the value of size is not the same on process 1 and process 0.
There should be no problem in a homogeneous environment. To communicate in a heterogeneous environment,
there are at least four options, if one does not use size-specific (nonstandard) declarations, such as R EAL*8. The
first is to declare variables of default type and use the MPI datatypes for these types, e.g., declare a variable of type
REAL and use MPI_REAL. The second is to use selected_real_kind or selected_int_kind and with
the functions of the previous section. The third is to declare a variable that is known to be the same size on all
architectures (e.g., selected_real_kind (12) on almost all compilers will result in an 8-byte representation).
The fourth is to carefully check representation size before communication. This may require explicit conversion to
a variable of

< previous page page_320 next page >

page_321

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_321.html[2011-2-17 2:07:40]

< previous page page_321 next page >

Page 321

size that can be communicated and handshaking between sender and receiver to agree on a size.

Note finally that using the external32 representation for I/O requires explicit attention to the representation sizes.
Consider the following code:

real(selected_real_kind(5)) x(100)
call MPI_SIZEOF(x, size, ierror)
call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then
 call MPI_FILE_OPEN(MPI_COMM_SELF, foo, &
 MPI_MODE_CREATE+MPI_MODE_WRONGLY, &
 MPI_INFO_NULL, fh, ierror)
 call MPI_FILE_SET_VIEW (fh, 0, xtype, xtype external32, &
 MPI_INFO_NULL, ierror)
 call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)
 call MPI_FILE_CLOSE(fh, ierror)
endif

call MPI_BARRIER(MPI_COMM_WORLD, ierror)

if (myrank .eq. 1) then
 call MPI_FILE_OPEN(MPI_COMM_SELF, foo, MPI_MODE_RDONLY, &
 MPI_INFO_NULL, fh, ierror)
 call MPI_FILE_SET_VIEW(fh, 0, xtype, xtype, external32, &
 MPI_INFO_NULL, ierror)
 call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)
 call MPI_FILE_CLOSE(fh, ierror)
endif

If processes 0 and 1 are on different machines, this code may not work as expected if the size is different on the
two machines.

< previous page page_321 next page >

page_323

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_323.html[2011-2-17 2:07:40]

< previous page page_323 next page >

Page 323

9
Conclusions

We are probably the first generation of message-passing programmers.

We are also probably the last generation of message-passing programmers.

This exchange (paraphrased from one that actually occurred during a meeting of the MPI Forum) illustrates the
position in which MPI (or, more generally, message passing programming) currently finds itself.

On the one hand, message passing is a (relatively) mature paradigm for parallel programming. The development of
MPI has provided a message-passing library standard which, coupled with implementations from high-
performance computer vendors, will have a lasting impact on the field of high-performance computing. With a
platform-independent standard, applications and libraries can exist well beyond the lifetime of their original
hardware (and in fact do not have to be written with a particular hardware platform in mind).

On the other hand, computer technology continues to evolve at a breakneck pace, and development efforts in
hardware, system software, and language and compiler design all seek to make parallel programming more
portable, more scalable, and more transparent. It remains to be seen when (or if) these technologies will combine to
obviate message passing.

What is clear, however, is that for the foreseeable future, message passing will continue be an important
technology for scalable parallel computing and that it will be a stepping stone to whatever technology or
technologies ultimately replace it.

9.1
Extensions to MPI

Given that MPI was extended once, it is natural to ask if it is likely (or even planned) that there will be further
extensions to MPI. The answer is yes, there will probably be extensions to MPI, but there are no plans to reconvene
the MPI Forum in the near future. Thus, any extensions made to MPI must remain unofficial in the near term.

During the course of the two years that the MPI Forum convened for MPI-2, many ideas were explored that are not
included in the final MPI-2 Standard. We discuss those briefly here since these ideas are likely starting points for
further development of MPI. These ideas are discussed more fully in the MPI Journal of Development[6], or JOD,
where a chapter is devoted to each issue.

< previous page page_323 next page >

page_324

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_324.html[2011-2-17 2:07:41]

< previous page page_324 next page >

Page 324

Spawning Independent Processes. A number of issues were not covered in MPI-2 regarding dynamic process
management, particularly with regard to management of processes with which the spawning processes do not
intend to communicate. These issues were discussed at length by the Forum in the context of dynamic process
management but ultimately were not included in the standard. Facilities for process signalling and monitoring are
examples of functionality proposed in this chapter.

Threads and MPI. Shared-memory and distributed-memory parallel computing are not necessarily competing
programming models. Since clusters of SMPs are a viable (and important) parallel computing resource, one
particularly interesting (and most likely inevitable) discussion is how to effectively combine thread programming
and MPI. Functions normally associated with threads and shared variables are extended to distributed memory
situations.

Communicator ID. The MPI-1 Forum carefully defined communicators so that communicator creation need not
always be a synchronizing operation. This makes the notion of a global identifier for each communicator
problematic. An approach to the problem is discussed in this chapter.

Miscellany. This chapter discusses Miscellaneous topics in the MPI JOD, in particular single-copy routines for use
in shared-memory environments and new datatype constructors.

Toward a Full Fortran 90 Interface. As seen in Chapter 8, a complete Fortran 90 interface for MPI is problematic.
This chapter describes an approach to providing a more elaborate Fortran 90 interface.

Two-phase Collective Communication. Non-blocking collective operations present difficult implementation issues,
particularly in the absence of threads. The Forum spent considerable time discussing non-blocking collective
operations. Non-blocking variants of the routines in 14 were first replaced by the related two-phase collective
operations, which offer many of the same advantages as non-blocking operations, but eventually it was decided not
to include them in the Standard. The specifications are presented in this chapter. The two-phase operations for
collective I/O are the only remnants of these operations.

Real Time MPI. Real-time requirements suggest both additions to, and subtractions from, the MPI-1and MPI-2
specifications. The real-time subcommittee of the MPI Forum invested considerable work in this chapter, but
eventually decided not to propose it for inclusion in the MPI-2 Standard. The work to produce a specification for a
real-time message-passing library that will be strongly related to the MPI specification is ongoing (See
http://www.mpirt.org/).

< previous page page_324 next page >

page_325

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_325.html[2011-2-17 2:07:41]

< previous page page_325 next page >

Page 325

9.2#Implementation and Adoption of MPI-2

Unlike MPI-1, which had the mpich implementation [10] being developed in conjunction (and evolving) with the
standard itself, MPI-2 has not had a reference implementation accompanying it through its development process.

Nevertheless, as of this writing, there is one known complete MPI-2 implementation, by Fujitsu.

Hewlett-Packard has announced (May, 1998) that their MPI now contains an implementation of the most important
one-sided operations.

As with MPI-1, MPI-2 was designed with layerability in mind (indeed, several parts of MPI-2 were developed
precisely to extend the layerability of MPI) and this has allowed several major portions of MPI-2 to be developed.
Several research efforts have exploited the layerability of MPI using the facilities in Chapter 6 to provide public
implementations of MPI-2 I/O [25]. Users can expect to see MPI-2 I/O features from several vendors and other
developers as well before the end of 1998. For example, Sun Microsystems has already announced support for
many of the MPI-2 I/O routines. In addition, C++ binding layers for MPI are available publicly from
http://www.cse.nd.edu/lsc/research/mpi2c++/ and http://www.erc.msstate.edu/labs/icdcrl/mpi++. Similarly layered
C++ bindings for MPI should be available soon from several vendors.

< previous page page_325 next page >

page_327

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_327.html[2011-2-17 2:07:42]

< previous page page_327 next page >

Page 327

References.

[1] David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and Maurice Yarrow. The NAS
parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames Research Center, Moffett Field, CA 94035-
1000, December 1995.

[2] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok Choudhary. Design and evaluation of primitives for
parallel I/O. In Proceedings of Supercomputing '93, pages 452461, 1993.

[3] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel I/O via a two-phase
run-time access strategy. In IPPS '93 Workshop on Input/Output in Parallel Computer Systems, pages 5670, 1993.
Also published in Computer Architecture News 21(5), December 1993, pages 3138.

[4] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard (version 1.1). Technical report,
1995. http://www.mpi-forum.org.

[5] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing Interface. Technical report, 1997.
http://www.mpi-forum.org.

[6] Message Passing Interface Forum. MPI-2 Journal of Development. Technical report, 1997. http://www.mpi-
forum.org.

[7] Message Passing Interface Forum. MPI2: A Message-Passing Interface Standard. The International Journal of
High Performance Computing Applications, 12:1299, 1998. Special issue on MPI.

[8] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: A Users' Guide and
Tutorial for Networked Parallel Computing. MIT Press, 1994. The book is available electronically, the url is
ftp://www.netlib.org/pvm3/book/pvm-book.ps.

[9] W. Gropp and E. Lusk. Dynamic process management in an MPI setting. In Proceedings of the Seventh IEEE
Symposium on Parallel and Distributed Processing, October 2528, 1995, San Antonio, Texas, pages 530534. IEEE
Computer Society Press, 1995.

[10] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable
implementation of the MPI message passing interface standard. Parallel Computing, (22):789828, 1996.

[11] Michael Hennecke. A Fortran 90 interface to MPI version 1.1. Technical Report 63/96, Rechenzentrum,
Universität Karlsruhe, D-76128 Karlsruhe, Germany, June 1996. Available via world wide web from
http://www.uni-karlsruhe.de/Michael.Hennecke/Publications/#MPI_F90.

[12] IEEE, New York. IEEE Standard for Information Technology POSIX Fortran 77 Language InterfacesPart 1:
System Application Program Interface (API), 1992.

[13] Institute of Electrical and Electronics Engineers, New York. IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 7541985, 1985.

[14] International Organization for Standardization, Geneva. Information processing8-bit single-byte coded
graphic character setsPart 1: Latin alphabet No. 1, 1987.

[15] International Organization for Standardization, Geneva. Information technologyPortable Operating System
Interface (POSIX)Part 1: System Application Program Interface (API) [C Language], December 1996.

[16] P. J. Komisky. Performance analysis of an implementation of the beam and warming implicit factored scheme
on the ncube hypercube. In Proceedings of the 3rd Symposium on the Frontiers of Massively Parallel Computation.

page_327

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_327.html[2011-2-17 2:07:42]

College Park, MD, October 810, 1990.

[17] David Kotz. Disk-directed I/O for MIMD multiprocessors. In Proceedings of the 1994 Symposium on
Operating Systems Design and Implementation, pages 6174, November 1994. Updated as Dartmouth TR PCS-
TR94-226 on November 8, 1994.

< previous page page_327 next page >

page_328

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_328.html[2011-2-17 2:07:42]

< previous page page_328 next page >

Page 328

[18] S. J. Lefflet, R. S. Fabry, W. N. Joy, P. Lapsley, S. Miller, and C. Torek. An advanced 4.4BSD interprocess
communication tutorial, Unix programmer's supplementary documents (PSD) 21. Technical report, Computer
Systems Research Group, Depertment of Electrical Engineering and Computer Science, University of California,
Berkeley, 1993. Also available at http://www.netbsd.org/Documentation/lite2/psd/.

[19] Bill Nitzberg. Performance of the iPSC/860 Concurrent File System. Technical Report RND-92-020, NAS
Systems Division, NASA Ames, December 1992.

[20] William J. Nitzberg. Collective Parallel I/O. PhD thesis, Department of Computer and Information Science,
University of Oregon, December 1995.

[21] 4.4BSD Programmer's Supplementary Documents (PSD). O'Reilly and Associates, 1994.

[22] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed collective I/O in Panda. In
Proceedings of Supercomputing '95, December 1995.

[23] Mark Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI: The Complete
Reference (Second Edition). MIT Press, 1998.

[24] Rajeev Thakur and Alok Choudhary. An Extended Two-Phase Method for Accessing Sections of Out-of-Core
Arrays. Scientific Programming, 5(4):301317, Winter 1996.

[25] Rajeev Thakur, William Gropp, and Ewing Lusk. An abstract-device interface for implementing portable
parallel-I/O interfaces. In Proceedings of the Sixth Symposium on the Frontiers of Massively Parallel Computation,
pages 180187, October 1996.

[26] The Unicode Standard, Version 2.0. Addison-Wesley, 1996. ISBN 0-201-48345-9.

< previous page page_328 next page >

page_329

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_329.html[2011-2-17 2:07:43]

< previous page page_329 next page >

Page 329

Constants Index

A

access_style, 198

appnum, 88

arch, 70

C

cb_block_size, 198

cb_buffer_size, 198

cb_nodes, 198, 199

chunked, 199

chunked_item, 199

chunked_size, 199

collective_buffering, 198

E

external32, 232

F.

false, 198

file, 71

file_perm, 198, 199

filename, 199

H

host, 70

I

internal, 231

io_node_list, 199

ip_address, 83

ip_port, 82

M

page_329

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_329.html[2011-2-17 2:07:43]

MPI::Aint, I-14, 12

MPI::ARGV_NULL, 63

MPI::BOOL, I-35

MPI::COMM_NULL, I277, 283

MPI::COMPLEX, I-35

MPI::DOUBLE_COMPLEX, I-35

MPI::ERRORS_THROW_EXCEPTIONS, I-371

MPI::F_COMPLEX, I-35

MPI::F_DOUBLE_COMPLEX, I-35

MPI::LONG_DOUBLE_COMPLEX, I-35

MPI::Offset, I-14, 12

MPI::TWODOUBLE_PRECISION, I-234

MPI::TWOINT, I-234

MPI::TWOINTEGER, I-234

MPI::TWOREAL, I-234

MPI_2DOUBLE_PRECISION, I-234

MPI_2INT, I-234

MPI_2INTEGER, I-234

MPI_2REAL, I-234

MPI_ADDRESS_KIND, 12

MPI_Aint, I-14, 12

MPI_ANY_SOURCE, I-39, I-53, I-55, I-99, I-100, I-109, I-366

MPI_ANY_TAG, I-39, I-43, I-99, I-101, I-109

MPI_APPNUM, 88

MPI_ARGV_NULL, 63

MPI_ARGVS_NULL, 69

MPI_BAND, I-299

MPI_BOR, I-229

MPI_BOTTOM, I-160

MPI_BSEND_OVERHEAD, I-120, I-368

MPI_BXOR, I-229

MPI_BYTE, I-34, I-45-I-48

page_329

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_329.html[2011-2-17 2:07:43]

MPI_CART, I-340

MPI_CHAR, I-34, I-48

MPI_CHARACTER, I-34, I-48

MPI_COMBINER_CONTIGUOUS, 167

MPI_COMBINER_DARRAY, 167

MPI_COMBINER_DUP, 167

MPI_COMBINER_F90_COMPLEX, 167

MPI_COMBINER_F90_INTEGER, 167

MPI_COMBINER_F90_REAL, 167

MPI_COMBINER_HINDEXED, 167

MPI_COMBINER_HINDEXED_INTEGER, 167

MPI_COMBINER_HVECTOR, 167

MPI_COMBINER_HVECTOR_INTEGER, 167

MPI_COMBINER_INDEXED, 167

MPI_COMBINER_INDEXED_BLOCK, 167

MPI_COMBINER_NAMED, 167

MPI_COMBINER_RESIZED, 167

MPI_COMBINER_STRUCT, 167

MPI_COMBINER_STRUCT_INTEGER, 167

MPI_COMBINER_SUBARRAY, 167

MPI_COMBINER_VECTOR, 167

MPI_COMM_NULL, I-277, I-278, I-280, I-324, I-334

MPI_COMM_SELF, I-261, I-289

MPI_COMM_WORLD, I-37, I-261, I-272, I-365, I-371, I-372

MPI_COMPLEX, I-34

MPI_CONGRUENT, I-274, I-309

MPI_CONVERSION_FN_NULL, 240

MPI_DATATYPE_NULL, I-148

MPI_DISPLACEMENT_CURRENT, 201

MPI_DISTRIBUTE_BLOCK, I-166

MPI_DISTRIBUTE_CYCLIC, I-166

MPI_DISTRIBUTE_DFLT_DARG, I-166

page_329

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_329.html[2011-2-17 2:07:43]

MPI_DISTRIBUTE_NONE, I-166

< previous page page_329 next page >

page_330

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_330.html[2011-2-17 2:07:44]

< previous page page_330 next page >

Page 330

MPI_DOUBLE, I-34

MPI_DOUBLE_COMPLEX, I-36

MPI_DOUBLE_INT, I-234

MPI_DOUBLE_PRECISION, I-34

MPI_ERR_ACCESS, 193, 256

MPI_ERR_AMODE, 191, 256

MPI_ERR_ARG, I-381

MPI_ERR_ASSERT, 129

MPI_ERR_BAD_FILE, 256

MPI_ERR_BASE, 54, 129

MPI_ERR_BUFFER, I-33, I-381

MPI_ERR_CONVERSION, 241, 256

MPI_ERR_COUNT, I-33, I-381

MPI_ERR_DIMS, I-381

MPI_ERR_DISP, 129

MPI_ERR_DUP_DATAREP, 237, 256

MPI_ERR_FILE, 256

MPI_ERR_FILE_EXISTS, 256

MPI_ERR_FILE_IN_USE, 193, 256

MPI_ERR_GROUP, I-262, I-381

MPI_ERR_IN_STATUS, I-91, I-95, I-380, I-381

MPI_ERR_INFO_KEY, 50

MPI_ERR_INFO_NOKEY, 50

MPI_ERR_INFO_VALUE, 50

MPI_ERR_INTERN, I-381

MPI_ERR_IO, 256

MPI_LASTCODE, I-381

MPI_LOCKTYPE, 129

MPI_ERR_NAME, 82

MPI_ERR_MEM, 54

page_330

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_330.html[2011-2-17 2:07:44]

MPI_ERR_SPACE, 256

MPI_ERR_SUCH_FILE, 193, 256

MPI_ERR_NOT_SAME, 256

MPI_ERR_OP, I-228, I-381

MPI_ERR_OTHER, I-381

MPI_ERR_PENDING, I-92, I-380, I-381

MPI_ERR_PORT, 79

MPI_ERR_QUOTA, 256

MPI_ERR_RANK, I-33, I-38, I-381

MPI_ERR_READ_ONLY, 256

MPI_ERR_REQUEST, I-72, I-381

MPI_ERR_RMA_CONFLICT, 129

MPI_ERR_RMA_SYNC, 129

MPI_ERR_ROOT, I-198, I-381

MPI_ERR_SERVICE, 81

MPI_ERR_SIZE, 129

MPI_ERR_SPAWN, 65, 66

MPI_ERR_TAG, I-33, I-381

MPI_ERR_TOPOLOGY, I-326, I-381

MPI_ERR_TRUNCATE, I-39, I-381

MPI_ERR_TYPE, I-33, I-381

MPI_ERR_UNKNOWN, I-381

MPI_ERR_UNSUPPORTED_DATAREP, 256

MPI_ERR_UNSUPPORTED_OPERATION, 256

MPI_ERR_WIN, 129

MPI_ERRCODES_IGNORE, 66

MPI_ERRHANDLER_NULL, I-379

MPI_ERROR, I-40

MPI_ERRORS_ARE_FATAL, I-371, I-372

MPI_ERRORS_RETURN, I-371

MPI_STATUS_IGNORE, 40

MPI_STATUSES_IGNORE, 40

page_330

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_330.html[2011-2-17 2:07:44]

MPI_File, 188

MPI_FILE_NULL, I-371, 192

MPI_Fint, 36

MPI_FLOAT, I-34

MPI_FLOAT_INT, I-234

MPI_GRAPH, I-340

MPI_GROUP_EMPTY, I-257, I-267-I-269

MPI_GROUP_NULL, I-257, I-271

MPI_HOST, I-365, I-366

MPI_IDENT, I-264, I-274

MPI_IN_PLACE, I-197

MPI_Info, 48

MPI_INFO_NULL, 53, 65

MPI_INT, I-34, I-125

MPI_INTEGER, I-34

MPI_INTEGER1, I-36

MPI_INTEGER2, I-36

MPI_INTEGER4, I-36

MPI_INTEGER_KIND, 168

MPI_IO, I-365, I-366

MPI_KEYVAL_INVALID, I-290, I-293, I-294

MPI_LAND, I-229

MPI_LASTUSEDCODE, 161

MPI_LB, I-155, I-174

MPI_LOCK_EXCLUSIVE, 119

MPI_LOCK_SHARED, 119

MPI_LOGICAL, I-34

MPI_LONG, I-34

MPI_LONG_DOUBLE, I-34

MPI_LONG_DOUBLE_INT, I-234

MPI_LONG_INT, I-234

MPI_LONG_LONG, I-36

page_330

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_330.html[2011-2-17 2:07:44]

MPI_LOR, I-229

MPI_LXOR, I-229

MPI_MAX, I-228, I-229

MPI_MAX_DATAREP_STRING, 202, 238

MPI_MAX_ERROR_STRING, I-380

MPI_MAX_INFO_KEY, 48

MPI_MAX_INFO_VAL, 48

MPI_MAX_OBJECT_NAME, 156

MPI_MAX_PORT_NAME, 76

MPI_MAX_PROCESSOR_NAME, I-367

MPI_MAXLOC, I-229, I-232, I-233, I-238

< previous page page_330 next page >

page_331

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_331.html[2011-2-17 2:07:45]

< previous page page_331 next page >

Page 331

MPI_MIN, I-229

MPI_MINLOC, I-229, I-232, I-233, I-238

MPI_MODE_APPEND, 190

MPI_MODE_CREATE, 190

MPI_MODE_DELETE_ON_CLOSE, 190

MPI_MODE_EXCL, 190

MPI_MODE_NOCHECK, 124, 125

MPI_MODE_NOPRECEDE, 125

MPI_MODE_NOPUT, 124

MPI_MODE_NOSTORE, 124

MPI_MODE_NOSUCCEED, 125

MPI_MODE_RDONLY, 190

MPI_MODE_RDWR, 190

MPI_MODE_SEQUENTIAL, 190

MPI_MODE_UNIQUE_OPEN, 190

MPI_MODE_WRONLY, 190

MPI_Offset, I-14, 12, 248

MPI_OFFSET_KIND, I-14, 12, 35, 248

MPI_OP_NULL, I-247

MPI_ORDER_C, I-163

MPI_ORDER_FORTRAN, I-163

MPI_PACKED, I-34, I-36, I-45, I-177, I-178, I-180

MPI_PROC_NULL, I-66, I-329, I-331, I-365, I-366, 141

MPI_PROD, I-229

MPI_REAL, I-34

MPI_REAL2, I-36

MPI_REAL4, I-36

MPI_REAL8, I-36

MPI_REPLACE, 107

MPI_REQUEST_NULL, I-71, I-72, I-78, I-88, I-89, I-91, I-93, I-95, I-108

page_331

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_331.html[2011-2-17 2:07:45]

MPI_ROOT, 140

MPI_SEEK_CUR, 216

MPI_SEEK_END, 216

MPI_SEEK_SET, 216

MPI_SHORT, I-34

MPI_SHORT_INT, I-234

MPI_SIGNED_CHAR, I-34, I-48

MPI_SIMILAR, I-264, I-274, I-309

MPI_SOURCE, I-40

MPI_STATUS_IGNORE, I-41

MPI_STATUS_SIZE, I-40

MPI_STATUSES_IGNORE, I-91

MPI_SUCCESS, I-92, I-95, I-291, I-380-I-382

MPI_SUM, I-229

MPI_TAG, I-40

MPI_TAG__UB, I-37, I-365

MPI_THREAD_FUNNELED, 29

MPI_THREAD_MULTIPLE, 29

MPI_THREAD_SERIALIZED, 29

MPI_THREAD_SINGLE, 29

MPI_TYPECLASS_COMPLEX, 319

MPI_TYPECLASS_INTEGER, 319

MPI_TYPECLASS_REAL, 319

MPI_UB, I-155, I-174

MPI_UNDERFINED, I-41, I-89, I-109, I-150, I-339, I-340

MPI_UNEQUAL, I-264, I-274, I-309

MPI_UNIVERSE_SIZE, 86

MPI_UNSIGNED, I-34

MPI_UNSIGNED_CHAR, I-34

MPI_UNSIGNED_LONG, I-34

MPI_UNSIGNED_LONG_LONG, I-36

MPI_UNSIGNED_SHORT, I-34

page_331

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_331.html[2011-2-17 2:07:45]

MPI_WCHAR, I-34, I-48

MPI_Win, 94

MPI_WIN_BASE, 97

MPI_WIN_DISP_UNIT, 97

MPI_WIN_NULL, 97

MPI_WIN_SIZE, 97

MPI_WTIME_IS_GLOBAL, I-365, I-366, I-368

N

native, 231

nb_proc, 199

no_locks, 96

num_io_nodes, 199

P.

path, 71

R

random, 198

read_mostly, 198

read_once, 198

reverse_sequential, 198

S

sequential, 198

soft, 65, 71

striping_factor, 199

striping_unit, 199

T

true, 198

W

wdir, 71

write_mostly, 198

write_once, 198

page_331

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_331.html[2011-2-17 2:07:45]

< previous page page_331 next page >

page_333

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_333.html[2011-2-17 2:07:46]

< previous page page_333 next page >

Page 333

Function Index.

A

MPI_ABORT, I-363

MPI_ACCUMULATE, 106

MPI_ADD_ERROR_CLASS, 161

MPI_ADD_ERROR_CODE, 162

MPI_ADD_ERROR_STRING, 162

MPI_ADDRESS, I-173

MPI_ALLGATHER, I-215

MPI_ALLGATHERV, I-217

MPI_ALLOC_MEM,54

MPI_ALLREDUCE, I-238

MPI_ALLTOALL, I-218

MPI_ALLTOALLV, I-219

MPI_ALLTOALLW, I-221

MPI::Attach_buffer, I-119

MPI_ATTR_DELETE, I-303

MPI_ATTR_GET, I-303

MPI_ATTR_PUT, I-303

B

MPI_BARRIER, I-195

MPI_BCAST, I-197

MPI_BSEND_INIT, I-116

MPI_BSEND, I-113

MPI_BUFFER_ATTACH, I-118

MPI_BUFFER_DETACH, I-119

C

MPI_CANCEL, I-101

page_333

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_333.html[2011-2-17 2:07:46]

MPI_CART_COORDS, I-327

MPI_CART_CREATE, I-323

MPI_CART_GET, I-326

MPI_CART_MAP, I-332

MPI_CART_RANK, I-327

MPI_CART_SHIFT, I-328

MPI_CART_SUB, I-331

MPI::Cartcomm::Clone, I-275

MPI::Cartcomm::Dup, I-275

MPI::Cartcomm::Get_cart_rank, I-327

MPI::Cartcomm::Get_coords, I-328

MPI::Cartcomm::Get_dim, I-326

MPI::Cartcomm::Get_topo, I-326

MPI::Cartcomm::Map, I-333

MPI::Cartcomm::Shift, I-328

MPI::Cartcomm::Sub, I-331

MPI_CARTDIM_GET, I-325

MPI_CLOSE_PORT, 77

MPI::Comm::Clone, I-275

MPI::Comm::Compare, I-274

MPI::Comm::Free, I-280

MPI::Comm::Get_group, I-265

MPI::Comm::Get_rank, I-273

MPI::Comm::Get_size, I-272

MPI::Comm::Get_topology, I-340

MPI::Comm::Is_inter, I-308

MPI_COMM_ACCEPT, 77

MPI_COMM_C2F, 36

MPI_COMM_CALL_ERRHANDLER, 163

MPI_COMM_CLONE, 285

MPI_COMM_COMPARE, I-273

MPI_COMM_CONNECT, 78

page_333

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_333.html[2011-2-17 2:07:46]

COMM_COPY_ATTR_FN, I-291

MPI_Comm_copy_attr_function, I-290

MPI_COMM_CREATE_ERRHANDLER, I-373

MPI_COMM_CREATE_KEYVAL, I-290

MPI_COMM_CREATE, I-277, I-310

COMM_DELETE_ATTR_FN, I-292

MPI_Comm_delete_attr_function, I-292

MPI_COMM_DELETE_ATTR, I-295

MPI_COMM_DISCONNECT, 90

MPI_COMM_DUF_FN, I-291

MPI_COMM_DUP, I-274, I-390

COMM_ERRHANDLER_FN, I-374

MPI_Comm_errhandler_fn, I-374

MPI_COMM_F2C, 36

MPI_COMM_FREE_KEYVAL, I-293

MPI_COMM_FREE, I-279

MPI_COMM_GET_ATTR, I-294

MPI_COMM_GET_ERRHANDLER, I-377

MPI_COMM_GET_NAME, 157

MPI_COMM_GET_PARENT, 66

MPI_COMM_GROUP, I-265, I-309

MPI_COMM_JOIN, 91

MPI_COMM_NULL_COPY_FN, I-291

MPI_COMM_NULL_DELETE_FN, I-293

MPI_COMM_RANK, I-273, I-309

MPI_COMM_REMOTE_GROUP, I-309

MPI_COMM_REMOTE_SIZE, I-309

MPI_COMM_SET_ATTR, I-293

MPI_COMM_SET_ERRHANDLER, I-376

MPI_COMM_SET_NAME, 156

MPI_COMM_SIZE, I-272, I-309

MPI_COMM_SPAWN, 61

page_333

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_333.html[2011-2-17 2:07:46]

MPI_COMM_SPAWN_MULTIPLE, 67

MPI_COMM_SPLIT, I-278, I-310

MPI_COMM_TEST_INTER, I-308

MPI::Compute_dims, I-325

COPY_FUNCTION, I-302

MPI_Copy_function, I-302

< previous page page_333 next page >

page_334

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_334.html[2011-2-17 2:07:47]

< previous page page_334 next page >

Page 334

D

DATAREP_CONVERSION_FUNCTION, 238

MPI_Datarep_conversion_function, 238

DATAREP_EXTENT_FUNCTION, 238

MPI_Datarep_extent_function, 238

MPI::Datatype::Commit, I-147

MPI::Datatype::Create_contiguous, I-129

MPI::Datatype::Create_indexed, I-138

MPI::Datatype::Create_vector, I-131

MPI::Datatype::Free, I-148

MPI::Datatype::Get_size, I-128

DELETE_FUNCTION, I-302

MPI_Delete_function, I-302

MPI::Detach_buffer, I-119

MPI_DIMS_CREATE, I-324

MPI_DUP_FN, I-302

E.

MPI::Errhandler::Free, I-379

MPI_ERRHANDLER_C2F, 37

MPI_ERRHANDLER_CREATE, I-379

MPI_ERRHANDLER_F2C, 37

MPI_ERRHANDLER_FREE, I-379

MPI_ERRHANDLER_GET, I-379

MPI_ERRHANDLER_SET, I-379

MPI_ERROR_CLASS, I-381

MPI_ERROR_STRING, I-380

MPI_EXSCAN, I-243

F

MPI_FILE_C2F, 37

MPI_FILE_ERRHANDLER, 164

page_334

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_334.html[2011-2-17 2:07:47]

MPI_FILE_CLOSE, 192

MPI_FILE_CREATE_ERRHANDLER, I-375

MPI_FILE_DELETE, 192

MPI_ERRHANDLER_FN, I-375

MPI_File_errhandler_fn, I-375

MPI_FILE_F2C, 37

MPI_FILE_GET_AMODE, 196

MPI_FILE_GET_ATOMICITY, 245

MPI_FILE_GET_BYTE_OFFSET, 217

MPI_FILE_GET_ERRHANDLER, I-378

MPI_FILE_GET_GROUP, 195

MPI_FILE_GET_INFO, 197

MPI_FILE_GET_POSITION, 216

MPI_FILE_GET_POSITION_SHARED, 222

MPI_FILE_GET_SIZE, 195

MPI_FILE_GET_TYPE_EXTENT, 233

MPI_FILE_GET_VIEW, 202

MPI_FILE_IREAD_AT, 209

MPI_FILE_IREAD, 214

MPI_FILE_IREAD_SHARED, 219

MPI_FILE_IWRITE_AT, 210

MPI_FILE_IWRITE, 215

MPI_FILE_IWRITE_SHARED, 219

MPI_FILE_OPEN, 189

MPI_FILE_LPREALLOCATE, 194

MPI_FILE_READ_ALL_BEGIN, 226

MPI_FILE_READ_ALL_END, 227

MPI_FILE_READ_ALL, 212

MPI_FILE_READ_AT_ALL_BEGIN, 224

MPI_FILE_READ_AT_ALL_END, 225

MPI_FILE_READ_AT_ALL, 207

MPI_FILE_READ_AT, 207

page_334

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_334.html[2011-2-17 2:07:47]

MPI_FILE_READ, 211

MPI_FILE_READ_ORDERED_BEGIN, 228

MPI_FILE_READ_ORDERED_END, 228

MPI_FILE_READ_ORDERED, 220

MPI_FILE_READ_SHARED, 218

MPI_FILE_SEEK, 215

MPI_FILE_SEEK_SHARED, 222

MPI_FILE_SET_ATOMICITY, 244

MPI_FILE_SET_ERRHANDLER, I-377

MPI_FILE_SET_INFO, 197

MPI_FILE_SET_SIZE, 193

MPI_FILE_SET_VIEW, 200

MPI_FILE_SYNC, 245

MPI_FILE_WRITE_ALL_BEGIN, 227

MPI_FILE_WRITE_ALL_END, 227

MPI_FILE_WRITE_ALL, 213

MPI_FILE_WRITE_AT_ALL_BEGIN, 225

MPI_FILE_WRITE_AT_ALL_END, 226

MPI_FILE_WRITE_AT_ALL, 208

MPI_FILE_WRITE_AT, 208

MPI_FILE_WRITE, 213

MPI_FILE_WRITE_ORDERED_BEGIN, 229

MPI_FILE_WRITE_ORDERED_END, 229

MPI_FILE_WRITE_ORDERED, 221

MPI_FILE_WRITE_SHARED, 218

MPI_FINALIZE, I-358

MPI_FINALIZED, I-362

MPI_FREE_MEM, 54

G

MPI_GATHER, I-199

MPI_GATHERV, I-202

MPI_GET_ADDRESS, I-153

page_334

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_334.html[2011-2-17 2:07:47]

MPI_GET_COUNT, I-141

MPI_GET_ELEMENTS, I-151

MPI::Get_error_class, I-381

MPI::Get_error_string, I-380

MPI_GET, 102

MPI_GET_PROCESSOR_NAME, I-367

MPI_GET_VERSION, I-364

MPI_GRAPH_CREATE, I-334

< previous page page_334 next page >

page_335

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_335.html[2011-2-17 2:07:48]

< previous page page_335 next page >

Page 335

MPI_GRAPH_GET, I-336

MPI_GRAPH_MAP, I-339

MPI_GRAPH_NEIGHBORS_COUNT, I-337

MPI_GRAPH_NEIGHBORS, I-337

MPI::Graphcomm::Clone, I-275

MPI::Graphcomm::Dup, I-275

MPI::Graphcomm::Get_dims, I-336

MPI::Graphcomm::Get_neighbors, I-338

MPI::Graphcomm::Get_neighbors_count, I-337

MPI::Graphcomm::Get_topo, I-337

MPI_GRAPHDIMS_GET, I-336

GREQUEST_CANCEL_FUNCTION, 149

MPI_Grequest_cancel_function, 149

MPI_GREQUEST_COMPLETE, 150

GREQUEST_FREE_FUNCTION, 148

MPI_Grequest_free_function, 148

GREQUEST_QUERY_FUNCTION, 147

MPI_Grequest_query_function, 147

MPI_GREQUEST_START, 146

MPI::Group::Compare, I-264

MPI::Group::Difference, I-266

MPI::Group::Excl, I-268

MPI::Group::Free, I-271

MPI::Group::Get_rank, I-263

MPI::Group::Get_size, I-262

MPI::Group::Incl, I-268

MPI::Group::Intersect, I-266

MPI::Group::Range_excl, I-270

MPI::Group::Range_incl, I-269

MPI::Group::Translate_ranks, I-263

page_335

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_335.html[2011-2-17 2:07:48]

MPI::Group::Union, I-266

MPI_GROUP_C2F, 37

MPI_GROUP_COMPARE, I-264

MPI_GROUP_DIFFERENCE, I-266

MPI_GROUP_EXCL, I-268

MPI_GROUP_F2C, 37

MPI_GROUP_FREE, I-271

MPI_GROUP_INCL, I-267

MPI_GROUP_INTERSECTION, I-266

MPI_GROUP_RANGE_EXCL, I-270

MPI_GROUP_RANGE_INCL, I-269

MPI_GROUP_RANK, I-262

MPI_GROUP_SIZE, I-262

MPI_GROUP_TRANSLATE_RANKS, I-263

MPI_GROUP_UNION, I-265

H

HANDLER_FUNCTION, I-379

MPI_Hanlder_function, I-379

I

MPI_IBSEND, I-114

MPI_INFO_C2F, 37

MPI_INFO_CREATE, 49

MPI_INFO_DELETE, 50

MPI_INFO_DUP, 53

MPI_INFO_F2C, 37

MPI_INFO_FREE, 53

MPI_INFO_GET, 51

MPI_INFO_GET_NKEYS, 52

MPI_INFO_GET_NTHKEY, 52

MPI_INFO_GET_VALUELEN, 51

MPI_INFO_SET, 50

MPI_INIT, I-357

page_335

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_335.html[2011-2-17 2:07:48]

MPI_INIT_THREAD, 29

MPI_INITIALIZED, I-362

MPI::Intercomm::Clone, I-275

MPI::Intercomm::Create, I-277

MPI::Intercomm::Dup, I-275

MPI::Intercomm::Get_remote_group, I-310

MPI::Intercomm::Get_remote_size, I-309

MPI::Intercomm::Merge, I-313

MPI::Intercomm::Split, I-278

MPI_INTERCOMM_CREATE, I-311

MPI_INTERCOMM_MERGE, I-313

MPI::Intracomm::Clone, I-275

MPI::Intracomm::Create, I-277

MPI::Intracomm::Create_cat, I-323

MPI::Intracomm::Create_graph, I-334

MPI::Intracomm::Create_intercomm, I-312

MPI::Intracomm::Dup, I-275

MPI::Intracomm::Split, I-278

MPI_IPROBE, I-98

MPI_IRECV, I-70

MPI_IRSEND, I-115

MPI::Is_initialized, I-362

MPI_IS_THREAD_MAIN, 32

MPI_ISEND, I-69

MPI_ISSEND, I-115

K.

MPI_KEYVAL_CREATE, I-301

MPI_KEYVAL_FREE, I-302

L

MPI_LOOKUP_NAME, 82

N

MPI_NULL_COPY_FN, I-302

page_335

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_335.html[2011-2-17 2:07:48]

MPI_NULL_DELETE_FN, I-302

< previous page page_335 next page >

page_336

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_336.html[2011-2-17 2:07:49]

< previous page page_336 next page >

Page 336

O

MPI::OP::Free, I-247

MPI::OP::Init, I-245

MPI_OP_C2F, 37

MPI_OP_CREATE, I-244

MPI_OP_F2C, 37

MPI_OP_FREE, I-247

MPI_OPEN_PORT, 76

P

MPI_PACK_EXTERNAL, I-186

MPI_PACK_EXTERNAL_SIZE, I-187

MPI_PACK, I-175

MPI_PACK_SIZE, I-180

MPI_PCONTROL, I-389

MPI_PROBE, I-99

MPI_PUBLISH_NAME, 80

MPI_PUT, 100

Q.

MPI_QUERY_THREAD, 31

R

MPI_RECV_INIT, I-104

MPI_RECV, I-38

MPI_REDUCE, I-225

MPI_REDUCE_SCATTER, I-240

MPI_REGISTER_DATAREP, 237

MPI::Request::Free, I-78

MPI_REQUEST_C2F, 37

MPI_REQUEST_F2C, 37

MPI_REQUEST_FREE, I-78

page_336

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_336.html[2011-2-17 2:07:49]

MPI_REQUEST_GET_STATUS, I-79

MPI_RSEND_INIT, I-117

MPI_RSEND, I-114

S

MPI_SCAN, I-242

MPI_SCATTER, I-210

MPI_SCATTERV, I-212

MPI_SEND_INIT, I-104

MPI_SEND, I-33

MPI_SENDRECV, I-62

MPI_SENDRECV_REPLACE, I-63

MPI_SIZEOF, 318

MPI_SSEND_INIT, I-116

MPI_SSEND, I-113

MPI_START, I-105

MPI_STARTALL, I-105

MPI::Status::Get_error, I-40

MPI::Status::Get_source, I-40

MPI::Status::Get_tag, I-40

MPI::Status::Is_cancelled, I-102

MPI::Status::Set_error, I-40

MPI_STATUS_C2F, 40

MPI_STATUS_F2C, 40

MPI_STATUS_SET_CANCELLED, 155

MPI_STATUS_SET_ELEMENTS, 154

T

MPI_TEST_CANCELLED, I-102

MPI_TEST, I-72

MPI_TESTALL, I-92

MPI_TESTANY, I-88

MPI_TESTSOME, I-95

MPI_TOPO_TEST, I-340

page_336

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_336.html[2011-2-17 2:07:49]

MPI_TYPE_C2F, 37

MPI_TYPE_COMMIT, I-147

MPI_TYPE_CONTIGUOUS, I-129

TYPE_COPY_ATTR_FN, 181

MPI_Type_copy_attr_function, 180

MPI_TYPE_CREATE_DARRAY, I-164

MPI_TYPE_CREATE_F90_COMPLEX, 314

MPI_TYPE_CREATE_F90_iNTEGER, 315

MPI_TYPE_CREATE_F90_REAL, 314

MPI_TYPE_CREATE_HINDEXED, I-140

MPI_TYPE_CREATE_HVECTOR, I-132

MPI_TYPE_CREATE_INDEXED_BLOCK, I-139

MPI_TYPE_CREATE_KEYVAL, 180

MPI_TYPE_CREATE_RESIZED, I-155

MPI_TYPE_CREATE_STRUCT, I-142

MPI_TYPE_CREATE_SUBARRAY, I-161

TYPE_DELETE_ATTR_FN, 181

MPI_Type_delete_attr_function, 180

MPI_TYPE_DELETE_ATTR, 182

MPI_TYPE_DUP_FN, 180

MPI_TYPE_DUP, I-128

MPI_TYPE_EXTENT, I-172

MPI_TYPE_F2C, 37

MPI_TYPE_FREE_KEYVAL, 181

MPI_TYPE_FREE, I-148

MPI_TYPE_GET_ATTR, 182

MPI_TYPE_GET_CONTENTS, 168

MPI_TYPE_GET_ENVELOPE, 165

MPI_TYPE_GET_EXTENT, I-127

MPI_TYPE_GET_NAME, 159

MPI_TYPE_GET_TRUE_EXTENT, I-159

MPI_TYPE_HINDEXED, I-173

page_336

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_336.html[2011-2-17 2:07:49]

MPI_TYPE_HVECTOR, I-172

MPI_TYPE_INDEXED, I-137

MPI_TYPE_LB, I-172

MPI_TYPE_MATCH_SIZE, 318

MPI_TYPE_NULL_COPY_FN, 180

< previous page page_336 next page >

page_337

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_337.html[2011-2-17 2:07:49]

< previous page page_337 next page >

Page 337

MPI_TYPE_NULL_DELETE_FN, 180

MPI_TYPE_SET_ATTR, 181

MPI_TYPE_SET_NAME, 158

MPI_TYPE_SIZE, I-128

MPI_TYPE_STRUCT, I-173

MPI_TYPE_UB, I-172

MPI_TYPE_VECTOR, I-130

U

MPI_UNPACK_EXTERNAL, I-187

MPI_UNPACK, I-176

MPI_UNPUBLISH_NAME, 81

USER_FUNCTION, I-245

MPI_User_function, I-245

W.

MPI_WAIT, I-71

MPI_WAITALL, I-91

MPI_WAITANY, I-88

MPI_WAITSOME, I-94

MPI_WIN_C2F, 37

MPI_WIN_CALL_ERRHANDLER, 164

MPI_WIN_COMPLETE, 115

WIN_COPY_ATTR_FN, 177

MPI_Win_copy_attr_function, 177

MPI_WIN_CREATE_ERRHANDLER, I-374

MPI_WIN_CREATE_KEYVAL, 176

MPI_WIN_CREATE, 95

WIN_DELETE_ATTR_FN, 178

MPI_Win_delete_attr_function, 177

MPI_WIN_DELETE_ATTR, 179

MPI_WIN_DUP_FN, 177

page_337

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_337.html[2011-2-17 2:07:49]

WIN_ERRHANDLER_FN, I-375

MPI_Win_errhandler_fn, I-375

MPI_WIN_F2C, 37

MPI_WIN_FENCE, 112

MPI_WIN_FREE_KEYVAL, 178

MPI_WIN_FREE, 96

MPI_WIN_GET_ATTR, 179

MPI_WIN_GET_ERRHANDLER, I-378

MPI_WIN_GET_GROUP, 98

MPI_WIN_GET_NAME, 160

MPI_WIN_LOCK, 119

MPI_WIN_NULL_COPY_FN, 177

MPI_WIN_NULL_DELETE_FN, 177

MPI_WIN_POST, 116

MPI_WIN_SET_ATTR, 178

MPI_WIN_SET_ERRHANDLER, I-377

MPI_WIN_SET_NAME, 159

MPI_WIN_START, 114

MPI_WIN_TEST, 117

MPI_WIN_UNLOCK, 120

MPI_WIN_WAIT, 116

MPI_WTICK, I-369

MPI_WTIME, I-368

< previous page page_337 next page >

page_339

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_339.html[2011-2-17 2:07:50]

< previous page page_339 next page >

Page 339

Index

A

access epoch, 108

active request handle, I-108

active target, 108

address, I-152, I-160

address arguments, I-14, 12

address conversion, I-175, I-303, 44

address truncation, I-175, I-303, 44

Advice to implementors, I-6, 3

Advice to users, I-6, 3

alignment, I-126, I-152, I-155

all reduce, I-238

all to all, I-218

vector variant, I-219

ambiguity of communications, I-404

ANSI C, I-15, 12

argument

address, I-14, 12

array, I-13, 10

choice, I-14, 11

file offset, I-14, 12

handle, I-11, 8

state type, I-13, 10

array arguments, I-13, 10

array section

simple, 304

associativity

user-defined operation, I-245

page_339

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_339.html[2011-2-17 2:07:50]

associativity and reduction, I-228

asymmetry, I-42

atomic access, 242

atomicity, 133

attribute, I-287, I-288

key, I-287, I-290, I-293

predefined, I-365

topology, I-319, I-322

attribute caching, 176

attributes

interger, 42

language interoperability, 42

pointer, 42

B

backmasking, I-298

balance

hot spot, I-85

barrier, I-195

basic Fortran support, 301, 310

binding

C, I-18, 15

C++, I-19, 16

Fortran, I-15, 13, 302

blocking, I-9, I-31, I-49, I-192, 6

broadcase, I-197

buffer

receive, I-39

send, I-33

buffer attach, I-118

buffer policy, I-120

buffered mode, I-32, I-112, I-118

buffering, I-32, I-49, I-50, I-396, I-398

page_339

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_339.html[2011-2-17 2:07:50]

nonblocking, I-83

C

C binding, I-18, 15

C++, 275

datatypes, 281

MPI namespace, 276

semantics, 278

C++ binding, I-19, 16

caching, I-258, I-287, 176

on communicators, 176

on datatypes, 179

on windows, 176

callback function, I-288, I-289

copy, I-275, I-290, I-292

delete, I-280, I-292

cancellation, I-97, I-101

choice arguments, I-14, 11

client-server, 73

client routines, 78

server routines, 76

clock, I-368

clock synchronization, I-365, I-366

collective, I-10, 7

blocking semantics, I-192

communicator, I-194

compatibility with point-to-point, I-191

correctness, I-192

deadlock, I-250

message tag, I-192

modes, I-192

nondeterminism, I-252

portability, I-192, I-250

page_339

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_339.html[2011-2-17 2:07:50]

process group, I-194

restrictions, I-192

semantics of, I-250, I-404

split, 223

threads, I-253

type matching, I-193

vector variants, I-195

collective buffering, 185

collective communication, I-191

intercommunicator, 139

combiner, 166

commit, I-147

communication

< previous page page_339 next page >

page_340

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_340.html[2011-2-17 2:07:51]

< previous page page_340 next page >

Page 340

establishing, 73, 90

nonblocking, I-68

communication domain, I-30, I-36, I-43, I-258, I-259

inter, I-304

intra, I-259

communication hot spot, I-85

communication modes, I-50, I-111, I-112

comments, I-121

communication protocol, I-50

communicator, I-30, I-36, I-257, I-258, 281

accessors, I-272

caching, I-258, I-287

collective, I-194

constructors, I-274

destructor, I-279

hidden, I-194

intra vs inter, I-258

manipulation, I-272

commutativity

user-defined operation, I-245

commutativity and reduction, I-228

complete-receive, I-68

complete-send, I-68

completion

multiple, I-88

completion functions, I-71

complexity to MPI, 395

connected processes, 89

connecting independent processes, 73

constants

page_340

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_340.html[2011-2-17 2:07:51]

language interoperability, 46

context id, I-37, I-260

conversion, I-44

handles, 35

representation, I-47

status, 40

type, I-47

correctness, I-192

cycles, I-62

D.

data conversion, I-30, I-47

data distribution, I-57

datatype, I-33

C++, 281

combiners, 166

contents, 168

decoding, 165

derived, I-10, 7

duplicating, I-128

envelope, 166

equivalent, I-11, 8

Fortran intrinsic types, 312

Fortran parameterized types, 313

named, I-10, 7

portable, I-10, I-170, 7, 232

predefined, I-10, 7

unnamed, I-10, 7

datatype matching, I-30

deadlock, I-50, I-62

debugging support

decoding a datatype, 165

naming objects, 156

page_340

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_340.html[2011-2-17 2:07:51]

deprecated, I-15, 12

derived, I-10, 7

derived datatype, I-123, I-124

address, I-152, I-160

commit, I-147

constructor, I-124, I-128

destructor, I-148

extent, I-126, I-127, I-156

lower bound, I-126, I-156

map, I-124

markers, I-154

matching, I-149

overlapping entries, I-150

signature, I-124

upper bound, I-126, I-156

derived datatypes, I-123

destination, I-36, I-37

deterministic programs, I-53

disk-directed I/O, 185

displacement

file, 186

duplex, 140

duplicating a datatype, I-128

E

effeciency, I-3

enabled communication, I-82

encapsulation, I-37

envelope, 166

environment

runtime, 59

environmental parameters, I-353

epoch

page_340

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_340.html[2011-2-17 2:07:51]

access, 108

exposure, 109

equivalent datatypes, I-11, 8

error classes, I-381

error handling, I-24, I-369, 21

error classes, I-381

error codes, I-39, I-380

error handlers, I-371

in callback functions, 150

predefined handlers, I-371

program error, I-369

< previous page page_340 next page >

page_341

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_341.html[2011-2-17 2:07:53]

< previous page page_341 next page >

Page 341

resource error, I-369

user-defined, 160

etype, 186

exception handlers, 28

exceptions, I-21, 18

exchange communications, I-61

exit, I-353, I-357

exposure epoch, 109

extended Fortran support, 301, 310

extent, I-126, I-127, I-156

F

failure, I-87

fairness, I-55

nonblocking, I-83

server, I-90, I-96

file, 186

access modes, 190

appending, 191

atomic access, 242

closing, 192

consistency, 242

deleting, 193

displacement, 186

getting amode, 196

getting current position, 216

getting current size, 195

getting group, 196

handle, 188, 189

info, 196

interoperability, 230

page_341

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_341.html[2011-2-17 2:07:53]

log, 258

name, 189

offset, 188

offset argument, I-14, 12

opening, 189

permissions, 199

pointer, 188

preallocation, 194

random access, 246

reading, 203

resizing, 193

seeking to a position, 216, 222

sequential, 191, 246

setting the view, 200

size, 188

view, 186, 200

writing, 203

filename, 189

filetype, 186

first-come-first-served, I-76

floating point formats, 234

Fortran, 301

basic support, 301, 310

extended support, 301, 310

Fortran 90 derived datatypes, 306

MPI module, 311

parameterized types, 313

Fortran binding, I-15, 13

G

gather, I-199

vector variant, I-202

gather and scatter, I-218

page_341

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_341.html[2011-2-17 2:07:53]

gather to all, I-215

vector variant, I-217

generalized requests, 145, 146

semantics, 151

setting status, 154

global reduction, I-225

group, I-36, I-255, I-257, I-262, I-319

collective, I-194

leaf, 141

local and remote, I-305

root, 140

H

half-channel, I-103

handles, I-11, 8

language interoperability, 35

heterogeneous, I-2, I-47, I-406, 1

hidden communicator, I-194, I-253

host process, I-365, I-366

hot spot, I-85

I.

I/O, 185

I/O inquiry, I-365, I-366

implementation issues, I-26, 23

implementations, I-407

IN, I-8, 5

inactive request handle, I-108

independent processes, 89

info, 48

reserved keys for I/O, 198

reserved keys for name publishing, 82

reserved keys for one-sided, 96

reserved keys for process management, 70, 88

page_341

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_341.html[2011-2-17 2:07:53]

initialization, I-353, I-357, 28, 87

INOUT, I-8, 5

inter-group communication domain, I-258

interaction

MPI with execution environment, I-353, I-384

intercommunication, I-304

collective, I-305

< previous page page_341 next page >

page_342

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_342.html[2011-2-17 2:07:55]

< previous page page_342 next page >

Page 342

summary, I-305

intercommunicator, I-37, I-258

accessors, I-308

collective communications, 139

constructors, I-310

interoperability, I-2, I-406, 34, 287

attributes, 42

constants, 46

handles, 35

interlanguage communication, 47

opaque objects, 41

status, 40

intracommunicator, I-36, I-258

intragroup communication domain, I-258

ISO C, I-15, 12

J

Jacobi, I-56, I-58

safe version, I-60

using nonblocking, I-73

using send-receive, I-64

with MPI_WAITALL, I-93

with null processes, I-66

with persistent requests, I-106

K

key, I-287, I-290, I-293

L

language interoperability, 34, 287

layering, I-175, I-256, I-388, 145

leaf group, 141

libraries, I-43, I-255, I-388

page_342

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_342.html[2011-2-17 2:07:55]

safety, I-256, I-280, I-404

local, I-10, 7

lock synchronization, 110

locks, 110

exclusive, 110

shared, 110

long protocol, I-86

lower bound, I-126, I-156

M

main thread, 27

markers, I-154

matching, I-53

narrow, I-43

type, I-44

matrix product, I-340

maximum and location, I-232

memory allocation, 53

message

self, I-42

self-typed, I-43

message destination, I-37

message envelope, I-36

message matching, I-53

message order, I-52

message selection, I-39

message source, I-36, I-39

message tag, I-29, I-37, I-39

minimum and location, I-232

mode, I-112

buffered, I-112, I-118

comments, I-121

ready, I-112

page_342

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_342.html[2011-2-17 2:07:55]

standard, I-50, I-112

synchronous, I-112

modes, I-32, I-50, I-111, I-192

modularity, I-256, I-280, I-404

MPI Forum, I-1

MPI implementations, I-407

MPI+1, 1

MPI+2, 2

MPI_COMM_WORLD, I-30

MPI_STATUS_IGNORE, I-41

MPI_STATUSES_IGNORE, I-91

multiple completion, I-88

N.

name service, 75, 79

name shift, I-387

named, I-10, 7

named constants, I-13, 10

naming, 156

communicators, 156

datatypes, 158

windows, 159

naming conventions, I-7, 4

narrow matching, I-43

non-local, I-10, I-49, 7

nonblocking, I-9, I-31, I-52, 6

buffering, I-83

fairness, I-83

order, I-80

Progress, I-82

safety, I-83

nonblocking communications, I-68

nondeterminism and collective, I-252

page_342

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_342.html[2011-2-17 2:07:55]

null communicator, 283

null process, I-65

null request handle, I-108

< previous page page_342 next page >

page_343

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_343.html[2011-2-17 2:07:56]

< previous page page_343 next page >

Page 343

O

offset

file, 188

opaque objects, I-11, 8

language interoperability, 41

order, I-52

nonblocking, I-80

with threads, I-53

origin, 94

OUT, I-8, 5

overflow, I-39, I-48

overlap, I-73

P

pack, I-123, I-175

packing unit, I-177

parallel I/O, 185

parallel prefix, I-242

passive target, 108

persistent request, I-103

pointer

file, 188

individual, 188

shared, 188

polling, I-97

port, I-103

port name, 75

portability, I-2, I-192, I-250

portable, I-10, I-170, 7

portable programming, I-397

POSIX

page_343

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_343.html[2011-2-17 2:07:56]

differences in file semantics, 244

file interface, 185

file manipulation, 230

file view, 190

Fortran, I-12, 9

fread vs. MPI_FILE_READ, 203

interaction with signals, I-385

interprocess communication, 25

threads, I-24, 21, 25

post-receive, I-68

post-send, I-68

failure of, I-87

posting, I-31

posting functions, I-69

predefined, I-10, 7

predefined attributes, I-365

predefined datatype, I-123

probing, I-97

process, 59, 61

connected, 89

disconnect, 90

identifying multiple executables, 88

independent, 89

starting, 58, 61

starting multiple executables, 67

process group, I-36, I-255, I-257, I-262, I-319

local and remote, I-305

process model, 58

process rank, I-37, I-257, I-319

processes, I-23, 20

producer-consumer, I-75, I-90, I-109

profile interface, I-387, 287

page_343

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_343.html[2011-2-17 2:07:56]

progress, I-55

and generalized requests, 151

and threads, 26

for one-sided communication, 134

for probe, I-99

nonblocking, I-82

protocol

communication, I-50

two-phase, I-42

protocols, I-32

R

rank, I-30, I-37, I-257, I-319

rationale, I-6, 3

ready mode, I-32, I-112

receive, I-38

wildcard, I-43

receive buffer, I-39

reduce, I-225

list of operations, I-229

user-defined, I-244

reduce and scatter, I-240

reduction, I-225

reduction and associativity, I-228

reduction and commutativity, I-228

reference constant, I-16

remote memory access, 93

remote procedure call, I-62

rendezvous, I-32, I-112

representation conversion, I-30, I-47, 230, 235

request

generalized, 145, 146

inactive vs active, I-108

page_343

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_343.html[2011-2-17 2:07:56]

null handle, I-108

persistent, I-103

request object, I-69

allocation of, I-70

deallocation of I-78

resource limitations, I-83

return status, I-39

RMA, 93

root, I-195

root group, 140

< previous page page_343 next page >

page_344

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_344.html[2011-2-17 2:07:57]

< previous page page_344

Page 344

round-robin, I-76

runtime environment, 59

S

safe program, I-50

safety, I-49, I-85, I-250, I-256

scalability, I-3

scan, I-242

inclusive vs exclusive, I-244

user-defined, I-244

scatter, I-210

vector variant, I-212

scatter and gather, I-218

selection, I-39

self message, I-42

self-typed message, I-43

semantics, I-32, I-49

C++ specifics, 278

nonblocking, I-80

semantics of collective, I-250

send, I-33

send buffer, I-33

send-receive, I-61

sequential consistency, 242

server

fairness, I-90, I-96

service name, 75

short protocol, I-85

signal-safety, I-385

signals, I-27, 24

interaction with threads, 28

page_344

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_344.html[2011-2-17 2:07:57]

simple array section, 304

simplex, 140

socket

establishing communication, 90

source, I-36, I-39

split collective routines, 223

standard mode, I-32, I-50, I-112

starvation, I-55, I-90, I-96, I-109

state types, I-13, 10

status, I-39, I-43

empty, I-108

language interoperability, 40

setting, I-40, 154

synchronization, I-191, I-195

strong, 110

weak, 110

synchronous mode, I-32, I-112

T.

tag, I-29, I-36, I-37, I-39, I-195

upper bound, I-365

target, 94

active, 108

passive, 108

target nodes, 198

test-for-completion, I-31

thread safety, 26

thread-compliant, 26

thread-safetty, I-43, I-385

threads, I-68, 25

exception handlers, 28

initialization, 28

interaction with signals, 28

page_344

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_344.html[2011-2-17 2:07:57]

main thread, 27, 32

thread-compliant, 25

threads and collective, I-253

throttle effect, I-50

time function, I-368

topology, I-319, I-322

Cartesian, I-323

general graph, I-333

overlapping, I-321

virtual vs. physical, I-319

topology and intercommunicator, I-319

two-phase protocol, I-42

type constructor, I-124, I-128

type conversion, I-47

type map, I-124

type matching, I-30, I-44, I-149, I-193

type signature, I-124

typed data, I-29

U

underflow, I-48

universe size, 86

unnamed, I-10, 7

unpack, I-123, I-175

upper bound, I-126, I-156

user-defined operations, I-244

V

view, 200

file, 186

virtual machine, 60

W

wildcard, I-39

wildcard receive, I-43

page_344

file:///E|/__EBOOKS/__PARALLEL/0262571234/files/page_344.html[2011-2-17 2:07:57]

window, 94

< previous page page_344

	本地磁盘
	cover
	page_i
	cover
	page_ii
	page_iii
	page_iv
	page_v
	page_vi
	page_vii
	page_viii
	page_ix
	page_x
	page_xi
	page_xiii
	page_xiv
	page_xv
	page_1
	page_2
	page_3
	page_4
	page_5
	page_6
	page_7
	page_8
	page_9
	page_10
	page_11
	page_12
	page_13
	page_14
	page_15
	page_16
	page_17
	page_18
	page_19
	page_20
	page_21
	page_22
	page_23
	page_24
	page_25
	page_26
	page_27
	page_28
	page_29
	page_30
	page_31
	page_32
	page_33
	page_34
	page_35
	page_36
	page_37
	page_38
	page_39
	page_40
	page_41
	page_42
	page_43
	page_44
	page_45
	page_46
	page_47
	page_48
	page_49
	page_50
	page_51
	page_52
	page_53
	page_54
	page_55
	page_56
	page_57
	page_58
	page_59
	page_60
	page_61
	page_62
	page_63
	page_64
	page_65
	page_66
	page_67
	page_68
	page_69
	page_70
	page_71
	page_72
	page_73
	page_74
	page_75
	page_76
	page_77
	page_78
	page_79
	page_80
	page_81
	page_82
	page_83
	page_84
	page_85
	page_86
	page_87
	page_88
	page_89
	page_90
	page_91
	page_92
	page_93
	page_94
	page_95
	page_96
	page_97
	page_98
	page_99
	page_100
	page_101
	page_102
	page_103
	page_104
	page_105
	page_106
	page_107
	page_108
	page_109
	page_110
	page_111
	page_112
	page_113
	page_114
	page_115
	page_116
	page_117
	page_118
	page_119
	page_120
	page_121
	page_122
	page_123
	page_124
	page_125
	page_126
	page_127
	page_128
	page_129
	page_130
	page_131
	page_132
	page_133
	page_134
	page_135
	page_136
	page_137
	page_139
	page_140
	page_141
	page_142
	page_143
	page_144
	page_145
	page_146
	page_147
	page_148
	page_149
	page_150
	page_151
	page_152
	page_153
	page_154
	page_155
	page_156
	page_157
	page_158
	page_159
	page_160
	page_161
	page_162
	page_163
	page_164
	page_165
	page_166
	page_167
	page_168
	page_169
	page_170
	page_171
	page_172
	page_173
	page_174
	page_175
	page_176
	page_177
	page_178
	page_179
	page_180
	page_181
	page_182
	page_183
	page_185
	page_186
	page_187
	page_188
	page_189
	page_190
	page_191
	page_192
	page_193
	page_194
	page_195
	page_196
	page_197
	page_198
	page_199
	page_200
	page_201
	page_202
	page_203
	page_204
	page_205
	page_206
	page_207
	page_208
	page_209
	page_210
	page_211
	page_212
	page_213
	page_214
	page_215
	page_216
	page_217
	page_218
	page_219
	page_220
	page_221
	page_222
	page_223
	page_224
	page_225
	page_226
	page_227
	page_228
	page_229
	page_230
	page_231
	page_232
	page_233
	page_234
	page_235
	page_236
	page_237
	page_238
	page_239
	page_240
	page_241
	page_242
	page_243
	page_244
	page_245
	page_246
	page_247
	page_248
	page_249
	page_250
	page_251
	page_252
	page_253
	page_254
	page_255
	page_256
	page_257
	page_258
	page_259
	page_260
	page_261
	page_262
	page_263
	page_264
	page_265
	page_266
	page_267
	page_268
	page_269
	page_270
	page_271
	page_272
	page_273
	page_274
	page_275
	page_276
	page_277
	page_278
	page_279
	page_280
	page_281
	page_282
	page_283
	page_284
	page_285
	page_286
	page_287
	page_288
	page_289
	page_290
	page_291
	page_292
	page_293
	page_294
	page_295
	page_296
	page_297
	page_298
	page_299
	page_300
	page_301
	page_302
	page_303
	page_304
	page_305
	page_306
	page_307
	page_308
	page_309
	page_310
	page_311
	page_312
	page_313
	page_314
	page_315
	page_316
	page_317
	page_318
	page_319
	page_320
	page_321
	page_323
	page_324
	page_325
	page_327
	page_328
	page_329
	page_330
	page_331
	page_333
	page_334
	page_335
	page_336
	page_337
	page_339
	page_340
	page_341
	page_342
	page_343
	page_344

